Prove Inequalities by Solving Maximum/Minimum Problems Using a Computer Algebra System

Michael Xue
Vroom Laboratory for Advanced Computing (US)
mxue@vroomlab.com

Abstract

This presentation offers an alternative to traditional approaches to proving non-trivial inequalities, such as applying AM-GM, Cauchy, Hölder and Minkowski inequalities. This alternative approach, as demonstrated by various examples, establishes the validity of an inequality through solving a maximization/minimization problem by commonly practiced procedures in Calculus. Since the procedures are algorithmic, a Computer Algebra System (CAS) can carry out the computation efficiently.

Keywords

Computer Aided Proofs in Analysis, Inequality, Calculus, Computer Algebra System, CAS

1 Introduction

It is common knowledge that among various quantities of certain kind, if one quantity α is larger than others, then α is the maximum of the said kind. If α is less than others, then it is the minimum.
Expressed in mathematical inequality,

$$
\begin{equation*}
y \leq \alpha \tag{1}
\end{equation*}
$$

indicates that α is the greatest of all y 's, thus the maximum of y.
Similarly, inequality

$$
\begin{equation*}
y \geq \alpha \tag{2}
\end{equation*}
$$

indicates that α is the least of all y 's, thus the minimum of y.
The above definitions of maximum and minimum imply that if an inequality is in the form of (1) or (2), with a quantity taking the place of y, then the quantity has α as its extreme. Hence, proving such inequality is equivalent to solving a maximization/minimization problem and showing the extreme of the quantity is indeed α.

The algorithmic procedure of finding maxima/minima is well established. It is based on a number of theorems from Calculus.

For functions with a single variable, the following theorem is well-known.
Theorem 1 Let $f(x)$ be a continuous and twice differentiable function in a domain D, and suppose $f^{\prime}\left(x_{0}\right)=0$. Then at the point x_{0}, we have

Case 1. $f_{x x}>0 \Rightarrow f$ has a local minimum.
Case 2. $f_{x x}<0 \Rightarrow f$ has a local maximum.

For two-variable functions, the appropriate generalization of this result is given in the following theorem, which is a standard result in multi-variable Calculus.

Theorem 2 Let $f(x, y)$ be a continuous and twice differentiable function in a domain D, and suppose $\nabla f\left(x_{0}, y_{0}\right)=0$. Then at the point $\left(x_{0}, y_{0}\right)$, we have

Case 1. $f_{x x} f_{y y}-f_{x y}^{2}>0, f_{x x}>0 \Rightarrow f$ has a local minimum.
Case 2. $f_{x x} f_{y y}-f_{x y}^{2}>0, f_{x x}<0 \Rightarrow f$ has a local maximum.
Case 3. $f_{x x} f_{y y}-f_{x y}^{2}<0 \Rightarrow f$ has neither a local maximum nor minimum.

2 Examples

We will now illustrate our approach through various examples.
Example 1 For $x \in(0,1)$, prove: $x\left(1-x^{2}\right) \leq \frac{2 \sqrt{3}}{9}$.
Example 2 For $a, b \in \mathbb{R}^{+}$, and $a+b=1$, prove: $\sqrt{a+\frac{1}{2}}+\sqrt{b+\frac{1}{2}} \leq 2$.
Example 3 Given $p^{3}+q^{3}=2, p, q \in \mathbb{R}$, prove:

1. $p+q \leq 2$.
2. $p q \leq 1$.

Example 4 For $x, y \in \mathbb{R}$, prove: $x^{2}+y^{2}+1 \geq x y+x+y$.
Example 5 For $a, b, c \in \mathbb{R}^{+}$, and $a+b+c=1$, prove:

1. $\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \geq 9$.
2. $\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}} \geq 27$.
3. $a^{2}+b^{2}+c^{2} \geq \frac{1}{3}$.

Example 6 For $a, b, c \in \mathbb{R}^{+}$, and $a+b+c=1$, prove: $\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b} \geq \frac{9}{2}$.
Example 7 For $x, y, z \in \mathbb{R}^{+}$, and $x^{2}+y^{2}+z^{2}=1$, prove: $\frac{y z}{x}+\frac{x z}{y}+\frac{x y}{z} \geq \sqrt{3}$.
Example 8 For $x, y, z \in \mathbb{R}^{+}$, prove: $x(x-y)(x-z)+y(y-x)(y-z)+z(z-x)(z-y) \geq 0$.
Certain inequalities may not be in a form suitable for our approach at first glance, but can still be proved by solving a maximum/minimum problem first, followed by an extra step.

Example 9 For $x, y, z \in \mathbb{R}$, and $x+y+z=1$, prove: $x y+y z+x z<\frac{1}{2}$.
Example 10 For $a, b, c \in \mathbb{R}^{+}$, and $a+b+c=1$, prove: $\sqrt{4 a+1}+\sqrt{4 b+1}+\sqrt{4 c+1}<5$.

