Department of Mathematics and Statistics University of New Mexico Qualifying Exam

August 2016

Instructions: Please hand in all of the 8 following problems. Start each problem on a new page, number the pages, and put only your code word (not your banner ID number) on each page. Clear and concise answers with good justification will improve your score.

- 1. Let (X, d) be a metric space, let E be a connected subset of X, show that E, the closure of E is also connected. Is the converse true? Provide a proof or a counterexample.
- 2. Let (X, ρ) be a compact metric space.

Real Analysis

(a) Show that if $A \subset X$ is closed and $y \in X \setminus A$, then the distance from y to A

$$\rho(y, A) := \inf\{\rho(y, x) : x \in A\}$$

is positive and that there exists $x_0 \in A$ such that $\rho(y, x_0) = \rho(y, A)$.

- (b) Now let $f : X \to X$ be an isometry, i.e., $\rho(f(x), f(y)) = \rho(x, y)$ for every $x, y \in X$. Show that f is bijective.
- 3. Show that the functions $f_n(x) = \frac{nx^2}{1+nx^2}$ converge pointwise but not uniformly on \mathbb{R} .
- 4. Suppose that $f : (0, \infty) \to \mathbb{R}$ is differentiable on its domain. Assume further that $\lim_{x\to\infty} f'(x) = L$ exists with L finite and that the sequence $\{f(n)\}_{n=1}^{\infty}$ also converges to a finite number. Prove that L must be equal to 0.
- 5. Suppose $f : [a, b] \to \mathbb{R}$ is continuously differentiable on its domain. Given any $\epsilon > 0$, prove that there exists a polynomial P(x) such that

$$|f(x) - P(x)| < \epsilon$$
 and $|f'(x) - P'(x)| < \epsilon$

for every $x \in [a, b]$.

6. Prove that the equations

$$x^{2} + y^{2} - z^{2} = 0$$
$$x^{3} + y^{3} + z^{3} = 0$$

define x and y as a function of z whenever $x \neq y$ and $xy \neq 0$. In other words in a neighborhood of such points, prove that the two equations define a curve (x(z), y(z), z) parameterized by z. Then use the chain rule to find expressions for $\frac{\partial x}{\partial z}$ and $\frac{\partial y}{\partial z}$.

- 7. Suppose E is an open Jordan region in \mathbb{R}^n and that $f: E \to \mathbb{R}$ is continuous and bounded. Show that if $\int_D f \, dV = 0$ for every open Jordan region $D \subset E$, then $f \equiv 0$ on E.
- 8. In what follows, S is a surface which bounds a region $D \subset \mathbb{R}^3$ for which the divergence theorem applies. Let **F** be the vector field

$$\mathbf{F}(x, y, z) = \frac{x\mathbf{i} + y\mathbf{j} + z\mathbf{k}}{(x^2 + y^2 + z^2)^{\frac{3}{2}}}$$

and let $\iint_{S} \mathbf{F} \cdot d\mathbf{S}$ denote the surface integral of \mathbf{F} over \mathbf{S} .

(a) Let \mathbb{S}_r denote the sphere of radius r in \mathbb{R}^3 , centered at the origin. Show by a direct computation that for any r > 0,

$$\iint_{\mathbb{S}_r} \mathbf{F} \cdot d\mathbf{S} = 4\pi.$$

(b) Now consider any surface S as above. Use the divergence theorem to show that

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \begin{cases} 4\pi & \text{if } 0 \in D^{\circ} \\ 0 & \text{if } 0 \notin \overline{D} \end{cases}$$

with D° , \overline{D} denoting the interior and closure of D respectively. You do not need to address the case where the origin lies on the boundary of D.