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“Young man, in mathematics you
don’t understand things. You just
get used to them”

John von Neumann

In popular books of calculus, for example [1, 2], we can find many examples
of Riemann integral calculated directly from its definition. The aim of these ex-
amples is to familiarize students with the definition of Riemann integral. But we
cannot find analogical examples for Lebesgue integral. In this article, with simi-
lar aim but for Lebesgue integral definition, we present the following examples of

calculation directly from its definition:
∫ 1

0
x2 dm(x),

∫ 1

0
xk dm(x),

∫
π/2

0
sinxdm(x),∫ b

a
exp(x)dm(x),

∫
π

0
ln(1−2r cosx+r2)dm(x), where dm(x) denotes the Lebesgue

measure on the real line. We calculate sums, limits and plot graphs of needed
simple functions using Mathematica. The two following definitions of Lebesgue
integral are used in this article:

Let (R,M,m) be measure space, where M is σ− algebra of Lebesgue measur-
able subsets in R, and m- Lebesgue measure on R.

Let f : R→ R be measurable nonnegative function (we’ve omitted the defini-
tion of Lebesgue integral for simple real measurable functions).

Definition 1. (See [3, 5, 6, 7, 8])∫
f dm(x) = sup

{∫
sdm(x) : 0≤ s≤ f ,s simple measurable function

}
. (1)

Definition 2. (See [4, 9, 10]) Let sn be nondecreasing sequence of nonnegative
simple measurable functions such that lim

n→∞
sn(x) = f (x) for every x ∈ R. Then:∫

f dm(x) = lim
n→∞

∫
sn dm(x). (2)
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Example. Let consider the function: f (x) = sinx,x ∈ [0,π/2). For the rest of this
example we will restrict our consideration to x ∈ [0,π/2).

We will calculate
∫

π/2

0
sinxdm(x) applying directly definition 1.

Consider

sn(x) =
2n−1

∑
k=0

sin
(

k
2n+1 π

)
χ[ k

2n+1 π, k+1
2n+1 π

)(x), for x ∈ [0,π/2), n = 1,2, . . .

and s̄n(x) = s̄n =
2n

∑
k=1

sin
(

k
2n+1 π

)
χ[ k−1

2n+1 π, k
2n+1 π

)(x), for x ∈ [0,π/2), n = 1,2, . . ..

Using Wolfram Mathematica we get the following Figures 1, 2:
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Figure 1: Graphs of functions f , s1,s2. We can see that s1(x)≤ s2(x) for x∈ [0,π/2).
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Figure 2: Graphs of functions f , s2,s3. We can see that s2(x)≤ s3(x) for x∈ [0,π/2).

It is clear that sn, s̄n are sequences of nonnegative simple measurable functions and
that sn ≤ f and s̄n ≥ f on [0,π/2) for all n = 1,2, . . ..

Using Wolfram Mathematica we get:

Listing 1: Mathematica code:
In[1]=Sum[Sin[Pi k/2^(n+1)], {k, 0, 2^n−1}] Pi/2^(n+1)//Simplify

Out[1]=2^(−2−n)Pi(−1+Cot[2^(−2−n)Pi])

In[2]=Limit[%,n−>In�nity]
Out[2]=1

So

an =
∫

sn dm)x) =
2n−1

∑
k=0

sin
kπ

2n+1 ·
1

2n+1 π = 2−2−n
π(−1+ cot(2−2−n

π))→ 1 (3)

Similarly

Listing 2: Mathematica code:
In[3]=Sum[Sin[Pi k/2^(n+1)], {k, 1, 2^n}] Pi/2^(n+1)//Simplify

Out[3]=2^(−2−n)Pi(1+Cot[2^(−2−n)Pi])
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In[4]=Limit[%,n−>In�nity]
Out[4]=1

So

ān =
∫

s̄n dm(x) =
2n

∑
k=1

sin
kπ

2n+1 ·
1

2n+1 π = 2−2−n
π(1+ cot(2−2−n

π))→ 1 (4)

Of course we could use the following formulae:
n

∑
k=1

sin(kx) =
sin n+1

2 xsin n
2 x

sin x
2

and

lim
x→0

sinx
x

= 1 instead of the code in Listings 1 and 2 to get the results in formulae

(3) and (4).

Using formulae (3) and (4), basic properties of least upper, greatest lower bounds
and of Lebesgue integral of simple measurable functions we will prove in our talk
that:

sup
{∫

sdm(x) : 0≤ s≤ f ,s simple measurable function
}
≥ 1 (5)

and
sup
{∫

sdm(x) : 0≤ s≤ f ,s simple measurable function
}
≤ 1. (6)

Inequalities (5) and (6) give

sup
{∫

sdm(x) : 0≤ s≤ f ,s simple measurable function
}
= 1,

which means that
∫

f dm(x) =
∫

sinxdm(x) = 1.

Let calculate
∫

sinxdm(x) applying directly definition 2.

We can see that sn(x)≤ sn+1(x) for x ∈ [0,π/2) and for all n = 1,2, . . .. In Figures
1 and 2 we can see that s1(x)≤ s2(x) and s2(x)≤ s3(x) for x∈ [0,π/2). W can also
see that lim

n→∞
sn(x) = sin(x) for all x ∈ [0,π/2). So sn is nondecreasing sequence of

nonnegative simple measurable functions and sn converges pointwise to f .

So by formula (3) and directly by definition 2 we get
∫

sinxdm(x) =
∫

f dm(x) =

lim
n→∞

∫
sn dm(x) = lim

n→∞
an = 1.
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