The Runge Example for Interpolation and Wilkinson's Examples for Rootfinding

Leili Rafiee Sevyeri ${ }^{1}$, Robert M. Corless ${ }^{2}$

We look at two classical examples in the theory of numerical analysis, namely the Runge example for interpolation and Wilkinson's example (actually two examples) for rootfinding. We use the modern theory of backward error analysis and conditioning, as instigated and popularized by Wilkinson, but refined by Farouki and Rajan. By this means, we arrive at a satisfactory explanation of the puzzling phenomena encountered by students when they try to fit polynomials to numerical data, or when they try to use numerical rootfinding to find polynomial zeros. Computer algebra, with its controlled, arbitrary precision, plays an important didactic role.

Keywords: Interpolation, Rootfinding, Conditioning, Sensitivity.

References

[1] Corless, Robert M.; Fillion, Nicolas, A Graduate Introduction to Numerical Methods: from the Viewpoint of Backward Error Analysis. Springer Publishing Company, Incorporated, 2013.
[2] Trefethen, Lloyd N., Approximation theory and approximation practice. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2013.
[3] Farouki, R; Rajan, Vt, On the numerical condition of polynomials in Bernstein form. Computer Aided Geometric Design volumen(4-3), 191-216 (1987).
[4] Farouki, R; Goodman, T, On the optimal stability of the Bernstein basis. Mathematics of Computation of the American Mathematical Society volumen(65-216), 1553-1566 (1996).
[5] J.M. Carnicer; Y. Khiar; J.M. Peña, Optimal stability of the Lagrange formula and conditioning of the Newton formula. Journal of Approximation Theory (2017).
[6] Wilkinson, James H., The perfidious polynomial. MAA Stud. Math. volumen(24), 1-28 (1984).
[7] Kirk Green; Thomas Wagenknecht, Pseudospectra and delay differential equations. Journal of Computational and Applied Mathematics volumen(196-2), 567-578 (2006).
[8] Amiraslani, A, New Algorithms for Matrices, Polynomials and Matrix Polynomials. PhD thesis, Western University, (2006).
[9] Beckermann, Bernhard, The condition number of real Vandermonde, Krylov and positive definite Hankel matrices. Numerische Mathematik volumen(85-4), 553-577 (2000).
[10] Robert M. Corless; Stephen M. Watt, Bernstein bases are optimal, but, sometimes, Lagrange bases are better. In Proceedings of SYNASC, Timisoara, 141-153. MIRTON Press, 2004.
${ }^{1}$ Ontario Research Center for Computer Algebra and The School of Mathematical and Statistical Sciences.
University of Western Ontario
lrafiees@uwo.ca
${ }^{2}$ Ontario Research Center for Computer Algebra and The School of Mathematical and Statistical Sciences.
University of Western Ontario
rcorless@uwo.ca

