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During the set of direct numerical simulations of the forced isotropic turbulence of surface gravity waves
in the framework of primordial dynamical equations, the universal inverse cascade spectrum was observed.
The slope of the spectrum is the same (in the margin of error) for different levels of pumping and
nonlinearity as well as dissipation present in the system. In all simulation runs formation of the inverse
cascade spectrum was accompanied by the appearance of a strong long wave background (condensate).
The observed slope of the spectrum ∼k−3.07 is different from the constant wave action flux solution

predicted by the wave turbulence theory ∼k−23=6.
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Introduction.—The waves turbulence theory (WTT)
(see, e.g., Refs. [1,2]) describes the evolution of a distri-
bution function for weakly nonlinear waves. One of the
most important applications of WTT is wave forecasting: a
statistical description of evolution of the wave field in a sea
or an ocean. Most of the current operational wave fore-
casting models are based either directly on Hasselmann
waves kinetic equation [3] (WKE) for surface gravity
waves (when one neglects capillary effects) with extra
phenomenological terms or on its variations [4,5]. Thus,
verification of the applicability of WKE for different setups
is an important practical question. Two constant flux
solutions of WKE for gravity waves, corresponding to
direct [6] and inverse [7] cascades, were found by Zakharov
and coauthors [1,2,8]. These Kolmogorov-Zakharov (KZ)
solutions are formulated for inertial intervals: ranges of
scales where dynamics is determined by the nonlinear
interaction of waves, and direct influence of dissipation or
pumping is negligible. If one could confirm the observation
of these solutions in a field, laboratory, or numerical
experiment, this would be a strong argument in support
of the applicability of WKE in particular conditions.
While the spectrum corresponding to the direct cascade

of energy to small scales was observed both experimentally
[9,10] and numerically [11–15], the inverse cascade spec-
trum of wave action from smaller to larger scales appeared
to be a harder case. Although frequency downshift, which
can be explained by inverse cascade, was observed in direct
numerical simulations (DNSs) of decaying turbulence
(evolution of initial spectrum without forcing in the system)
[11,16–18], it could not be a substitute for the inverse

cascade spectrum, which can be obtained only in the case of
forced turbulence. Perhaps, the first attempt toward this
goal was Ref. [19], where the initial stage of the formation
of the KZ-spectrum was demonstrated, but the range of
scales with a powerlike spectrum was not sufficient to
determine the slope. The attempt to observe both inverse
and direct cascades simultaneously [20] has resulted in the
formation of an inverse cascade and a condensate (strong
long wave background), which affected even the direct
cascade spectrum, but the range of scales in the inverse
cascade region was again insufficient to determine the slope
accurately enough. A description of some of the laboratory
experiments, where an observation of inverse cascade was
attempted, can be found in Ref. [21]. The major problem in
early attempts [22] was the small size of the basin which
required one to excite waves in the capillary-gravity
crossover region [23]. Even in later experiments in a
relatively large wave tank [24], both the dynamical range
and finite size effects prevented clear observation of the
slope of the inverse cascade. In all numerical and at least
some of the laboratory experiments mentioned above
formation of the condensate was observed (although, not
always noted).
The importance of condensate influence upon the gravity

waves spectrum was demonstrated in Ref. [20] and inves-
tigated in details in Ref. [25]. At least one of the important
mechanisms of the condensate formation is the arrest of the
nonlinear interactions due to discreteness of the homo-
geneous wave numbers grid, typical for both DNS with
periodic boundary conditions and relatively small labora-
tory basins, like in Ref. [22]; thus the condensate is not

PHYSICAL REVIEW LETTERS 130, 264002 (2023)

0031-9007=23=130(26)=264002(6) 264002-1 © 2023 American Physical Society

https://orcid.org/0000-0002-3535-4525
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.130.264002&domain=pdf&date_stamp=2023-06-28
https://doi.org/10.1103/PhysRevLett.130.264002
https://doi.org/10.1103/PhysRevLett.130.264002
https://doi.org/10.1103/PhysRevLett.130.264002
https://doi.org/10.1103/PhysRevLett.130.264002


purely a numerical artifact. The importance of discreteness
of the wave numbers grid for nonlinear interactions was
noted a long time ago for waves in resonators [26,27] and
investigated in detail with direct application to WTT
[15,28–30]. Although there are exact resonances present
on a discrete homogeneous grid of wave vectors [31], the
quasiresonances due to nonlinear broadening of the reso-
nance curve play a very important role for turbulent fluxes
in simulations of WTT [32]. As the inverse cascade
spectrum propagates further from the pumping region to
the smaller wave numbers (larger scales), eventually non-
linear interaction through quasiresonances is arrested by the
discreteness and the flux only brings wave action without
further propagation, resulting in the accumulation of it at
some large scale [20,25,33] (a similar phenomenon was
observed for direct cascade in Ref. [34]). This results in the
formation of a strong (an order of magnitude larger than
even closest harmonics) long wave background, which we
call condensate. The powerlike inverse cascade spectrum
can be observed in the inertial interval between condensate
and pumping regions, like in laboratory experiments
[21,22] or in DNS [19,20]. In these simulations the inertial
interval was too short to allow one to determine the slope of
the inverse cascade with reasonable accuracy and compare
it with the WTT prediction. Taking into account the
extremely slow formation of the inverse cascade (meaning
a smaller resolution for faster computations) and necessity
of a reasonable dynamic range for determining the slope of
the spectrum, one needs to find a compromise between
these contradicting requirements.
In this Letter we present results of DNSs in the

framework of primordial dynamical equations of the forced
turbulence of surface gravity waves and formation of the
inverse cascade with a powerlike spectrum. Simulations
were performed for different levels of pumping, resulting in
different nonlinearity levels and different parameters of
dissipation, for an extremely long (≈106 periods of central
pumping harmonic) period of time. In all the cases we
obtained condensate formation and were able to determine
the slope of the inverse cascade spectrum, virtually the
same for all simulations, yet different from one predicted by
WTT. The new spectrum is simultaneously a challenge for
WTT, a more detailed set of data supporting some experi-
ments, and a stimulus for new breakthroughs in theory.
Problem formulation.—We consider a potential flow

(velocity of the fluid is v ¼ ∇Φ) of an ideal incompressible
fluid of infinite depth. Elevation of the 2D surface over 3D
fluid from the steady state is described by a function ηðr; tÞ,
where r ¼ ðx; yÞT is the coordinate vector in a horizontal
plane. The velocity potential on the surface is
ψðr; tÞ ¼ Φjz¼ηðr;tÞ. The system is Hamiltonian [35] with
respect to variables η and ψ . An average slope of the surface
μ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hj∇ηðrÞj2i

p
, also called steepness, in most of the

observations is a small parameter μ ≪ 1. One can expand

the Hamiltonian in powers of μ (see Sec. I of the
Supplemental Material [36]) and obtain Hamiltonian
equations:

_η¼ k̂ψ − ½∇ðη∇ψÞ�− k̂½ηk̂ψ �

þ k̂ðηk̂½ηk̂ψ �Þ þ 1

2
Δ½η2k̂ψ � þ 1

2
k̂½η2Δψ �−F−1½γkηk�;

_ψ ¼ −gη−
1

2
½ð∇ψÞ2 − ðk̂ψÞ2�

− ½k̂ψ �k̂½ηk̂ψ �− ½ηk̂ψ �Δψ −F−1½γkψk� þF−1½fk�: ð1Þ

Artificial pumping and damping terms will be described
later in Eq. (5). Here k̂ is a linear integral operator
k̂ ¼ ffiffiffiffiffiffiffi

−Δ
p

, such that k̂fr in k space corresponds to
multiplication of Fourier (in the horizontal XY plane)
coefficients fk:

F̂½fr� ¼ fk ¼ 1

LxLy

Z
Lx

0

Z
Ly

0

fre−ikrdr;

F̂−1½fk� ¼ fr ¼
X
k

fkeikr

by k ¼ jkj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
. For gravity waves these reduced

Hamiltonian equations describe four-wave interaction. In
the case of a statistical description of the wave field, WKE
for the distribution of wave action nðk; tÞ ¼ hjakðtÞj2i is
used. Here

ak ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωk=ð2kÞ

p
ηk þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k=ð2ωkÞ

p
ψk; ð2Þ

are complex normal variables. For gravity waves ωk ¼ffiffiffiffiffi
gk

p
. More precisely, one has to use a different function bk

after canonical transformation eliminating nonresonant
cubic terms [1,2] in the Hamiltonian, but the relative
difference between corresponding nk’s in the case of μ ≈
0.1 is of the order of a few percent, so we shall limit
ourselves by a simpler function [Eq. (2)].
From WTT [1,2], in the case of four-wave interaction

(typical for surface gravity waves), besides equipartion
spectra, under few reasonable assumptions, one can find
two constant flux KZ solutions [6,7,37] of WKE:

nð1Þk ¼ C1P1=3k−
2β
3
−d; nð2Þk ¼ C2Q1=3k−

2β−δ
3
−d: ð3Þ

For surface gravity waves, a coefficient of homogeneity of
nonlinear interaction coefficient β ¼ 3, the power of
dispersion law δ ¼ 1=2, and the dimension of the surface
d ¼ 2. As a result we get

nð1Þk ¼ C1P1=3k−4; nð2Þk ¼ C2Q1=3k−23=6: ð4Þ
The solution nð1Þk describes a direct cascade of energy from
large pumping to small dissipative scales and was observed
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in simulations [11–13,20]. The second spectrum nð2Þk
describes an inverse cascade of wave action from small
pumping to larger scales.
Numerical scheme parameters.—We simulate Eq. (1) in

a (double) periodic box Lx ¼ Ly ¼ 2π. Grid resolution
Nx ¼ Ny ¼ 512.
Pumping on large scales [term with fk in Eq. (1)] and

dissipation on small scales (terms with γk) are

fk ¼ 4F0eiRkðtÞ ðk − kp1Þðkp2 − kÞ
ðkp2 − kp1Þ2

;

γk ¼
�
γ0ðk − kdÞ2; k ≥ kd;

γk ¼ 0; k < kd:
ð5Þ

The pumping parameters F0 ¼ 5 × 10−9ð×2;×4;×8Þ,
kp1 ¼ 60, and kp2 ¼ 64, i.e., for four different simulation
runs the amplitude jF0j was differing by factors ×2, ×4,
and ×8 from the smallest one. Function fk is a parabola
with zeros at kp1 and kp2 and extremum equal to jF0j in the
middle kp ¼ 62 between them; fk is zero outside of an
interval k ∈ ½kp1; kp2�. RkðtÞ is a uniformly distributed
random number in the interval ð0; 2π�, different for every
harmonic and time step. Initial amplitudes for all ηk and ψk

harmonics were 10−12, and all phases were uniformly
distributed random numbers between ð0; 2π�. Damping
starts at kd ¼ 128 and zero for larger scales (to avoid
the influence of aliasing due to cubic nonlinearity in our
equations, we suppress harmonics with k > kmax=2, where
kmax ¼ 256). Following Ref. [38] damping has to be
included in both equations of Eq. (1). The value of γ0
was chosen automatically to ensure 6 orders of harmonics
magnitude difference between the center of the pumping
region kp ¼ 62 and the last Fourier harmonics at k ¼ kmax.
It guarantees good quality of the solution in spite of the fact
that the Fourier series is being truncated. Later, after
formation of the condensate, the difference of the largest
and smallest (in magnitude) harmonics reaches 7 orders of
magnitude. It should be noted, that the values of γ0 were
different for different levels of pumping as different fluxes
of energy to the high k’s had to be dissipated. Details
of the numerical algorithm can be found in Ref. [30]. FFTW
library [39] was used as a discrete Fourier transform
implementation.
In the k-space supports of γk and fk are separated by the

inertial interval, where the KZ solution corresponding to
the direct cascade of energy could be recognized, but the
range of scales in this set of numerical simulations was
insufficient. Another inertial interval is located between
k ¼ 0 and the pumping region; here we expected to observe
inverse cascade. Because both dissipation and pumping are
isotropic (except for random phases) with respect to the
polar angle, we expect the same property for a solution, and
we use it for averaging the resulting spectra to replace
ensemble averaging.

Computations were performed on a designated CPU core
for each value of F0 and took more than a year. This is the
reason for a relatively small grid resolution, even with
respect to our previous computations [13,20,25]. During
previous works it had become clear that formation of the
inverse cascade is an extremely slow process, which is
explained by the fact that the interaction coefficient for
gravity waves behaves as ∼k3, which means that interaction
slows quickly with a decrease of k. Also, in weakly
nonlinear approximation characteristic nonlinear time
Tnl, when nonlinearity shows itself (amplitude change of
order 1), has to be much more than a period corresponding
to linear dispersion Tk ¼ 2π=ωk, while linear frequency ωk
also decays with a decrease of k. In order to avoid a direct
drain of energy from the pumping region through slave
harmonics, we had to ensure that only third harmonic
(3kp2) of pumping is in the dissipation region (see
Ref. [40]). Simultaneously, we had to leave room for
inverse cascade development. Taking into account all these
considerations and the enormous time of the inverse
cascade formation (we had to compute till times
> 106Tp, where Tp ¼ 2π=ωkp), the relatively small reso-
lution 512 × 512 was a reasonable compromise.
Numerical results.—The computations were performed

until a time close to a million of periods of a harmonic at the
maximum of pumping Tp. As a replacement of ensemble
averaging, which is unfeasible taking into account the
computation time, in order to compute nk ¼ hjakj2i we
used averaging over an angle as the situation is isotropic
and pumping has a random phase in every harmonics and at
every moment of time. There are more harmonics to
average over in larger k’s, meaning fewer fluctuations of
hjakj2i. The resulting mean steepnesses μ for all four cases
were 0.054, 0.067, 0.093, and 0.135. It should be noted that
these values correspond to a very different dissipation due
to nonlinear processes, as was shown in Refs. [41,42] (see
Ref. [43]). The obtained angle averaged spectra are shown

FIG. 1. All simulation spectra (solid lines) with corresponding
least squares fits (dotted lines, values of slopes are given in
Table I) and KZ-spectrum slope (dashed line).
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in Fig. 1. In accordance with the theory in Ref. [30], the
width of the resonant curve, necessary for working quasir-
esonances, depends on the nonlinearity in the system,
resulting in further propagation of the inverse cascade
and condensate for higher levels of steepness. For scales
between regions influenced by condensate and pumping,
we observe powerlike spectra (shown by dotted lines), with
slopes practically independent of steepness. As one can see
from Fig. 1, the higher the nonlinearity level is, the longer
the inertial interval is, where a powerlike spectrum can be
observed. This universal spectrum has a slope which is even
visually different from the KZ spectrum ∼k−23=6 ≈ k−3.83.
The slopes’ values together with intervals used for linear
least squares fit (in double logarithmic representation, like
in Fig. 1) are given in Table I. The least squares fit was
performed both in the OCTAVE [44] (part of GNU PROJECT

[45]) package (via standard QR approach) and in GNUPLOT

[46] (via Marquardt-Levenberg algorithm); standard errors
[47] are from the Gnuplot computations. The slopes are
significantly different from −23=6 ≈ −3.83 in accordance

with Fig. 1. To better understand the universality of the
observed inverse cascade spectrum, we normalized all
results in order to make an amplitude of jakj2 of the
harmonic k ¼ 55 (see Ref. [48]) equal to 1. As a result, all
spectra collapsed to a single curve (line) in the inertial
interval (up to fluctuations due to insufficient averaging),
shown in Fig. 2. We used the set of all available points in
inertial intervals for all simulation runs for a least squares
fit. The resulting slope is given in the last line of Table I and
shown as a dotted line in Fig. 2. The value of the estimated
spectrum slope is hjakj2i ∼ k−3.07, which is again, expect-
edly, different from the one predicted byWTT [see Eq. (4)].
The reason for this inconsistency is yet to be found (e.g.,
see Ref. [49]).
It also can be noted that Fig. 2 strongly resembles Fig. 3

in Ref. [19], with the difference that we performed four
different simulations and have a significantly longer inertial
interval for inverse cascade allowing us to determine the
slope with reasonable accuracy. The slopes in Table I with
given errors margins have a point of intersection for all but
one simulation runs (see Ref. [52]), corresponding to the
slope −3.09. Thus, one can conclude that the slope is
roughly between −3.0 and −3.1, and probably closer to the
−3.1 value. Nevertheless, the difference between observed
slope and the one predicted by WTT is clear both visually
and numerically.
Conclusion.—During four numerical simulations with

different pumping and dissipation parameters, we observed
the formation of the inverse cascade and the condensate. In
the inertial interval between condensate and pumping
regions the universal spectrum is close to a powerlike
function with a least square fit suggesting ∼k−3.07 slope.
This is close to an experimentally observed spectrum in
recent wave tank experiments [21] (see Fig. 12 (right)
where our nk ∼ k−3.07 would correspond to Ek ∼ k−1.57,
close to the Ek ∼ k−1.5 proposed in that work), especially
taking into account relatively noisy experimental data and a
short range of scales. The slope of the spectrum is virtually
identical for dramatically different levels of nonlinearity,
which suggests the universality of the observed solution.
Regardless of the fact that the spectrum is significantly
different from the one predicted by WTT, the dependence
of a constant in front of the powerlike function on the
pumping parameters was investigated (see Sec. II of the
Supplemental Material [36]). It was shown that at least in
the first (linear) approximation the dependence of the
constant on the flux is in reasonable agreement with
Eq. (4), namely with Q1=3, which hints that the new
spectrum is a result of four-wave interaction.
The applicability of WKE (which is derived for an

infinite domain) to DNS in a periodic box is yet to be
investigated in detail. Recent works on the 3D nonlinear
Schrödinger equation (NLSE) [53] and 1D quintic
NLSE [54] give us hope that a precise range of simu-
lation parameters, when one could expect quantitative

FIG. 2. All simulation spectra (solid lines) normed to have a
value of hjakj2i at k ¼ 55 to be 1 with a least squares fits (dotted
line; value of the slope is given in Table I) over data points
between condensate and pumping regions for all spectra and
KZ-spectrum slope (dashed line).

TABLE I. Least squares fits for different simulation spectra.
The second column shows the range of k between the condensate
and pumping influenced regions; the third column gives the
average slope α for hjakj2i ∼ kα; the last column shows an
estimated error of the fit.

μ k ∈ Average slope Slope error

0.054 [17;55] −3.12 �0.04
0.067 [16;55] −3.14 �0.05
0.093 [12;56] −3.01 �0.05
0.135 [11;56] −3.11 �0.04

All 170 points −3.07 �0.02
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correspondence between WKE and DNS of dynamical
equations for surface gravity waves, will be determined in
future works. For now we could use previous simulations
[11,13,17,20,32] as empirical evidence that one could
expect at least qualitative correspondence (spectra slopes,
spectrum peak downshift, etc.) for simulations in the
frameworks of these significantly different models.
The constant wave action flux KZ spectrum ∼k−23=6 was

derived for a particular case (infinite inertial interval, one
spectrum in the whole range of wave numbers, etc.), which
is different from what we observe in our simulations and
experiments (finite range of scales, limited both by con-
densate and pumping). Similarly, the direct cascade of the
energy KZ spectrum was not always observed in wave tank
experiments [55,56], while in the open water in most of the
cases [9,10] the KZ spectrum is observed. An explanation
of the spectrum reported in this Letter is yet to be proposed,
although previous works [20,25,33] hint that the conden-
sate plays a major role for processes in the inverse cascade
inertial interval. In order to take into account the con-
densate, one could use several different approaches:
Bogolyubov transformation, similar to the technique used
in a recent work [57]; taking into account the bottleneck
phenomenon as was done in Ref. [58] for 2D turbulence;
subtracting the condensate as in Refs. [59,60]; and studying
the spectrum of remaining fluctuations. A lot depends on
the type of the condensate. If it is a coherent structure, the
approaches listed above could be applied. As the con-
densate is a ring with a radius between 8 and 15 for
different simulations with a width around several harmon-
ics, the total number of discrete harmonics in condensate is
more than 100, and if they are stochastic enough (this is yet
to be defined) the situation could be described by WKE
[61]. In all of these cases complexity of the interaction
coefficient (e.g., see Appendix B in Ref. [62]) for surface
gravity waves makes analysis difficult enough to be a topic
of a separate investigation. The final ηðrÞ and ψðrÞ surfaces
for all four runs can be downloaded in the Supplemental
Material [36]. Description of the file format is given in
Sec. III of the Supplemental Material [36].
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I. COMPLETE DERIVATION OF WEAKLY

NONLINEAR DYNAMICAL EQUATIONS FOR

WAVES ON THE SURFACE OF AN IDEAL

LIQUID.

A. Exact equations.

1. Laplace equation formulation.

Let us consider three dimensional irrotational flow of
an inviscid (ideal) incompressible and homogeneous fluid
of infinite depth. Because fluid is irrotational curlv = 0,
we can introduce velocity potential Φ = Φ(x, y, z; t) in
the following way: v = ∇Φ. Because fluid is incom-
pressible divv = 0 and velocity potential Φ satisfies the
Laplace equation

divv = ∆Φ = 0 (1)

in the domain filled by fluid

−∞ < z < η(r), r = (x, y). (2)

Here and further ∆ = ∇2 and η = η(x, y, t) is a fluid
surface elevation with respect to a steady state (flat hor-
izontal surface positioned at z = 0).
Boundary conditions for velocity potential are as fol-

lows

∂η

∂t
=

(

∂Φ

∂z
− ∂Φ

∂x

∂η

∂x
− ∂Φ

∂y

∂η

∂y

)∣

∣

∣

∣

z=η

,
(

∂Φ

∂t
+

1

2
(∇Φ)2

)∣

∣

∣

∣

z=η

+ p|z=η + ρgη = 0,

p|z=η = σ∇ · ∇η
√

1 + (∇η)2

(3)

φz |z→−∞ = 0. (4)

∗ alexkor@math.unm.edu

Also it is usually reasonable to suppose that all velocities
at infinities are zeros as well as surface elevation. We
will discuss periodic box case later. Here we introduced
gravity acceleration g, fluid density ρ, and surface tension
coefficient σ.

2. Hamiltonian equations formulation.

Kinetic and potential energies of the system are the
following

H = T + U,

T =
ρ

2

∫

d2r

η
∫

−∞

(∇Φ)2dz, (5)

U = ρ

∫
(

σ

ρ

(

√

1 + (∇η)2 − 1
)

+
g

2
η2
)

d2r. (6)

Let us introduce σ′ = σ/ρ, then one can get rid of ρ
after renormalization of energies. It will correspond to
rescaled time t→ ρt.
System (3), (4) has a Hamiltonian structure. It was

shown by Zakharov in 1968 [1] that using variables
η(x, y, t)-surface displacement and velocity potential on
the surface ψ(x, y; t) = Φ(x, y, η(x, y; t); t) these bound-
ary conditions take form

∂η

∂t
=
δH

δψ
,
∂ψ

∂t
= −δH

δη
. (7)

Thus variables η, ψ are canonically conjugated.
Kinetic energy cannot be expressed in terms of η, ψ in

an explicit form. However, one can find expansion of the
Hamiltonian H in powers of nonlinearity. Let use the
following vector identity:

∇Φ · ∇Φ = div(Φ∇Φ)− Φ∆Φ = div(Φ∇Φ).

mailto:alexkor@math.unm.edu
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Thus, using Stokes’ theorem kinetic energy (5) can be
rewritten as an integral over the surface:

2T =

∫

(∇Φ)2dV =

∫

div(Φ∇Φ)dV =

∫

Φ∇Φ · dS.
(8)

Here we have to take into account the fact that on in-
finitely remote boundaries all velocities has to be zeros,
thus ∇Φ ≡ 0 everywhere but on the upper fluid sur-
face. If we consider periodic boundary conditions for x
and y, then outgoing flux will be exactly compensated
by incoming due to periodicity. So this surface inte-
gral has to be understood as an integral over the (up-
per) surface of the fluid. On the surface radius vector is
R = xi+ yj+ η(x, y)k, where i, j, and k are unit vectors
(orts) along directions of x-, y-, and z-axes correspond-
ingly. and for the oriented surface element one can write
(we follow an agreement that normal vector is directed
outside of the enclosed volume, which for upper surface
means that z-component of the normal vector is mostly
positive):

dS =
∂R

∂x
× ∂R

∂y
dxdy =

(

k− i
∂η

∂x
− j

∂η

∂y

)

dxdy.

Using this expression of dS one can write

2T =

∫

Φ∇Φ · dS

=

∫

Φ

(

∂Φ

∂z
− ∂Φ

∂x

∂η

∂x
− ∂Φ

∂y

∂η

∂y

)∣

∣

∣

∣

z=η

dxdy

=

∫

Φ

(

∂Φ

∂z
−∇Φ · ∇η

)∣

∣

∣

∣

z=η

dxdy (9)

Pay attention that expression in the brackets is normal
velocity vn with some factor:

(

∂Φ

∂z
− ∂Φ

∂x

∂η

∂x
− ∂Φ

∂y

∂η

∂y

)
∣

∣

∣

∣

z=η

= vn[1 + (∇η)2],

and gives insight in the first (kinematic) boundary con-
dition (3). You can see that this boundary condition
requires that the surface has to move with the same ve-
locity as the fluid.
As a first step let us take care of the second term. Using

the definition of potential on the surface ψ one can get
the following relations

∂ψ

∂x
=

∂

∂x
Φ(x, y, η(x, y)) =

∂Φ

∂x

∣

∣

∣

∣

z=η

+
∂Φ

∂z

∣

∣

∣

∣

z=η

∂η

∂x
,

∂ψ

∂y
=

∂

∂y
Φ(x, y, η(x, y)) =

∂Φ

∂y

∣

∣

∣

∣

z=η

+
∂Φ

∂z

∣

∣

∣

∣

z=η

∂η

∂y
.

Using these relations we immediately get
(

∂Φ

∂x

∂η

∂x
+
∂Φ

∂y

∂η

∂y

)
∣

∣

∣

∣

z=η

= ∇ψ · ∇η − ∂Φ

∂z

∣

∣

∣

∣

z=η

(∇η)2, (10)

which after substitution of (10) into (9) yields

T =
1

2

∫

(∇Φ)2dV

=
1

2

∫

Φ

(

∂Φ

∂z
[1 + (∇η)2]−∇ψ · ∇η

)∣

∣

∣

∣

z=η

dxdy. (11)

Let us emphasize the fact that up to now all derivations
are exact, we haven’t used the weak nonlinearity in the
system yet.

B. Expansion of kinetic energy in terms of

steepness.

1. Steepness as a measure of nonlinearity in the system.

From observation it is known that in most of the in-
teresting cases steepness (average slope) of the surface µ
is of the order of the value 0.1 or lower. Average slope
can be introduced in numerous ways. Here are just few
of them:

• µ =
√

〈|∇η|2〉.

• µ = 〈|∇η|〉.

• µ =
√

〈η2〉kp.
Here kp = 2π/λp is wavenumber corresponding to the
characteristic wavelength of the wave field λp. In terms
of wavenumber Fourier spectrum of the wave field it is
wavenumber of the peak of the spectrum. Because we
shall be working with the weakly nonlinear wave field
it is natural to use Fourier transform in xy-plane. Let’s
introduce it for function of two variable f = f(x, y) = fr:

F̂ [fr] = fk =
1

(2π)2

∫

fre
ikrd2r, (12)

F̂−1[fk] = fr =

∫

fke
−ikrd2k. (13)

For periodic boundary conditions, obviously, these
Fourier integrals should be replaced by Fourier series.
In the case of 2π × 2π periodic box Fourier series and
these Fourier integrals will coincide. Now let us try to
get expansion of kinetic energy up to the quartic terms.
From the Laplace equation (1) after Fourier transform

in xy-plane one gets equation

∂2Φk

∂z2
− k2Φk = 0,

which together with boundary conditions at infinite
depth (solution has to decay for negative z) immediately
yields

Φk = Ake
kz ,

∂Φk

∂z
= kAke

kz = kΦk. (14)

Here we introduced magnitude of the wavevector k = |k|.
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2. Expansion of potential at the surface.

Now let us express Ak through the functions on the
surface. In order to do this we expand exponential func-
tion in (14) up to the second order terms:

Φk ≃ Ak

(

1 + kz +
1

2
(kz)2

)

. (15)

Pay attention, that on the surface z = η and kz is of
the order of steepness µ, which is our small parameter.
We limit ourselves by quadratic terms, because together
with amplitude A they will give cubic term for Φ, while
in the kinetic energy (11) derivative ∂Φ/∂z, which will
be of the same order as Φ, is multiplied by potential Φ,
which will result in quartic terms in Hamiltonian. Fur-
ther expansion will give us higher order terms.
After inverse Fourier transform of (15) expanded po-

tential takes the form

Φ(x, y, z) = F̂−1[Φk] ≃ A(x, y)

+ zF̂−1[kAk] +
z2

2
F−1[k2Ak],

which on the surface gives

ψ(x, y) = Φ(x, y, z)|z=η = A(x, y)

+ ηF̂−1[kAk] +
η2

2
F−1[k2Ak], (16)

here A(x, y) = F̂−1[Ak] and from now on we shall replace
≃ sign with equality.
It is convenient to introduce linear nonlocal operator

k̂ in the following way:

k̂f(x, y) = F̂−1[kF̂ [fr]] = F̂−1[kfk]. (17)

In other words, this operator acts as follows: it multi-
plies Fourier harmonics by the magnitude of correspond-
ing wave number. Due to this property it is often referred

as a square root of negative Laplacian: k̂ =
√
−∆. With

this operator we get the following compact notation:

ψ(x, y) = A+ ηk̂A− η2

2
∆A, (18)

In order to calculate ∂Φ/∂z on the surface, according
to (14) we need to find A. Let us write equation for A:

A = ψ − ηk̂A+
η2

2
∆A, (19)

this is integro-differential nonlocal equation. Let us solve
it by iterations, keeping terms up to cubic ones. In the
first iteration we put A = ψ in the right hand side of (19):

A = ψ − ηk̂ψ +
η2

2
∆ψ. (20)

In the second iteration we substitute this result (20) in
the right hand side of (19) (omit terms higher than cubic
ones):

A = ψ − ηk̂ψ +
η2

2
∆ψ + ηk̂[ηk̂ψ]. (21)

This is our solution with desired accuracy. Now we can
use it for ∂Φ/∂z on the surface.

3. Expansion of ∂Φ/∂z at the surface.

Let us apply exactly the same approach to the z-
derivative of potential. From (14) and (15) one gets (up
to the cubic terms):

∂Φk

∂z
(x, y, z) ≃ kAk

(

1 + kz +
1

2
(kz)2

)

. (22)

After the inverse Fourier transform:

∂F̂−1[Φk]

∂z
≃ F̂−1[kAk] + zF̂−1[k2Ak] +

z2

2
F−1[k3Ak],

which on the surface gives

∂Φ

∂z

∣

∣

∣

∣

z=η

= F̂−1[kAk] + ηF̂−1[k2Ak] +
η2

2
F−1[k3Ak].

This expression can be rewritten using k̂-operator:

∂Φ

∂z

∣

∣

∣

∣

z=η

= k̂A− η∆A− η2

2
∆[k̂A]. (23)

Let us substitute here A from expression (21) and keep
only terms up to cubic ones:

∂Φ

∂z

∣

∣

∣

∣

z=η

= k̂ψ − η∆ψ − 1

2
η2∆k̂ψ − k̂[ηk̂ψ]

+ η∆(ηk̂ψ) +
1

2
k̂[η2∆ψ] + k̂[ηk̂[ηk̂ψ]]. (24)

Now we have everything for rewriting Hamiltonian in
terms of η and ψ.

C. Weakly nonlinear Hamiltonian equations.

For given boundary conditions the following relation
holds:

∫

η∇ψd2r = −
∫

ψ∇ηd2r. (25)

For operator k̂ we can derive similar relation:

∫

ψk̂ηd2r =

∫

kηkψ
∗

kd
2k =

∫

(k̂ψ)ηd2r, (26)
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where we used the relation for Fourier image of a real
valued function ψ−k = ψ∗

k
, while ∗ means complex con-

jugation.
Using (25)-(26) and (24) kinetic energy (11) can be

written in a relatively compact form:

T =
1

2

∫

ψk̂ψd2r +
1

2

∫

η
[

|∇ψ|2 − (k̂ψ)2
]

d2r

+
1

2

∫

η(k̂ψ)
[

k̂(η(k̂ψ)) + η∇2ψ
]

d2r. (27)

Because we expand Hamiltonian up to quartic terms

using small parameter µ ≈ |∇η| ≈ |k̂η| one can expand
part of potential energy associated with capillary waves:

σ′

(

√

1 + |∇η|2 − 1
)

≃ σ′

(

1

2
|∇η|2 − 1

8
|∇η|4

)

. (28)

Hamiltonian, resulting from (6), (28), and (27) have
the following form

H =
1

2

∫

(

σ′|∇η|2 + gη2 + ψk̂ψ
)

d2r

+
1

2

∫

η
[

|∇ψ|2 − (k̂ψ)2
]

d2r

+
1

2

∫

η(k̂ψ)
[

k̂(η(k̂ψ)) + η∇2ψ
]

d2r

− 1

8

∫

σ′|∇η|4d2r. (29)

Hamiltonian equations (7) can be written as follows

η̇ =k̂ψ − (∇ · (η∇ψ))− k̂[ηk̂ψ] + k̂(ηk̂[ηk̂ψ])

+
1

2
∇2[η2k̂ψ] +

1

2
k̂[η2∇2ψ],

ψ̇ =σ′∇2η − gη − 1

2

[

|∇ψ|2 − (k̂ψ)2
]

− [k̂ψ]k̂[ηk̂ψ]− [ηk̂ψ]∇2ψ − 1

2
σ′∇ · (|∇η|2∇η).

(30)

In many cases, when capillary waves are considered it is
enough to limit ourselves by cubic terms in the Hamil-
tonian, this is why the quartic capillary term is often
dropped even when capillary effects are taken into ac-
count.

II. DEPENDENCE OF THE CONSTANT OF

THE SPECTRUM ON FORCING AMPLITUDE.

KZ finite flux of wave action solution corresponding to
inverse cascade is (see main paper):

n
(2)
k = C2Q

1/3k−23/6,

here C2 is some constant and Q is the magnitude of wave
action flux. The value of the constant C2 is unknown,

while Q depends on the strength of pumping. If we as-
sume that in spite of finiteness of both inertial intervals
(for inverse and direct cascades) all pumped in wave ac-
tion has to be transferred by inverse cascade, it would
mean that Q is proportional to the rate of injection of
the wave action. Let us try to evaluate how it depends
on the only changing parameter of the pumping F0 (am-
plitude of pumping, was increased in different simula-
tions by a factor of ×2, ×4, and ×8, which resulted in
increase of average steepness) in a linear approximation
(the system is weakly nonlinear, so it is reasonable for the
first approach to the problem). For the pumping region
k ∈ [kp1, kp2] we have the following linear equation:

ȧk = −iωkak + . . .+ F0p(k)e
iRk(t),

p(k) = 4

√

k

2ωk

(k − kp1)(kp2 − k)

(kp2 − kp1)2
, (31)

where Rk(t) is a uniformly distributed random number
in interval (0, 2π]. Integrating this linear equation one
can get:

ak(t) = F0ak(0)ip(k)e
−iωkt

t
∫

0

ei(Rk(τ)+ωkτ)dτ. (32)

We designed the experiment (and paid a very high price
for that, decreasing the dynamic range of the inverse cas-
cade by a factor of 2) in such a way, that only the third
harmonic of pumping is reaching the dissipation region,
meaning that we can neglect nonlinear drain of wave ac-
tion from the pumping region through a decay of the
third harmonic at least in the first approximation. Also,
as was mentioned above, we suppose that almost all wave
action injected into the system is gone by the inverse cas-
cade. Then nk ∼ F 2

0G(t,k), were G is some function of
time and k, and the rate of change of N =

∫

nkdk is
also proportional to F 2

0 . In other words, using the low-
est steepness (the smallest F0) case as the reference (let
us denote corresponding value of a flux as Q1), we are
expecting the wave action flux for other simulation to
be 22Q1, 4

2Q1, and 82Q1, which leads to changing the
constant in front of the k-dependent part of the spec-
trum by factors of 22/3, 42/3, and 82/3, if the formula for
KZ-spectrum is correct. Let us compare this prediction
with the observations. We used the least squares fit with
k−3.07 (the best common slope for all four simulations)
and considered relative (with respect to µ = 0.054 case)
growth factor (GF) of the constant. Pay attention to the
fact, that when we divide constants for different cases,
the only unknown parameter C2 cancels out. The results
are given in Table I.
One can notice reasonable correspondence of expected

growth factors and the measured ones taking into account
simplicity of our model. Can one fit this data with a dif-
ferent dependence (power of Q)? Sure, e.g. if we consider
the case when the constant in the spectrum depends on
the wave action flux as Q3/8, the expected grow factors
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µ Measured GF Expected (2/3) Error (2/3)

0.054 1 1 0%

0.067 1.593 1.587 0.328%

0.093 2.230 2.520 −11.5%

0.135 4.833 4 20.8%

TABLE I. Spectrum constant growth factors (with respect
to µ = 0.054 case) and their relative errors (measured-

expected)/expected, where expected growth factors are 22/3,

42/3, and 82/3, following from Q1/3 dependence of the con-
stant in the KZ-spectrum.

µ Measured GF Expected (3/4) Error (3/4)

0.054 1 1 0%

0.067 1.593 1.682 −5.30%

0.093 2.230 2.828 −21.2%

0.135 4.833 4.757 1.60%

TABLE II. Spectrum constant growth factors (with respect
to µ = 0.054 case) and their relative errors (measured-

expected)/expected, where expected growth factors are 23/4,

43/4, and 83/4, following from hypothetical Q3/8 dependence
of the constant in the spectrum.

would be 23/4, 43/4, and 83/4 and we could get much bet-
ter correspondence for the highest nonlinearity (and only
for that case!), as it is demonstrated in Table II.

Meanwhile, the magnitude of an error is growing in the
first case (for Q1/3) and behaves randomly in the second
case (for hypothetic Q3/8). Our linear analysis has to
give higher and higher error with increase of nonlinearity
and this is what we observe for the case of expected de-
pendence Q1/3 (like in KZ-spectrum), which means that

our measurements support this case in contrary to hypo-
thetical Q3/8 dependence.

III. DESCRIPTION OF FILES WITH

INFORMATION ABOUT THE SURFACES OF η
AND ψ.

In order to provide a reader with a possibility to
investigate different characteristics of the wave field in
all simulations reported in the paper, the files of surfaces
of η(r) and ψ(r) are given in Supplemental Materials as a
downloadable archive eta psi surfaces.zip. Every file
is named according to its content. For example, the file
eta r.mu 0.054 time 1.126222214538720e+06.data

contains information about η(r) surface for the simula-
tion with average final steepness µ ≈ 0.054 at the final
moment of time t = 1.126222214538720× 106. The file
psi r.mu 0.135 time 7.907737882729195e+05.data

contains information about ψ(r) surface for the sim-
ulation with average final steepness µ ≈ 0.135 at the
final moment of time t = 0.7907737882729195 × 106.
Every file contains ASCII text in the following format:
the first two columns are x and y coordinates, the
third column is the value of η(r) or ψ(r) in a given
point of the surface. There is an empty line between
changes of the first (“slow”) coordinate. The format is
ready for plotting as a 3D-surface by standard scientific
visualization tools like Gnuplot or Octave. The grid is
homogeneous, resolution is 512 × 512 points, size of the
domain is 2π× 2π. Due to periodic boundary conditions
the coordinates are changing in an interval 0 ≤ x, y < 2π
and the coordinates grid step is 2π/512. The choice of
r-representation was natural, as scaling of amplitudes of
the k-representation would depend on a definition of the
Fourier transformation.

[1] V. E. Zakharov, J. Appl.Mech. Tech. Phys. 9, 190 (1968).


