Department of Mathematics and Statistics
University of New MexicoReal AnalysisQualifying ExamJanuary 2017

Instructions: Please hand in all of the 8 following problems. Start each problem on a new page, number the pages, and put only your code word (not your banner ID number) on each page. Clear and concise answers with good justification will improve your score.

- 1. Let K be a compact metric space. Let $\{F_{\alpha}\}_{\alpha \in A}$ be a family of closed subsets of K.
 - (a) Prove that if $\bigcap_{\alpha \in A} F_{\alpha} = \emptyset$, then there exists a finite subcollection $F_{\alpha_1}, \ldots, F_{\alpha_n}$ such that $\bigcap_{j=1}^n F_{\alpha_j} = \emptyset$.
 - (b) Suppose $g_n : K \to \mathbb{R}$ is a family of continuous functions on K which decrease to zero pointwise in that $g_n(x) \ge g_{n+1}(x)$ and $\lim_{n\to\infty} g_n(x) = 0$ for every $x \in K$. Prove that the convergence is in fact uniform. **Hint:** Consider sets of the form $F_n = \{x \in K : g_n(x) \ge \epsilon\}.$
- 2. Let (X, d) be a metric space. A function $f : X \to \mathbb{R}$ is said to be *lower semicontinuous at a point* $x_0 \in X$ if for any sequence $x_n \to x_0$

$$\liminf_{n \to \infty} f(x_n) \ge f(x_0)$$

A function is said to be *lower semicontinuous on* X if it is lower semicontinuous at every point. Prove that if f is lower semicontinuous on X, then $\{x \in X : f(x) > a\}$ is open for any $a \in \mathbb{R}$. **Hint:** It may be helpful to prove the contrapositive.

- 3. Show that if $f : [a, b] \to \mathbb{R}$ is a continuous function then f is Riemann integrable.
- 4. Recall the summation by parts formula valid for any pair of real-valued sequences $\{a_n\}_{n\geq 0}, \{b_n\}_{n\geq 0}$ and any natural numbers p, q, with $p \leq q$

$$\sum_{n=p}^{q} a_n b_n = \sum_{n=p}^{q} (a_n - a_{n+1}) \sum_{k=p}^{n} b_k + a_{q+1} \sum_{k=p}^{q} b_k.$$

Let $f_n : [-1,0] \to [0,\infty)$ for each $n \in \mathbb{N}$ be a sequence of functions uniformly convergent to zero on its domain. Suppose for each fixed $x \in [-1,0]$ the sequence of non-negative numbers $\{f_n(x)\}_{n\geq 0}$ is monotone decreasing. Show that the series $\sum_{n=0}^{\infty} f_n(x) x^n$ converges uniformly on [-1,0]. 5. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f(x,y) = \begin{cases} \frac{x^3}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}.$$

Is f differentiable at (0,0)? Prove your answer.

6. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be of class C^2 and consider the usual polar coordinates $x = r \cos \theta$, $y = r \sin \theta$. Prove that

$$\frac{\partial^2 f}{\partial r^2} + \frac{1}{r} \frac{\partial f}{\partial r} + \frac{1}{r^2} \frac{\partial^2 f}{\partial \theta^2} = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

- 7. Suppose $E \subset \mathbb{R}^n$ is a connected, compact Jordan region and that $f, g: E \to \mathbb{R}$ are integrable functions. Suppose further that f is continuous on E and that $g \ge 0$ on E.
 - (a) Prove that f(E) is a closed bounded interval of the form [m, M].
 - (b) Prove that there exists $x_0 \in E$ such that

$$f(x_0) \int_E g \, dV = \int_E fg \, dV.$$

8. Suppose $\mathbf{E} : A \to \mathbb{R}^3$ is an electric field which is a C^1 vector field on an open set $A \subset \mathbb{R}^3$. Let $B \subset A$ be any region which the divergence theorem applies to. The integral form of Gauss's law states that the flux of \mathbf{E} on the boundary ∂B is proportional to the total charge in B

where $\rho: B \to \mathbb{R}$ is a C^1 charge density function and $\epsilon_0 > 0$ is a physical constant (known as the permittivity of free space). Use the fact that this relationship holds on any ball $B \subset A$ to deduce that

$$(\nabla \cdot \mathbf{E})(x) = \frac{\rho(x)}{\epsilon_0}$$

for any $x \in A$ (this is known as the differential form of Gauss's law). Be completely rigorous.