Spring 2006

Instructions: Complete all problems to get full credit. Start each problem on a new page, number the pages, and put only your Social Security number on each page. Clear and concise answers with good justification will improve your score.

1. Let $\left\{r_{k}\right\}_{k \geq 1}$ be an enumeration of the rationals in $(0,1)$, and let $f_{k}(x)=H\left(x-r_{k}\right)$ where $H(x)$ is the Heavyside function: $H(x)=0$ if $x<0$, and $H(x)=1$ if $x \geq 0$.
(a) Show that $f(x)=\sum_{k=1}^{\infty} \frac{f_{k}(x)}{2^{k}}$ is uniformly convergent on $x \in[0,1]$.
(b) Show that f is strictly increasing on $[0,1]$, with $f(0)=0$ and $f(1)=1$.
(c) Show that $\int_{0}^{1} f(x) d x=1-\sum_{k=1}^{\infty} \frac{r_{k}}{2^{k}}$. Justify your reasoning.
2. Let $C([0,1])$ be the metric space of continuous real-valued functions on $[0,1]$, with the uniform metric. Denote by B the closed unit ball in $C([0,1])$, that is,

$$
B=\left\{f \in C([0,1]):\|f\|_{\infty}=\sup _{x \in[0,1]}|f(x)| \leq 1\right\}
$$

Show that B is not compact. Hint: Consider the sequence of functions: x, x^{2}, x^{3}, \ldots
3. Let (X, d), and (Y, ρ) be metric spaces, $f: X \rightarrow Y$ a continuous function. Prove that if X is compact and f is one-to-one and onto (bijective), then $f^{-1}: Y \rightarrow X$ is continuous. Will the statement remain true if X is not compact? Explain.
4. Let $[a, b]$ and $[c, d]$ be closed intervals in \mathbb{R}, and let $f(x, y)$ be a continuous real-valued function on $\left\{(x, y) \in \mathbb{R}^{2}: x \in[a, b], y \in[c, d]\right\}$. Show that the function $g:[c, d] \rightarrow \mathbb{R}$, defined by

$$
g(y)=\int_{a}^{b} f(x, y) d x, \quad \forall y \in[c, d]
$$

is continuous. First you need to explain why the function g is well-defined.
5. A real-valued function f on \mathbb{R}^{n} is called homogeneous of degree a $(a \in \mathbb{R})$ if $f(t \mathbf{x})=t^{a} f(\mathbf{x})$ for all $t>0$, and $\mathbf{x} \in \mathbb{R}^{n}$. Show that if f is homogeneous of degree a, then at any point $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ where f is differentiable we have,

$$
x_{1} \frac{\partial f}{\partial x_{1}}(\mathbf{x})+x_{2} \frac{\partial f}{\partial x_{2}}(\mathbf{x})+\cdots+x_{n} \frac{\partial f}{\partial x_{n}}(\mathbf{x})=a f(\mathbf{x})
$$

6. Denote by $C^{\infty}\left(\mathbb{R}^{n}\right)$ the real-valued functions f defined on \mathbb{R}^{n} that have continuous partial derivatives of all orders.
(a) State Taylor's theorem with remainder for $f \in C^{\infty}\left(\mathbb{R}^{n}\right)$.
(b) Prove that the Taylor polynomial is unique in the following sense: If $f(x)$ can be written as

$$
f(\mathbf{x})=Q(\mathbf{x})+R(\mathbf{x}),
$$

where Q is a polynomial in \mathbb{R}^{n} of degree $\leq k$, and

$$
\lim _{|\mathbf{X}| \rightarrow 0} \frac{R(\mathbf{x})}{|\mathbf{x}|^{k}}=0
$$

then Q must be the Taylor polynomial of f of degree k at $\mathbf{x}=\mathbf{0}$.
(c) Find the 2nd-order Taylor polynomial of $f(x, y)=e^{x+y^{2}}$ at $(x, y)=(0,0)$.
7. Let $\phi(r)=1 / r$, where $r=\sqrt{x^{2}+y^{2}+z^{2}} \neq 0$, and let $\vec{E}=\nabla \phi$
(a) Compute the divergence of \vec{E}.
(b) Evaluate

$$
\iint_{\mathcal{S}} \vec{E} \cdot \vec{n} d S
$$

where \mathcal{S} is the surface described by the ellipsoid

$$
\frac{x^{2}}{4}+\frac{y^{2}}{4}+\frac{z^{2}}{9}=1
$$

and \vec{n} denotes the outward unit normal to \mathcal{S}.

