STATISTICS QUALIFYING EXAM – TAKE HOME

Due 4 p.m. Thursday, August 17, 1995, Mathematics and Statistics Department Office

Directions: Answer both questions. The answers should be typed (or typeset), double spaced, and the answer to each question should be no more than 3 pages long. An Appendix is allowed but will be examined only at the discretion of the graders. (The better constructed the Appendix, the more likely it is to get examined.)

1. The table below contains pollution data. The data are from various years; they relate air pollution to mortality rates for various standard metropolitan statistical areas in the United States. The dependent variable y is the total age adjusted mortality rate per 100,000 as computed for different metropolitan areas. The predictor variables are, in order, mean annual precipitation in inches, mean January temperature in degrees F, mean July temperature in degrees F, population per household, median school years completed by those over 25, percent of housing units that are sound and with all facilities, population per sq. mile in urbanized areas, percent nonwhite population in urbanized areas, relative pollution potential of sulphur dioxide, annual average of percent relative humidity at 1 pm. Analyze the data. Find a good predictive model for mortality. This should include variable selection and examination of residuals. Discuss the results of the analysis in plain English. Evaluate the potential for collinearity problems.

x ₁	x ₂	x ₃	<i>x</i> ₄	x 5	x 6	x 7	x 8	x 9	$\boldsymbol{x_{10}}$	у	
36	27	71	3.34	11.4	81.5	3243	8.8	42.6	59	921.870	
35	23	72	3.14	11.0	78.8	4281	3.5	50.7	57	997.875	
44	29	74	3.21	9.8	81.6	4260	.8	39.4	54	962.354	
47	45	79	3.41	11.1	77.5	3125	27.1	50.2	56	982.291	
43	35	77	3.44	9.6	84.6	6441	24.4	43.7	55	1071.289	
53	45	80	3.45	10. 2	66.8	3325	38.5	43.1	54	1030.380	
43	30	74	3.23	12.1	83.9	4679	3.5	49.2	56	934.700	
45	30	73	3.29	10.6	86.0	2140	5.3	40.4	56	899.529	
36	24	70	3.31	10.5	83.2	6582	8.1	42.5	61	1001.902	
36	27	72	3.36	10.7	79.3	4213	6.7	41.0	59	912.347	
52	42	79	3.39	9.6	69.2	2302	22.2	41.3	56	1017.613	
33	26	76	3.20	10.9	83.4	6122	16.3	44.9	58	1024.885	
40	34	77	3.21	10.2	77.0	4101	13.0	45.7	57	970.467	
35	28	71	3.29	11.1	86.3	3042	14.7	44.6	60	985.950	
37	31	75	3.26	11.9	78.4	4259	13.1	49.6	58	958.839	
3 5	46	85	3.22	11.8	79.9	1441	14.8	51.2	54	860.101	
36	30	75	3.35	11.4	81.9	4029	12.4	44.0	58	936.234	
15	30	73	3.15	12.2	84.2	4824	4.7	53.1	38	871.766	
31	27	74	3.44	10.8	87.0	4834	15.8	43.5	59	959.221	
30	24	72	3.53	10.8	79.5	3694	13.1	33.8	61	941.181	
31	45	85	3.22	11.4	80.7	1844	11.5	48.1	53	891.708	
31	24	72	3.37	10.9	82.8	3226	5.1	45.2	61	871.338	
42	40	77	3.45	10.4	71.8	2269	22.7	41.4	53	971.122	
43	27	72	3.25	11.5	87.1	2909	7.2	51.6	56	887.466	
46	55	84	3.35	11.4	79.7	2647	21.0	46.9	59	952.529	
39	29	75	3.23	11.4	78.6	4412	15.6	46.6	60	968.665	
35	31	81	3.10	12.0	78.3	3262	12.6	48.6	55	919.729	
43	32	74	3.38	9.5	79.2	3214	2.9	43.7	54	844.053	
11	53	68	2.99	12.1	90.6	4700	7.8	48.9	47	861.833	
30	35	71	3.37	9.9	77.4	4474	13.1	42.6	57	989.265	
50	42	82	3.49	10.4	72.5	3497	36.7	43.3	59	1006.490	
60	67	82	2.98	11.5	88.6	4657	13.5	47.3	60	861.439	
30	20	69	3.26	11.1	85.4	2934	5.8	44.0	64	929.150	
25	12	73	3.28	12.1	83.1	2095	2.0	51.9	58	857.622	
45	40	80	3.32	10.1	70.3	2682	21.0	46.1	56	961.009	
46	30	72	3.16	11.3	83.2	3327	8.8	45.3	58	923.234	
54	54	81	3.36	9.7	72.8	3172	31.4	45.5	62	1113.156	
42	33	77	3.03	10.7	83.5	7462	11.3	48.7	58	994.648	
42	32	76	3.32	10.5	87.5	6092	17.5	45.3	54	1015 023	
36	29	72	3.32	10.6	77.6	3437	8.1	45.5	56	991 290	
37	38	67	2.99	12.0	81.5	3387	3.6	50.3	73	893 991	
42	29	72	3.19	10.1	79.5	3508	2.2	38.8	56	938.500	
41	33	77	3.08	9.6	79.9	4843	2.7	38.6	54	946 185	
44	39	78	3.32	11.0	79.9	3768	28.6	49.5	53	1025 502	
32	25	72	3.21	11 1	82.5	4355	5.0	46.4	60	874 281	
	20	• 4	0.01	* * • *	02.0	1000	0.0	10.1		01 1.201	

Pollution Data

.

- 2. Below are 12 observations from an agricultural experiment with 3 variables and a corresponding yield. The variables are:
 - $X_1 =$ fertilizer A (0-150 lbs. per plot)
 - $X_2 =$ fertilizer B (0-50 lbs. per plot)
 - $X_3 = \text{ farm}$

		Farm 2				
fert A\fert B	15	20	25	15	20	25
50	5.63	11.57	7.62	6.42	12.16	8.32
100	1.38	5.72	8.28	1.94	4.69	7.51

- a) Give an appropriate ANOVA model for these data and justify your choice.
- b) Fit your ANOVA model to the data, examine orthogonal polynomial contrasts and residuals. Find a reasonably fitting ANOVA model.
- c) Describe what you have learned about the fertilizers from part b.
- d) Using only effects that were important in part b, fit a corresponding regression model to the data. This will be a polynomial in two variables, perhaps with cross-product terms.
- e) Describe the results of the regression analysis. How do they differ from the results of the ANOVA. Should the assumptions be rechecked?
- f) Give your best estimate of the amounts of fertilizers that maximize yield.
- g) Ignoring the fact that the amounts of fertilizers in part f are random, i.e., treating them as fixed, give a 95% confidence interval for the mean yield at these levels. Give a 95% prediction interval.