Prove Inequalities by Solving Maximum/Minimum Problems Using a Computer Algebra System

Michael Xue Vroom Laboratory for Advanced Computing (US)

mxue@vroomlab.com

Abstract

This presentation offers an alternative to traditional approaches to proving non-trivial inequalities, such as applying AM-GM, Cauchy, Hölder and Minkowski inequalities. This alternative approach, as demonstrated by various examples, establishes the validity of an inequality through solving a maximization/minimization problem by commonly practiced procedures in Calculus. Since the procedures are algorithmic, a Computer Algebra System (CAS) can carry out the computation efficiently.

Keywords

Computer Aided Proofs in Analysis, Inequality, Calculus, Computer Algebra System, CAS

1 Introduction

It is common knowledge that among various quantities of certain kind, if one quantity α is larger than others, then α is the maximum of the said kind. If α is less than others, then it is the minimum.

Expressed in mathematical inequality,

$$y \le \alpha \tag{1}$$

indicates that α is the greatest of all y's, thus the maximum of y.

Similarly, inequality

$$y \ge \alpha$$
 (2)

indicates that α is the *least* of all y's, thus the *minimum* of y.

The above definitions of maximum and minimum imply that if an inequality is in the form of (1) or (2), with a quantity taking the place of y, then the quantity has α as its extreme. Hence, proving such inequality is equivalent to solving a maximization/minimization problem and showing the extreme of the quantity is indeed α .

The algorithmic procedure of finding maxima/minima is well established. It is based on a number of theorems from Calculus.

For functions with a single variable, the following theorem is well-known.

Theorem 1 Let f(x) be a continuous and twice differentiable function in a domain D, and suppose $f'(x_0) = 0$. Then at the point x_0 , we have

Case 1. $f_{xx} > 0 \Rightarrow f$ has a local minimum.

Case 2. $f_{xx} < 0 \Rightarrow f$ has a local maximum.

For two-variable functions, the appropriate generalization of this result is given in the following theorem, which is a standard result in multi-variable Calculus.

Theorem 2 Let f(x, y) be a continuous and twice differentiable function in a domain D, and suppose $\nabla f(x_0, y_0) = 0$. Then at the point (x_0, y_0) , we have

Case 1. $f_{xx}f_{yy} - f_{xy}^2 > 0$, $f_{xx} > 0 \Rightarrow f$ has a local minimum. Case 2. $f_{xx}f_{yy} - f_{xy}^2 > 0$, $f_{xx} < 0 \Rightarrow f$ has a local maximum. Case 3. $f_{xx}f_{yy} - f_{xy}^2 < 0 \Rightarrow f$ has neither a local maximum nor minimum.

2 Examples

We will now illustrate our approach through various examples.

Example 1 For $x \in (0,1)$, prove: $x(1-x^2) \le \frac{2\sqrt{3}}{9}$.

Example 2 For $a, b \in \mathbb{R}^+$, and a + b = 1, prove: $\sqrt{a + \frac{1}{2}} + \sqrt{b + \frac{1}{2}} \le 2$.

Example 3 Given $p^3 + q^3 = 2$, $p, q \in \mathbb{R}$, prove:

- 1. $p+q \le 2$.
- 2. $pq \leq 1$.

Example 4 For $x, y \in \mathbb{R}$, prove: $x^2 + y^2 + 1 \ge xy + x + y$.

Example 5 For $a, b, c \in \mathbb{R}^+$, and a + b + c = 1, prove:

1. $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \ge 9.$ 2. $\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} \ge 27.$ 3. $a^2 + b^2 + c^2 \ge \frac{1}{3}.$

Example 6 For $a, b, c \in \mathbb{R}^+$, and a + b + c = 1, prove: $\frac{1}{b+c} + \frac{1}{a+c} + \frac{1}{a+b} \ge \frac{9}{2}$.

Example 7 For $x, y, z \in \mathbb{R}^+$, and $x^2 + y^2 + z^2 = 1$, prove: $\frac{yz}{x} + \frac{xz}{y} + \frac{xy}{z} \ge \sqrt{3}$.

Example 8 For $x, y, z \in \mathbb{R}^+$, prove: $x(x-y)(x-z) + y(y-x)(y-z) + z(z-x)(z-y) \ge 0$.

Certain inequalities may not be in a form suitable for our approach at first glance, but can still be proved by solving a maximum/minimum problem first, followed by an extra step.

Example 9 For $x, y, z \in \mathbb{R}$, and x + y + z = 1, prove: $xy + yz + xz < \frac{1}{2}$.

Example 10 For $a, b, c \in \mathbb{R}^+$, and a + b + c = 1, prove: $\sqrt{4a + 1} + \sqrt{4b + 1} + \sqrt{4c + 1} < 5$.