University of New Mexico

Real Analysis

Qualifying Exam

January 2023

Instructions: Please hand in all of the 8 following problems (5 in the front page and 3 in the back page). Start each problem on a new page, number the pages, and put only your code word (not your banner ID number) on each page. Clear and concise answers with good justification will improve your score.

- 1. Show that if $\{a_k\}_{k=1}^{\infty}$ is a decreasing sequence of real numbers and $\sum_{k=1}^{\infty} a_k$ is convergent, then $\lim_{k\to\infty} ka_k = 0$.
- 2. Let (X, d) be a metric space and $E \subset X$ a non-empty set. Define the distance from a point $x \in X$ to the set E by

$$\rho_E(x) := \inf\{d(x, y) : y \in E\}.$$

- (a) Prove that $\rho_E(x) = 0$ if and only if x belongs to the closure of E, denoted \overline{E} .
- (b) Prove that ρ_E defines a uniformly continuous function on X, by showing that

$$|\rho_E(x) - \rho_E(y)| \le d(x, y),$$
 for all $x, y \in X$.

(c) Let A and B be disjoint nonempty closed subsets of X. Show that

$$f(x) := \frac{\rho_A(x)}{\rho_A(x) + \rho_B(x)}$$

defines a continuous function on X whose range lies in [0,1]. Moreover show that f(x) = 0 if and only if $x \in A$ and f(x) = 1 if and only if $x \in B$.

- (d) Let A and B be disjoint nonempty closed subsets of X. Show that there exists disjoint open sets $V, W \subset X$ such that $A \subset V$ and $B \subset W$.
- 3. Suppose $f, g : [a, b] \to \mathbb{R}$ are bounded functions and that there exists a constant C > 0 such that $|f(x) f(y)| \le C|g(x) g(y)|$ for all $x, y \in [a, b]$. Show that if g is Riemann integrable, then f is Riemann integrable.
- 4. Let $f:[0,1]\to\mathbb{R}$ be a continuous function. Show that

$$\lim_{n \to \infty} \int_0^1 nx^{n-1} f(x) \, dx = f(1).$$

5. Prove that the series $\sum_{n=1}^{\infty} 1/n^x$ converges to a differentiable function on $(1, \infty)$ and that its derivative is the sum of the derivatives of the summands.

- 6. Let $U \subset \mathbb{R}^n$ be an open, connected set and $f: U \to \mathbb{R}$ be a function such that $|f(x) f(y)| \leq |x y|^2$ for every $x, y \in U$. Prove that f is constant on U.
- 7. Let $U \subset \mathbb{R}^n$ be a bounded open set and denote its closure by \overline{U} and its boundary by ∂U . Suppose $f: \overline{U} \to \mathbb{R}^n$ is a continuous function such that f is continuously differentiable on U and $\det(f'(x)) \neq 0$ for all $x \in U$. Prove that there exists a point $a \in \partial U$ such that $|f(x)| \leq |f(a)|$ for all $x \in \overline{U}$.
- 8. Let P(x,y), Q(x,y) be real continuously differentiable functions on \mathbb{R}^2 . Suppose that for any circle C in \mathbb{R}^2 , $\int_C P dx + Q dy = 0$. Prove that

$$\frac{\partial P}{\partial y}(x,y) = \frac{\partial Q}{\partial x}(x,y)$$

at each point $(x, y) \in \mathbb{R}^2$.