STATISTICS Ph. D. COMPREHENSIVE EXAM January 13, 2003

<u>Instructions:</u> Write your ID number on your answer sheets. Do not put your name on any of your answer sheets. All solutions should be rigorously explained. Show all work.

1. Let $Z_1, Z_2 \stackrel{iid}{\sim} N(0, \theta)$, where $\theta = Var(Z_i) > 0$. Let

$$X = (Z_1 - Z_2)^2$$
, and
 $Y = Z_1 Z_2$.

The general problem is to compare the four estimators

$$\hat{\theta}_1 = X/2
\hat{\theta}_2 = |Y|
\hat{\theta}_3 = \text{the moment estimator based on}
 the conditional distribution of Y given X
\hat{\theta}_4 = E \left[\frac{Z_1^2 + Z_2^2}{2} | (X, Y) \right]$$

in terms of their mean squared errors $MSE_i(\theta) = E[(\hat{\theta}_i - \theta)^2], i = 1, 2, 3, 4.$

- (a) Show that $MSE_2(\theta) < MSE_1(\theta)$.
- (b) A student suggests a quick way of computing $E_{\theta}[Y|X]$. Given $X = d^2$, $Z_2 = Z_1 \pm d$, so that $Y = Z_1(Z_1 \pm d)$ has conditional expectation $E_{\theta}[Z_1^2 \pm dZ_1] = E_{\theta}[Z_1^2] = \theta$. Is this calculation correct? Justify your answer.
- (c) Find an explicit expression for $\hat{\theta}_3$ in terms of X and Y and compute $MSE_3(\theta)$. *Hint:* Transform (Z_1, Z_2) into $(U = Z_1 Z_2, V = Z_1 + Z_2)$.
- (d) Find an explicit expression for $\hat{\theta}_4$ in terms of X and Y and compute $MSE_4(\theta)$.
- (e) Find an estimator that has smaller MSE than any of the above four. Ignorable hint: Try combining $\hat{\theta}_2$ and $\hat{\theta}_4$.

- 2. Give necessary definitions and then formulate and prove Basu's theorem. Hint: This is a theorem about very specific relationship between sufficient and ancillary statistics.
- 3. Prove the following theorem that is the main tool in finding a minimal sufficient statistic.

Theorem Let $f(x^n|\theta)$ be the pmf or pdf of a sample $X^n = (X_1, \ldots, X_n)$. Suppose there exists a function $T(x^n)$ such that, for every two sample points x^n and y^n , the ratio $f(x^n|\theta)/f(y^n|\theta)$ is a constant as a function of θ if and only if $T(x^n) = T(y^n)$. Then $T(X^n)$ is a minimal sufficient statistic for θ .

- 4. Let $X_1, \ldots, X_n \stackrel{iid}{\sim} Poisson(\lambda)$. Let $\theta = 1/\lambda$.
 - (a) Find the MLE of θ , say $\hat{\theta}$.
 - (b) Find the Fisher information for θ , $I(\theta)$.
 - (c) What is the large sample distribution of $\hat{\theta}$?
 - (d) Prove $\hat{\theta} \xrightarrow{P} \theta$, that $\hat{\theta}$ converges in probability to θ .
- 5. Suppose X and Y are independent Poisson random variables with means λ and μ , respectively.
 - (a) Derive the form for the uniformly most powerful unbiased (UMPU) test of size α for testing $H_0: \lambda \leq \mu$ against $H_a: \lambda > \mu$. Clearly state the reference distribution for this test and how the rejection region is found for a given value of α .
 - (b) Assume that the observed value of X + Y is large. Show how to approximate the critical region for the test derived above.
- 6. Consider the simple linear regression model

$$Y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$
, for $i = 1, \dots, n$,

where $\bar{x} = 0$. As usual, define Y to be the $n \times 1$ vector of responses, X to be the $n \times 2$ design matrix, β to be the 2×1 vector of regression coefficients, and ϵ to be the $n \times 1$ vector of errors:

$$Y = \begin{bmatrix} Y_1 \\ \vdots \\ Y_n \end{bmatrix}, \quad X = \begin{bmatrix} 1 & x_1 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix}, \quad \beta = \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix}, \text{ and } \epsilon = \begin{bmatrix} \epsilon_1 \\ \vdots \\ \epsilon_n \end{bmatrix}.$$

Assume X is full rank and

$$cov(\epsilon_i, \epsilon_j) = \left\{ \begin{array}{ll} \sigma^2 & \text{if } i = j \\ \sigma^2 \rho & \text{if } i \neq j \end{array} \right\},$$

where ρ is a known, positive constant such that $0 < \rho < 1$.

- (a) Write out the covariance matrix of the vector ϵ as $cov(\epsilon) = \sigma^2 V$, where V is positive definite.
- (b) The ordinary least squares (OLS) estimate of β is best linear unbiased (BLUE) if and only if $C(VX) \subset C(X)$, where C(X) is the column space of X. Show that the OLS estimate of β for the regression model is BLUE.
- (c) Derive the BLUE of β , say $\hat{\beta}$. Specify the distribution of $\hat{\beta}$.
- (d) Describe in detail how to test H_0 : $\beta_1 = 0$ against H_a : $\beta_1 \neq 0$ assuming σ^2 is unknown.