Statistics comprehensive exam. August 2023

Instructions: The exam has 7 problems often with multiple parts. Write your code words on each of your answer sheets. Do not put your name or UNM ID on any of the sheets. Be clear, concise, and complete. All solutions should be rigorously explained.

1. Let X_{1}, X_{2}, \ldots be independent with X_{n} taking the values $\pm \sqrt{n-2}$ with probability $3 / 8$ and the values $\pm \sqrt{6}$ with probability $1 / 8$. Show that \bar{X}_{n} converges in distribution to a $N(0,3 / 8)$.
2. (a) Let y_{1}, \ldots, y_{n} be independent q vectors with Multinomial $(1, p)$ distributions. Show that $\sqrt{n}\left(\bar{y}_{n}-p\right)$ converges in distribution to a multivariate $N[0, \Sigma(p)]$ and find $\Sigma(p)$.
(b) Let W be $\operatorname{Multinomial}(N, p)$. Find the asymptotic distribution of $[W-E(W)] / \sqrt{N}$.
(c) Write $W=\left(w_{11}, w_{12}, w_{21}, w_{22}\right)^{\prime}$. Find a large sample approximation to the distribution of $\log \left(w_{11} w_{22} / w_{12}, w_{21}\right)$. In particular, show that an estimated standard error can be taken as $\sqrt{\sum_{i} \sum_{j} 1 / w_{i j}}$.
(d) Consider a log-linear model, $\mathrm{E}\left(w_{i j}\right)=u+u_{1 i}+u_{2 j}+u_{12 i j}$. Find a contrast in the interaction terms $u_{12 i j}$ and discuss how to test if it is different from 0 .
3. Let Y be a n vector, the components of which are independent Poisson (λ) random variables.
(a) Find the score function $S(Y ; \lambda)$.
(b) Find the variance of the score function as a function of λ.
(c) For an unbiased estimate of λ, say $T(Y)$, find the covariance between it and the score function.
(d) What can the Cauchy-Schwarz inequality tell you about the variance of $T(Y)$?
(e) How does this result fit into the theory of statistical inference?
4. Suppose $Y \sim \operatorname{Pois}(\lambda)$ and λ has a prior Gamma density, $\left(1 / \Gamma(\alpha) \beta^{\alpha}\right) \lambda^{\alpha-1} \exp (-\lambda \beta)$.
(a) Show that the marginal distribution of Y is negative binomial with parameters α and $p \equiv \beta /(1+\beta)$. (The negative binomial for integer α is the number of failures in an iid Bernoulli sequence prior to reaching a fixed number of successes.)
(b) Find the posterior density of λ.
5. Consider testing the null hypothesis $Y \sim \operatorname{Pois}(1)$ versus the alternative $Y \sim \operatorname{Pois}(2)$. Use the Neyman-Pearson Lemma to find the most powerful size 0.05 test.
Here is some R output that you might find useful.
```
> r
[1] 0 1 2 3 4 5
> dpois(r,1)
[1] 0.367879441 0.367879441 0.183939721 0.061313240 0.015328310 0.003065662
```

Why is this also the UMP test for $H_{0}: \lambda \leq 1$ versus $H_{1}: \lambda>1$, when $Y \sim \operatorname{Pois}(\lambda)$?
6. Let y_{1}, \ldots, y_{n} be independent with $N(\mu, 1)$ distributions. Two unbiased estimates of μ are the sample mean \bar{y} and the midrange $m r \equiv\left[y_{(1)}+y_{(n)}\right] / 2$. Since

$$
\mathrm{E}(\bar{y})=\mathrm{E}[\mathrm{E}(\bar{y} \mid m r)]=\mu
$$

and

$$
\operatorname{Var}(\bar{y})=\mathrm{E}[\operatorname{Var}(\bar{y} \mid m r)]+\operatorname{Var}[\mathrm{E}(\bar{y} \mid m r)] \geq \operatorname{Var}[\mathrm{E}(\bar{y} \mid m r)],
$$

why do we not use $\mathrm{E}(\bar{y} \mid m r)$ as an improved unbiased estimator of μ ? To be more precise, an alternative unbiased estimate that is at least as good.
7. In a standard linear model $Y=X \beta+e$ we know that $\hat{\beta}$ is a least squares estimate if and only if $X \hat{\beta}=M Y$ where M is the perpendicular projection operator onto $C(X)$, the column space of X. Show that $\hat{\beta}$ is a least squares estimate if and only if it is a solution to the normal equations $X^{\prime} X \beta=X^{\prime} Y$.

