Department of Mathematics and Statistics
 University of New Mexico
 Qualifying Exam

Real Analysis

January 2014
Instructions: Please hand in all of the 8 following problems. Start each problem on a new page, number the pages, and put only your Banner identification number on each page. Clear and concise answers with good justification will improve your score.

1. Let X be any nonempty set. Suppose $f: X \rightarrow \mathbb{R}$ is a bounded function on X and denote

$$
\sup _{X} f=\sup \{f(x): x \in X\} \quad \text { and } \quad \inf _{X} f=\inf \{f(x): x \in X\}
$$

Prove that

$$
\sup _{X} f-\inf _{X} f=\sup \{|f(x)-f(y)|: x, y \in X\}
$$

2. Prove the following parts of the so-called "limit comparison theorem": Suppose $\sum_{k=1}^{\infty} a_{k}$, $\sum_{k=1}^{\infty} b_{k}$ are both series with $a_{k} \geq 0, b_{k}>0$ for every $k=1,2,3, \ldots$ and that

$$
\lim _{k \rightarrow \infty} \frac{a_{k}}{b_{k}}=L
$$

(a) Prove that if $0 \leq L<\infty$ and $\sum_{k=1}^{\infty} b_{k}$ converges, then $\sum_{k=1}^{\infty} a_{k}$ also converges.
(b) Prove that if $L=\infty$ and $\sum_{k=1}^{\infty} b_{k}$ diverges, then $\sum_{k=1}^{\infty} a_{k}$ also diverges.
3. Suppose f is defined and differentiable for every $x>0$, and $f^{\prime}(x) \rightarrow 0$ as $x \rightarrow \infty$. Set $g(x)=f(x+1)-f(x)$. Prove that $g(x) \rightarrow 0$ as $x \rightarrow \infty$.
4. Suppose $f:[a, b] \rightarrow \mathbb{R}$ is Riemann integrable. Using the result from problem $\# 1$, show that f^{2} is also a Riemann integrable function by proving that for any $\varepsilon>0$ there exists a partition P such that $U\left(P, f^{2}\right)-L\left(P, f^{2}\right)<\varepsilon$. You may not apply the theorem which states that the composition of a continuous function with an integrable function is integrable.
5. Let $R=[a, b] \times[c, d]$ be a rectangle in \mathbb{R}^{2}.
(a) A function $P: R \rightarrow \mathbb{R}$ is said to have separated variables if

$$
P(x, y)=\sum_{k=1}^{N} c_{k} f_{k}(x) g_{k}(y)
$$

for some scalars $c_{k} \in \mathbb{R}$ and functions f_{k}, g_{k} continuous on $[a, b]$ and $[c, d]$ respectively. Prove that if $h(x, y)$ is continuous on R, there exists a sequence P_{n} of functions with separated variables such that $P_{n} \rightarrow h$ uniformly on R as $n \rightarrow \infty$.
(b) Use the previous part to show the following elementary version of Fubini's theorem: If h is continuous on R, then

$$
\int_{a}^{b}\left(\int_{c}^{d} h(x, y) d y\right) d x=\int_{c}^{d}\left(\int_{a}^{b} h(x, y) d x\right) d y .
$$

6. Let $E \subset \mathbb{R}^{n}$ be an open set and suppose $f: E \rightarrow \mathbb{R}$ is differentiable on its domain. Prove that if f has a local maximum at a point $x \in E$, then $D f(x)=0$.
7. Let $f: \mathbb{R}^{k+n} \rightarrow \mathbb{R}^{n}$ be of class C^{1} (all partial derivatives exist and are continuous); suppose that $f(a)=0$ and that $D f(a)$ has rank n. Show that if c is a point of \mathbb{R}^{n} sufficiently close to 0 , then the equation $f(x)=c$ has a solution.
8. Given $a, b>0$, let E be the region bounded by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, that is,

$$
E=\left\{(x, y): \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} \leq 1\right\} .
$$

Show that the area of E is $\pi a b$ in two ways:
(a) By computing $\iint_{E} 1 d A$ with a change of variables.
(b) By Green's theorem.

