Department of Mathematics and Statistics
University of New MexicoReal AnalysisQualifying ExamAugust 2018

Instructions: Please hand in solutions to all of the 8 following problems. Start each problem on a new page, number the pages, and put only your code word (not your banner ID number) on each page. Clear and concise answers with good justification will improve your score. **Please write your solutions neatly in large print.**

1. Let $A \subset (0, \infty)$ be a nonempty, bounded subset of positive real numbers. Define B as the set of all reciprocals of A

$$B = \left\{\frac{1}{a} : a \in A\right\}.$$

Prove that B is bounded from below and $\inf B = \frac{1}{\sup A}$.

- 2. Let (X, d) be a metric space and suppose A, B are connected subsets of X. Show that if $A \cap B \neq \emptyset$, then $A \cup B$ is also connected.
- 3. Suppose (X, d) is a metric space. Prove that $f : X \mapsto [0, 1]^2$ is continuous if and only if for all continuous functions $g : [0, 1]^2 \to \mathbb{R}$, it is true that $g \circ f$ is continuous.
- 4. Suppose f_1, f_2, \ldots are continuous real functions on [0, 1] such that

$$0 \le f_k(x) \le f_{k+1}(x)$$

for all x in [0, 1] and all natural numbers k. Show that if $f_k(x)$ converges to f(x) uniformly on [0, 1] then

$$\lim_{n \to \infty} \int_0^1 \left(\sum_{k=1}^n (f_k(x))^n \right)^{\frac{1}{n}} dx = \int_0^1 f(x) dx.$$

Hint: One way to proceed is to start by showing that

$$f(x) - n^{1/n} f_n(x) \le f(x) - \left(\sum_{k=1}^n (f_k(x))^n\right)^{\frac{1}{n}} \le f(x) - f_n(x).$$

5. Let $B_r(0)$ be an open ball centered at the origin in \mathbb{R}^n and let $f : B_r(0) \to \mathbb{R}$ be a real valued function. Suppose that there exists constants $C, \epsilon > 0$ such that $|f(x)| \leq C|x|^{1+\epsilon}$ for all $x \in B_r(0)$. Prove that f is differentiable at the origin. 6. Let $U \subset \mathbb{R}^n$ be open and let $F : U \to \mathbb{R}^m$ be a continuously differentiable map. Suppose the dimensions n, m satisfy $m \ge n$, so that the number of variables in the codomain is at least that of the number of variables in the domain. Show that if the derivative $F'(x_0)$ has full rank for some $x_0 \in U$, then F is one-to-one in a neighborhood of x_0 .

Hint: Try to reduce this to the case where n = m.

7. Let $U \subset \mathbb{R}^n$ be open and let $F : U \to \mathbb{R}^n$ be a continuously differentiable, one-toone map, with F'(x) nonsingular for all $x \in U$. Show that for any compact subset $K \subset U$, there exists a constant C_K depending only on K such that

$$Vol \ F(E) \le C_K Vol \ E$$

for every Jordan region $E \subset K$.

8. Suppose that P(x, y), Q(x, y) are continuously differentiable functions on \mathbb{R}^2 . Suppose that for any simple closed curve C in \mathbb{R}^2 , $\int_C P \, dx + Q \, dy = 0$. Prove that

$$\frac{\partial P}{\partial y}(x,y) = \frac{\partial Q}{\partial x}(x,y)$$

at each point in $(x, y) \in \mathbb{R}^2$. Be fully rigorous in your proof.