Statistics Master and PH.D. Qualifying Exam In Class: 1:00pm-5:00pm, Thursday, August 11 2011

- **Instructions:** The exam has 6 multi-part problems. All of the problems will be graded. Write your ID number on each of your answer sheets and label them. Do not put your name on any of the sheets. Be clear, concise, and complete. All solutions should be rigorously explained.
 - **Problem 1.** (15) Let X_1, \dots, X_n be independent N(0, 1) and Let $u_4 = E[X_1^4]$ (which is greater than 1). Show that

$$\frac{\sum_{i=1}^{n} (X_i^2 - 1)}{\sqrt{n(u_4 - 1)}} \xrightarrow{d} N(0, 1) \quad \text{as} \quad n \to \infty.$$

Problem 2. (15) A population having N distinct elements is sampled with replacement. Let S_r be the random sample size necessary to get r distinct elemetrs $(r \le N)$. Show that

$$E[S_r] = \frac{N}{N} + \frac{N}{N-1} + \dots + \frac{N}{N-r+1}.$$

(Hint: Write S_r as sum of r random variables)

Problem 3. (20) Let Y_1, \dots, Y_n be independent N(0, 1). Show that

- (1) \overline{Y} is independent of $Y_i \overline{Y}$ for any *i*.
- (2) \bar{Y} is independent of $S^2 = \frac{1}{n-1} \sum_{i=1}^n (Y_i \bar{Y})^2$.
- **Problem 4.** (25) Let X_1, X_2, \dots, X_n be a random sample with densities given by the p.d.f. $f(x; \theta) = e^{-(x-\theta)}$ for $x > \theta$ and zero otherwise, where $-\infty < \theta < \infty$. Let Y_1 be the first order statistic from this random sample.
 - (a) Prove that Y_1 is sufficient for θ .
 - (b) Prove Y_1 is complete.
 - (c) Determine the UMVUE for $\tau(\theta) = \theta$.
- **Problem 5.** (10) Let X_1, X_2, \dots, X_n be a random sample from a $GAM(\beta, 1)$ distribution. Obtain a pivotal quantity for β and determine its distribution.

- **Problem 6.** (15) Let X be a random sample of size 1 from a distribution with $f(x;\theta) = \theta x^{\theta-1}$ for 0 < x < 1 and zero otherwise, where $\theta > 0$.
 - (a) Find a level- α UMP critical region for testing $H_0: \theta = 1$ against $H_\alpha: \theta > 1$.
 - (b) Find the power function of this test.