Math 510
 Assignment 11, due Wednesday, November 25 (note unusual due date)

As usual, hand in Parts I and II separately:
Part I:

1. Suppose that f is uniformly continuous in \mathbb{R} and K is a continuous function on \mathbb{R} such that $K=0$ outside $[-1,1]$ and $\int_{-1}^{1} K(x) d x=1$. Define

$$
f_{n}(x):=n \int_{-\infty}^{\infty} K(n(x-y)) f(y) d y
$$

Prove that $\left\{f_{n}\right\}$ converges uniformly to f on \mathbb{R}.
2. Rudin, Chapter 7, \#18.

Part II:

1. Rudin, Chapter $7, \# 7$.
2. Rudin, Chapter $7, \# 9$.
3. Rudin, Chapter 7, \# 12.

On your own: Rudin, Chapter 7, \#1-6 and the following problem:
Let $\left\{\phi_{n}\right\}$ be a sequence of nonnegative Riemann integrable functions on $[-1,1]$ which satisfy
(i) $\int_{-1}^{1} \phi_{n}(t) d t=1$ for each $n=1,2,3, \ldots$
(ii) For every $\delta>0, \phi_{n} \rightarrow 0$ uniformly on $[-1,-\delta] \cup[\delta, 1]$

1. Show that if $f:[-1,1] \rightarrow \mathbb{R}$ is Riemann integrable and continuous at $x=0$, then

$$
\lim _{n \rightarrow \infty} \int_{-1}^{1} f(t) \phi_{n}(t) d t=f(0)
$$

2. Show that

$$
\lim _{n \rightarrow \infty} n \int_{-1 / n}^{1 / n} e^{-x^{2}}\left(1-n^{2} x^{2}\right) d x=\frac{4}{3}
$$

Reading: Rudin, Chapter 7.

