Real Analysis

Department of Mathematics and Statistics
 University of New Mexico Qualifying Exam

August 2018

Instructions: Please hand in solutions to all of the 8 following problems. Start each problem on a new page, number the pages, and put only your code word (not your banner ID number) on each page. Clear and concise answers with good justification will improve your score. Please write your solutions neatly in large print.

1. Let $A \subset(0, \infty)$ be a nonempty, bounded subset of positive real numbers. Define B as the set of all reciprocals of A

$$
B=\left\{\frac{1}{a}: a \in A\right\}
$$

Prove that B is bounded from below and $\inf B=\frac{1}{\sup A}$.
2. Let (X, d) be a metric space and suppose A, B are connected subsets of X. Show that if $A \cap B \neq \emptyset$, then $A \cup B$ is also connected.
3. Suppose (X, d) is a metric space. Prove that $f: X \mapsto[0,1]^{2}$ is continuous if and only if for all continuous functions $g:[0,1]^{2} \rightarrow \mathbb{R}$, it is true that $g \circ f$ is continuous.
4. Suppose f_{1}, f_{2}, \ldots are continuous real functions on $[0,1]$ such that

$$
0 \leq f_{k}(x) \leq f_{k+1}(x)
$$

for all x in $[0,1]$ and all natural numbers k. Show that if $f_{k}(x)$ converges to $f(x)$ uniformly on $[0,1]$ then

$$
\lim _{n \rightarrow \infty} \int_{0}^{1}\left(\sum_{k=1}^{n}\left(f_{k}(x)\right)^{n}\right)^{\frac{1}{n}} d x=\int_{0}^{1} f(x) d x
$$

Hint: One way to proceed is to start by showing that

$$
f(x)-n^{1 / n} f_{n}(x) \leq f(x)-\left(\sum_{k=1}^{n}\left(f_{k}(x)\right)^{n}\right)^{\frac{1}{n}} \leq f(x)-f_{n}(x)
$$

5. Let $B_{r}(0)$ be an open ball centered at the origin in \mathbb{R}^{n} and let $f: B_{r}(0) \rightarrow \mathbb{R}$ be a real valued function. Suppose that there exists constants $C, \epsilon>0$ such that $|f(x)| \leq C|x|^{1+\epsilon}$ for all $x \in B_{r}(0)$. Prove that f is differentiable at the origin.
6. Let $U \subset \mathbb{R}^{n}$ be open and let $F: U \rightarrow \mathbb{R}^{m}$ be a continuously differentiable map. Suppose the dimensions n, m satisfy $m \geq n$, so that the number of variables in the codomain is at least that of the number of variables in the domain. Show that if the derivative $F^{\prime}\left(x_{0}\right)$ has full rank for some $x_{0} \in U$, then F is one-to-one in a neighborhood of x_{0}.
Hint: Try to reduce this to the case where $n=m$.
7. Let $U \subset \mathbb{R}^{n}$ be open and let $F: U \rightarrow \mathbb{R}^{n}$ be a continuously differentiable, one-toone map, with $F^{\prime}(x)$ nonsingular for all $x \in U$. Show that for any compact subset $K \subset U$, there exists a constant C_{K} depending only on K such that

$$
\operatorname{Vol} F(E) \leq C_{K} \operatorname{Vol} E
$$

for every Jordan region $E \subset K$.
8. Suppose that $P(x, y), Q(x, y)$ are continuously differentiable functions on \mathbb{R}^{2}. Suppose that for any simple closed curve C in $\mathbb{R}^{2}, \int_{C} P d x+Q d y=0$. Prove that

$$
\frac{\partial P}{\partial y}(x, y)=\frac{\partial Q}{\partial x}(x, y)
$$

at each point in $(x, y) \in \mathbb{R}^{2}$. Be fully rigorous in your proof.

