Real Analysis

Qualifying Exam
August 2014
Instructions: Please hand in all of the 8 following problems. Start each problem on a new page, number the pages, and put only your Banner identification number on each page. Clear and concise answers with good justification will improve your score.

1. Let X be the space of real-valued sequences whose terms form an absolutely convergent series, more precisely,

$$
X:=\left\{\left(a_{n}\right)_{n=0}^{\infty}: a_{n} \in \mathbb{R} \text { and } \sum_{n=0}^{\infty}\left|a_{n}\right|<\infty\right\} .
$$

Define $d: X \times X \rightarrow[0, \infty)$ as follows

$$
d(A, B):=\sum_{n=0}^{\infty}\left|a_{n}-b_{n}\right| .
$$

where A, B denote the sequences $\left(a_{n}\right)_{n=0}^{\infty},\left(b_{n}\right)_{n=0}^{\infty}$ respectively.
(a) Show that d is a metric on X.
(b) For each $j \in \mathbb{N}$, let $E^{(j)}:=\left(e_{n}^{(j)}\right)_{n=0}^{\infty}$ be a sequence in \mathcal{X} where $e_{n}^{(j)}=1$ if $n=j$ and $e_{n}^{(j)}=0$ if $n \neq j$. Show that $\mathcal{S}:=\left\{E^{(j)}: j \in \mathbb{N}\right\}$ is a closed and bounded subset of X with respect to the ℓ^{1} metric.
(c) Is \mathcal{S} a compact subset of \mathcal{X} with respect to the metric d ?
2. Assume $g:(a, c) \rightarrow \mathbb{R}$ and is uniformly continuous on the subinterval $(a, b]$ and on the subinterval $[b, c)$ where $a<b<c$. In other words, the restriction of g to $(a, b]$ and the restriction of g to $[b, c)$ both define uniformly continuous functions. Prove that g is uniformly continuous on the full interval (a, c).
3. Suppose f is a real valued function defined in a neighborhood of a point $x_{0} \in \mathbb{R}$ and that f^{\prime} exists in that same neighborhood. If $f^{\prime \prime}\left(x_{0}\right)$ exists, show that

$$
\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)+f\left(x_{0}-h\right)-2 f\left(x_{0}\right)}{h^{2}}=f^{\prime \prime}\left(x_{0}\right) .
$$

Then show by example that the limit may exist even if $f^{\prime \prime}\left(x_{0}\right)$ does not.
4. Suppose $f_{n}, g_{n}: \mathbb{R} \rightarrow \mathbb{R}$ are two sequences of functions converging uniformly on \mathbb{R} to functions f, g respectively.
(a) Show that if both sequences are uniformly bounded, then the products $f_{n} g_{n}$ converge uniformly to $f g$.
(b) Show by example that the conclusion in part (a) may fail to hold if the sequences are not assumed to be uniformly bounded.
5. Consider the function $f:[0,1] \rightarrow \mathbb{R}$

$$
f(x)=\left\{\begin{array}{cc}
\sin (1 / x) & \text { if } x \neq 0 \\
0 & \text { if } x=0
\end{array}\right.
$$

Show that f is Riemann integrable on $[0,1]$.
6. Suppose $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ is a continuously differentiable function given as $F(\vec{x})=\left(f_{1}(\vec{x}), f_{2}(\vec{x})\right)$ for some scalar valued functions f_{1}, f_{2} and $\vec{x}=\left(x_{1}, x_{2}, x_{3}\right)$. Suppose further that $\vec{a} \in \mathbb{R}^{3}$ is such that $F^{\prime}(\vec{a})$ has rank 2. Prove that there exists a function $f_{3}: \mathbb{R}^{3} \rightarrow \mathbb{R}$ such that

$$
\Phi(x)=\left(f_{1}(\vec{x}), f_{2}(\vec{x}), f_{3}(\vec{x})\right)
$$

as a function from \mathbb{R}^{3} to itself has a continuous inverse near \vec{a}.
7. Find $\iint_{E} \cos \left(3 x^{2}+y^{2}\right) d x d y$ where E is the set of points

$$
E:=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+\frac{y^{2}}{3} \leq 1\right\} .
$$

8. Let $f: \mathbb{R}^{3} \backslash\{0\} \rightarrow \mathbb{R}$ be defined by

$$
f(x, y, z)=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}
$$

(a) Show that f is harmonic on $\mathbb{R}^{3} \backslash\{0\}$, that is,

$$
\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}}=\operatorname{div}(\nabla f)=0
$$

at every point $(x, y, z) \neq 0$.
(b) Let $\iint_{\mathbb{S}_{r}} \nabla f \cdot d \mathbf{S}$ denote the surface integral of the vector field ∇f over the sphere of radius r, oriented by outward pointing normals. Show that $\iint_{\mathbb{S}_{r}} \nabla f \cdot d \mathbf{S}$ is independent of $r>0$, that is, if $0<r_{1}<r_{2}<\infty$ then

$$
\iint_{\mathbb{S}_{r_{1}}} \nabla f \cdot d \mathbf{S}=\iint_{\mathbb{S}_{r_{2}}} \nabla f \cdot d \mathbf{S}
$$

