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Abstract

Let X be a formal indeterminate. A combinatorial power of X is an expression of the form
Xn/H where H is a subgroup of the symmetric group Sn. More generally, a combinatorial
power series in X (CPS, for short) is of the form,∑

n,H

cn,HXn/H, cn,H ∈ C. (1)

Many operations have been defined on such series and implemented on computational algebra
systems. In particular, CPS form a differential ring, denoted C||X||, equipped with a substitu-
tion operation, which contains the ring C[[X]] of classical power series in X. The main reason
to study CPS is that they “encode” classes (species) of combinatorial structures, according to
their automorphisms groups, together with the combinatorial operations between them.

In the present talk, we put emphasis on computational techniques for combinatorial inte-
gration in C||X||, the inverse of combinatorial differentiation. It turns out that integrals are no
longer defined up to a constant. One integral of the class of total orders is the class of oriented
cycles; one integral of the class of forests of rooted trees is the class of trees, etc. Integration
techniques for families of combinatorial differential equations are also presented and illustrated
on explicit examples, including “combinatorial liftings” to C||X|| of the Lambert W function.
Various tables computed using Maple and GAP softwares are also included.
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