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The present work considers systems whose dynamics are governed by the nonlinear interactions among
groups of 6 nonlinear waves, such as those described by the unforced quintic nonlinear Schrödinger
equation. Specific parameter regimes in which ensemble-averaged dynamics of such systems with finite
size are accurately described by a wave kinetic equation, as used in wave turbulence theory, are
theoretically predicted. In addition, the underlying reasons that the wave kinetic equation may be a poor
predictor of wave dynamics outside these regimes are also discussed. These theoretical predictions are
directly verified by comparing ensemble averages of solutions to the dynamical equation with
corresponding solutions of the wave kinetic equation.
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The dynamics of large-scale nonlinear systems tend to be
so complex that information gleaned from individual
trajectories is insufficient to characterize the intrinsic
properties of the system. Often such properties are best
revealed through statistical measures from ensembles of
trajectories over long times. For particle, plasma, and wave
systems, both in and out of equilibrium, kinetic equations
have proven to be powerful theoretical tools for ensemble
descriptions [1–10].
For weakly nonlinear wave systems, statistical descrip-

tion using the wave kinetic equation (WKE) is provided by
the wave turbulence theory (WTT) [11,12], which can be
heuristically derived using perturbation-theoretic argu-
ments [7–10]. (In contrast, descriptions of fully developed
turbulence [13,14] rely on scaling [13], models [15–19],
numerical simulations [20,21], or are currently unattain-
able.) WKEs in WTT have been quite successful in
explaining various statistical steady states in systems
ranging from surface water waves [9,22–26] to semi-
conductor lasers [27].
Applicability of WKEs to dynamically evolving systems

has been much less explored (cf. Refs. [28–30]). Moreover,
strict physical assumptions must be made for WKEs to
hold, even in the steady state. These include weak non-
linearity, infinite system size [11,12], and an appropriate
moment closure, which is either assumed [11] or follows
from assumed validity of multiscale perturbation expan-
sions [10,31–33]. The presence of coherent structures
can lead to violations of these assumptions and destroy
the validity of the WKE [34–37], at times necessitating

additional modeling to ensure agreement of the WKE
with the underlying physics [29,38–40]. For dynamically
evolving finite size systems yet less is known (see
Refs. [41–47]). Therefore, delineating physical parameter
regimes where WKEs accurately describe the dynamics of
finite size systems remains a key challenge in WTT.
This challenging problem can be solved either via

ab initio derivation, direct ensemble observation (physical
or numerical), or a combination of the two. The first
approach was employed in Refs. [48–51], where members
of our team and colleagues derived the validity of the WKE
for the cubic nonlinear Schrödinger equation on a finite
domain in three and more dimensions. While conceptually
important, these results describe dynamics only up to an
infinitesimally small multiple of the characteristic timescale
for the WKE. In addition, the work contains no clear
delineation of specific regimes for which the WKE holds.
This Letter theoretically delineates regimes of WKE

applicability for a one-dimensional, finite-size system, and
confirms the resulting predictions on physically meaningful
timescales via numerical simulations, thus remedying those
deficiencies in prior work. In the process, quasiresonances
are identified as the mechanism underlying the WKE
approximation (cf. Refs. [41–47]), and exact resonances
as a mechanism that possibly destroys this approximation.
Moreover, two sources of coherent structures are described,
and their importance is described in terms of the system
size L: exact resonances, and focusinglike or collapselike
events (cf. Ref. [52]). None of these properties appear to be
true for systems of infinite size.
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Specifically, we determine (in)validity regimes of the
WKE for one-dimensional systems described by the defo-
cusing quintic nonlinear Schrödinger equation (DQNLS),

iut þ uxx − μjuj4u ¼ 0; ð1Þ
with finite system size modeled by spatial periodicity,
uðx; tÞ ¼ uðxþ L; tÞ, with periodL. (Finite systems subject
to other boundary conditions, e.g., Dirichlet orNeumann, are
interesting, and the range of applicability of thewave-kinetic
theory could be different. This is the subject of future
investigation.) The parameter μ > 0 dictates the relative
strength of the nonlinearity. Note that the squared norm
kuk2 ¼ R

L
0 juðx; tÞj2dx is a conserved quantity, and due to

scaling symmetries of Eq. (1), we are free to set kuk ¼ L1=2

without loss of generality.
Because of the nature of the nonlinearity in Eq. (1), the

dynamics of DQNLS waves are dominated by six-wave
interactions. Therefore, despite its simplicity, the consid-
ered model has direct relevance to physical systems
dominated by six-wave interactions: for example, Kelvin
waves in superfluid turbulence [53], and small fluctuations
around both the zero electric field and stable pulses in one-
dimensional nonlinear optics [54]; see Ref. [55].
The WKE corresponding to Eq. (1) describes the time

evolution of the wave action, nkðtÞ ¼ hjakðtÞj2i, where
akðtÞ is the (complex) amplitude of the wave with wave
number k, and the angle brackets represent averaging over
ensembles of initial waves. Because of this system’s finite
size, each wave number k is an integer multiple of
Δk ¼ 2π=L, and the wave amplitudes are defined via
the plane-wave expansion

uðx; tÞ ¼ 1

L1=2

X

k

akðtÞeiðkx−ωktÞ; ð2Þ

where ωk ¼ k2 is the linear dispersion relation for Eq. (1).
The factor L−1=2 in Eq. (2) is used with an eye on the large
L limit, required for the WKE description.
To showcase a simple, heuristic derivation of the WKE

starting from our finite-size system, we assume the
phases of wave amplitudes akðtÞ to satisfy the random
phase approximation (RPA); i.e., in the second-order
perturbation terms we treat phases as independent varia-
bles. (Alternatively, the WKE can be obtained using
closure, as discussed above.) Together with the fact that
kuk ¼ L1=2, the RPA implies with a high probability

max
x

juðx; tÞj ¼ Oð1Þ; max
k

nkðtÞ ¼ Oð1Þ: ð3Þ

For waves with finite bandwidth, i.e., those whose wave
numbers k satisfy jkj ≤ kmax, the plane-wave expansion in
Eq. (2) and the scaling in Eq. (3) imply a plausible condition
of weak nonlinearity, μðmax jujÞ4 ¼ μOð1Þ ≪ ωmax ¼
k2max ¼ Oð1Þ, so

μ ≪ 1; ð4Þ

which is also the formal weak-nonlinearity condition in
Eq. (1). In order to categorize parameter regimes for which
we expect the WKE to apply, we link the nonlinearity
parameter μ to the spatial period L via the relation μ ¼ Lp,
which is motivated by the invariance of Eq. (1) to the power-
law scaling x → λ2x, t → λ4t, u → u=λ, with λ > 0. The
weak nonlinearity condition in Eq. (4) thus becomes

μ ¼ Lp ≪ 1; ð5Þ

implying validity of the WKE for p < 0.
With scaling μ ¼ Lp and the RPA, the discrete analog of

the WKE describing the evolution of nk over a time interval
Δt ≫ 1 for the finite-size system is [48],

Δnk ¼ 12L2p−4
X

K¼0

T
sin2ðΩΔt=2Þ

ðΩ=2Þ2 ; ð6Þ

where Δnk ¼ nkðΔtÞ − nkð0Þ, and

K ¼
X2

i¼0

ki −
X5

i¼3

ki; k0 ≡ k; ð7aÞ

Ω ¼
X2

i¼0

ωki −
X5

i¼3

ωki ; ð7bÞ

T ¼
�X2

i¼0

1

nki
−
X5

i¼3

1

nki

�Y5

i¼0

nki ; ð7cÞ

and T is often called the collision term. [The rather sparse
form of T in Eq. (7c) is due to the specific form of the
nonlinearity in Eq. (1), which allows only for the scattering
of three waves into three waves and conserves kuk2.
Scattering of four waves into two waves, or vice versa,
present in more general systems dominated by six-wave
interactions, is absent from the dynamics of Eq. (1) due to
its form of nonlinearity.] To obtain the corresponding WKE
for six-wave interactions, we take the continuum limit of
Eq. (6) by converting the sum to a Riemann sum, and
recalling the limit

sin2ðΩΔt=2Þ
ðΩ=2Þ2 → 2πΔtδðΩÞ for Δt ≫ 1; ð8Þ

where δð·Þ is the Dirac delta. The WKE is thus

dnk
dτ

¼
Z

∞

−∞
TδðKÞδðΩÞdk; ð9Þ

where dk ¼ dk1dk2dk3dk4dk5, τ ¼ t=τkin, and τkin ¼
π=6μ2 ¼ π=6L2p is the kinetic timescale on which the
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wave actions experience Oð1Þ changes. Note that for the
difference Δnk=Δt to become the τ derivative, the inequal-
ity τkin ≫ Δt must hold. This inequality confirms that
ensembles of systems described by Eq. (1) evolve slowly,
and is also consistent with the small-nonlinearity condition
in Eq. (5). Nevertheless, note that Eq. (6) and the initial
RPA only guarantee the validity of the WKE in Eq. (9) on
possibly very short τ scales. On τ scales of lengthOð1Þ, we
assume RPA for convenience, or else the WKE can
formally be obtained using the appropriate closure as
mentioned above. However, its validity must be verified
by numerical simulations, which we carry out below.
Importantly, while the limit in Eq. (8) holds for smallΩ, it

is incorrect at Ω ¼ 0 where the limit is simply Δt2. This
observation has important consequences for the validity of
theWKE inEq. (9), and implies that the largest contributions
to Eq. (9) are made by quasi-resonant terms in Eq. (6), i.e.,
those terms for which the frequency difference, Ω, is small
but does not vanish (cf. Refs. [41–47]). In fact, the Ω width
of the function described by the ratio on the left-hand side of
Eq. (8) is 1=Δt. However, because that function has a point
of discontinuity at Ω ¼ 0, terms corresponding to the exact
resonances, where both K and Ω vanish simultaneously,
should contribute additional terms of size OðΔt2L2p−4Þ to
Eq. (6). Their inclusion would indicate the possibility of
linearly growing terms in Eq. (9), whose effect has not been
accounted for. To estimate the cumulative effect of these
neglected terms, notice that each term is of sizeOðΔtL2p−4Þ,
and a naive count of their number isOðL2Þ. [Amore accurate
count, which follows from number theoretic arguments
described in Ref. [56], is OðL2 lnLÞ.] Therefore their
cumulative contribution will be negligible, and thus the
WKE in Eq. (9) will be valid, provided τkinL2p−2 ≪ 1=τkin,
i.e., τkin¼OðL−2pÞ≪L1−p, and thus p > −1. Importantly,
this argument implies that the WKE in Eq. (9) may not be
valid for all times, but may break down at kinetic times
τ ¼ OðLpþ1Þ, i.e., t ¼ OðL1−pÞ in physical units of time.
This indicates the validity of the WKE before a breakdown
time which increases with L.
The temporal bound discussed above also sets a lower

bound, μ ≫ 1=L, on the strength of the nonlinearity needed
for the WKE dynamics to reasonably approximate the
ensemble-averaged dynamics of the periodic system with
period L. Smaller nonlinearity implies there are insufficient
quasiresonances to generate dynamics describable by the
WKE. The (perhaps even fewer) exact resonances, how-
ever, may instead generate growing observable dynamics
(such as those shown in Figs. 2 and 3 below with p ¼ −1.2
and p ¼ −1.1, respectively). These are known as meso-
scopic turbulence [44]. The discussion in this and the
previous paragraph thus appears to be in contrast with
properties of infinite size systems.
We note that a WKE for capillary waves in finite basins

that takes into account quasiresonances via resonant broad-
ening was developed in Ref. [47].

We now proceed with a numerical determination of the
regimes for which the WKE gives a valid description of the
dynamics governing ensembles of DQNLS waves on time
intervals spanning several kinetic timescales. We expect the
WKE to apply to waves emerging from any initial con-
ditions whose plane-wave amplitudes akð0Þ satisfy the
RPA. Therefore, as a particularly severe test, we choose
discontinuous initial wave amplitudes such that akð0Þ ¼
Ceiγk for the wave numbers k in some range jkj ≤ 1=2 and
γk drawn from the uniform distribution of angles on
0 ≤ γk < 2π, and akð0Þ ¼ 0 for jkj > 1=2. Here, C > 0

is a constant selected so that kuk ¼ L1=2.
Above, we theoretically determined that average ensem-

ble dynamics of DQNLS waves should be well approxi-
mated by the WKE in Eq. (9) for p satisfying

−1 < p < 0: ð10Þ
Using the intermediate value p ¼ −0.6 [57], we proceed to
show the correspondence between averaged DQNLS wave
ensembles and the corresponding wave actions, nk;WKE in
the limit of large L, which is necessary to guarantee that the
weak nonlinearity condition in Eq. (5) is satisfied. Wave
ensembles, nk;DQNLS, are computed by averaging squared
wave-amplitude moduli jakðtÞj2 from 1000 realizations of
the random initial phases γk, followed by evolution via
Eq. (1). These ensemble averages are then compared to
wave actions, nk;WKE, obtained from the WKE in Eq. (9).
The discrepancy between nk;DQNLS and nk;WKE is measured
in the squared norm in wave number space [defined as
kΔnkðtÞk2 ¼

R
∞
−∞ jΔnkðtÞj2dk] and the results are pre-

sented in Fig. 1. Also shown in the figure are least squares
linear fits to the data on log-log scale. This evidence
establishes convergence of wave ensembles derived form
the DQNLS in Eq. (1), and the wave action defined from
the WKE in Eq. (9), in the limit of large L.
Having shown agreement of the WKE and DQNLS for

L ≫ 1, we use the same ensemble averaging process to
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FIG. 1. Mismatch between DQNLS and WKE as a function of
L for the case p ¼ −0.6 at τ ¼ τkin, 2τkin, and 3τkin.
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probe the validity of the WKE for a set of p using finite but
large L and for predictions on time intervals of durations
τkin, 2τkin, and 3τkin. In addition to values of p where good
agreement is expected, we include results for the borderline
case p ¼ −1, and the case p ¼ −1.2 which lies below the
WKE validity range given by Eq. (10), i.e., in which exactly
resonant interactions overwhelm the system dynamics
before weakly turbulent dynamics describable by the
WKE in Eq. (9) could emerge. Note that for larger values
of p, it is important to consider large system size L not only
to satisfy the weak nonlinearity condition in Eq. (5), but
also to avoid DQNLS waves that focus sharply towards a
possible singularity. Clearly these focusing waves cannot
be included in ensembles exhibiting weakly turbulent
behavior. Fortunately, for fixed p, the likelihood of
encountering such waves seems to decrease rapidly with
L, and so by choosing a sufficiently large L, no focusing
waves are encountered in our ensembles.
Results for all cases are presented in Fig. 2, which show

that for values of p within the WKE validity range in
Eq. (10), the best agreement between the ensemble
averaged DQNLS wave dynamics and their description
by the WKE in Eq. (9) occurs at moderate values of the
wave number k, as expected. At these values, the agree-
ment is almost perfect, and the WKE even captures the
remnants of the initial jump in the amplitudes of the
individual plane-wave components at k ¼ �1=2. For small
wave numbers k, only excessively large ensemble sizes
would improve the agreement. For very large wave
numbers no quantitative agreement other than vanishing
smallness of both wave action measures, nk;DQNLS and
nk;WKE, is expected or seen. For the borderline case p ¼ −1
and the invalid case p ¼ −1.2, the ensemble averaged
wave system dynamics appear to exhibit an initial tendency
towards fast focusing and later growth slowdown, neither
of which is captured by the WKE. In particular, the case
p ¼ −1.2 waves overshoot the WKE prediction for small
wave numbers k, and both cases undershoot the WKE
predictions in the moderate k regime in which the best
agreement is expected.

In order to more closely investigate the transition in the
dynamical behavior of DQNLS wave ensembles and the
approximating WKE dynamics at the parameter value
p ¼ −1, we take a closer look at both for p ¼ −1.1 and
p ¼ −0.9, which are located close to this transition but on
the opposite sides of it. Figure 3 shows that for the
parameter value p ¼ −0.9, which lies just over the thresh-
old of the WKE validity range in Eq. (10) at p ¼ −1, the
WKE gives an excellent approximation to the ensemble
averaged shape and dynamics of the corresponding
DQNLS waves. In particular, at the time t ¼ τkin, the
WKE captures well the diminishing initial discontinuity
of the waves and also accurately approximates the ensem-
ble averaged squared wave amplitudes. This accuracy
continues at the time t ¼ 2τkin. This is not the case for
the parameter value p ¼ −1.1, which lies just below the left
threshold in Eq. (10). The ensemble averaged wave system
dynamics in this case again appear to exhibit an initial
tendency towards fast focusing and later growth slowdown
not captured by the WKE. Thus, comparing the behavior of
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FIG. 2. Comparison of averaged squared amplitudes of harmonics from simulations of DQNLS and WKE for different values of
parameter p.
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DQNLS wave ensembles and WKE solutions in these two
fairly close parameter regimes clearly illustrates the thresh-
old behavior predicted in Eq. (10).
Simulations of the DQNLS were performed on the

periodic domain x ∈ ½−L=2; L=2�, with 12th-order accurate
central finite differences and 6th-order accurate explicit
Runge-Kutta time stepping. With Δt ∼ h2 chosen for stabil-
ity, the accuracy of the overallmethod isOðh12Þ. The number
of discretization points is chosen to be N ¼ j⌈5L⌉j þ 2,
where j⌈ · ⌉j indicates the next larger even integer, which is
sufficiently fine that the numerical solutions remain accurate
to nearly machine precision throughout the simulation. For a
typical realization, the relative errors of the conserved
squared norm kuk2 and Hamiltonian kuxk2 þ ðμ=3Þku3k2
at 3τkin are 10−11 and 10−8, respectively.
The WKE (9) was solved numerically using an algorithm

inspired by the Webb-Resio-Tracy [58–60] approach to
simulation of WKEs for gravity waves. In short, the six-
dimensional wave number space is scanned, and only those
mode sextets which satisfy resonant conditions are retained.
Details of the algorithm will be published elsewhere. All
simulations of WKEs were performed using 81 harmonics.
To conclude, in the case of the DQNLS on a finite,

periodic domain, we provided a clear delineation of
parameter regimes for which its corresponding WKE
predicted by WTT is expected to be an accurate approxi-
mation of ensemble-averaged system dynamics. These
predictions are verified directly via numerical simulation.
Furthermore, we laid out straightforward theoretical justi-
fication for our parameter regime predictions, and con-
firmed that quasi-resonances, not exact resonances, appear
to be the mechanism responsible for this accurate approxi-
mation (cf. Refs. [41–47]). The influence of exact reso-
nances, in turn, may destroy the validity of WKEs. We also
identified focusing-type events as another possible coherent
structure that can destroy the validity of WKE approxima-
tion. A study of phase cross-correlations to yet further
exclude any possible coherent structures will be presented
in a future publication. The arguments used in this letter are
malleable and may be used to infer parameter regimes of
validity for other WKEs predicted by WTT.
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