STATISTICS Ph. D. COMPREHENSIVE EXAM August, 2002

<u>General Instructions:</u> Write your ID number on your answer sheets. Do not put your name on any of your answer sheets. All solutions should be rigorously explained. Show all work.

Reminder: All assertions should be rigorously proved.

- 1. Let $\{A_n\}$ be a sequence of independent events with $\mathbf{P}(A_n) = p_n$. Let ν denote the smallest number n such that A_n occurs (if none of the events occurs, $\nu = +\infty$). Find a necessary and sufficient condition for $\nu < +\infty$. Under this condition, find the probability mass function of the random variable ν .
- 2. Let X_{λ} be a Poisson random variable with parameter $\lambda > 0$. Show that

$$\frac{X_{\lambda} - \lambda}{\sqrt{\lambda}}$$

converges in distribution to a standard normal random variable as $\lambda \to \infty$.

3. Consider the general Gauss-Markov model

$$Y = X\beta + \epsilon,$$

where Y is an $n \times 1$ vector, X is an $n \times p$ matrix of rank p, β is a $p \times 1$ vector, and $\epsilon \sim N_n(0, \sigma^2 V)$, where V is a known symmetric positive definite matrix. The associated estimate of β and sum of squares residual are

$$\hat{\beta} = (X'V^{-1}X)^{-1}X'V^{-1}Y$$
 and $SSR(Y) = (Y - X\hat{\beta})'V^{-1}(Y - X\hat{\beta}).$

- (a) Show that $\hat{\beta} \sim N_n(\beta, (X'V^{-1}X)^{-1}\sigma^2)$.
- (b) Show that $\hat{\beta}$ and SSR(Y) are independent if $X'V^{-1}Y$ and $V^{-1}(Y-X\hat{\beta})$ are independent. (Hint: consider inserting the identity matrix $I_n = VV^{-1}$ in the formula for SSR(Y)).
- (c) Show directly that $X'V^{-1}Y$ and $V^{-1}(Y X\hat{\beta})$ are independent random vectors.
- 4. Formulate and prove the Information Inequality. Hint: This is the one that bounds from below variance of specific estimates.

5. Consider the classical problem of hypothesis testing $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_0$ in the exponential family

$$f(x|\theta,\nu) = C(\theta,\nu) \exp[\theta U(x) + \nu T(x)].$$

Recall sufficient assumptions for existence of a UMP unbiased test, write down the critical function, draw a typical power function, and then prove that the test is UMP unbiased.

6. Suppose that $Y_i \sim \text{Poisson}(\mu_i)$ for i = 1, 2, ..., k where

$$\log(\mu_i) = \beta_0 + \beta_1 x_i$$

for some $\beta = (\beta_0, \beta_1)'$ in \mathbf{R}^2 . Here x_1, x_2, \dots, x_k are fixed covariate values.

- (a) Derive the likelihood equations for obtaining the maximum likelihood estimate (MLE) $\hat{\beta}$ for β . Discuss how you would compute $\hat{\beta}$ for a given set of data.
- (b) Derive the (expected) Fisher Information matrix for β .
- (c) What is the large sample distribution of $\hat{\beta}$.
- 7. (Continuation of Problem 6).
 - (a) Suppose you wish to test $H_0: \beta_1 = 0$ against the alternative $H_1: \beta_1 > 0$. Give the form of an exact test of size (no greater than) α . Discuss some properties of this test.
 - (b) Suppose k is large. How would you approximate the critical value for the test in (a)? Be precise.

Remark: Consider the distribution of $Y (= Y_1, Y_2, \dots, Y_k)'$ given $\sum_{i=1}^k Y_i$ under H_0 .