Department of Mathematics and Statistics University of New Mexico Qualifying Exam

August 2022

Instructions: Please hand in all of the 8 following problems (5 on the first page and 3 on the second page). Start each problem on a new page, number the pages, and put only your code word (not your banner ID number) on each page. Clear and concise answers with good justification will improve your score.

- 1. Let (X, d) be a metric space and suppose that $(x_n)_{n=1}^{\infty}$ is a Cauchy sequence in X. Prove that if $(x_n)_{n=1}^{\infty}$ admits a convergent subsequence, then the full sequence converges.
- 2. Suppose $f : \mathbb{R} \to \mathbb{R}$ is a function and define $h : \mathbb{R} \to \mathbb{R}$ by

$$h(x) = (f(x))^2$$

Suppose also h is a continuous function and that $f(x) \ge 0$ for all $x \ge 0$.

- (a) Give an example that shows it is possible that f is not continuous.
- (b) Prove that if f is an odd function then f is must be continuous.
- 3. Suppose that $f_n : E \to \mathbb{R}$ is a uniformly convergent sequence of functions on a set E. Let $g : \mathbb{R} \to \mathbb{R}$ be uniformly continuous. Prove that $(g \circ f_n)_{n=1}^{\infty}$ converges uniformly on E.
- 4. Evaluate

Real Analysis

$$\lim_{n\to 0}\int_0^1 x^{2n}\cos(2\pi x)\,dx,$$

and give a complete proof of your answer.

5. Suppose $f : [0,1] \to \mathbb{R}$ is continuous and does not vanish identically. Show that there is a sequence of odd polynomials $(p_n)_{n=1}^{\infty}$ such that $p_n(x) \to f(x)$ uniformly on [0,1] if and only if f(0) = 0.

6. Suppose d > 0 and define $f : \mathbb{R}^2 \to \mathbb{R}$ in polar coordinates by

$$f(r\cos\theta, r\sin\theta) = r^d\cos(\theta)$$

for all r > 0 and all $0 \le \theta \le 2\pi$ and

$$f(0,0) = 0.$$

- (a) For which d does f have partial derivative at (0,0) with respect to x?
- (b) For which d does f have partial derivative at (0,0) with respect to y?
- (c) For which d is it true that f is differentiable at (0,0)?
- 7. Let $E \subset \mathbb{R}^n$ be open and convex and let $F : E \to \mathbb{R}^n$ be a differentiable function. An $n \times n$ matrix A is said to be *positive definite* if $(A\xi) \cdot \xi > 0$ for every $\xi \in \mathbb{R}^n \setminus \{0\}$. Show that if the Jacobian matrix of F'(a) is positive definite at each $a \in E$, then F is one-to-one.

Hint: Given 2 distinct points $x, y \in E$, consider the real valued function

$$a \mapsto (x - y) \cdot F(a).$$

8. Let **F** be a C^1 vector field defined on \mathbb{R}^3 . Show that if the divergence satisfies $\nabla \cdot \mathbf{F}(x_0, y_0, z_0) > 0$, then there exists a sphere S centered at (x_0, y_0, z_0) such that the surface integral of **F** over S satisfies

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} > 0.$$