Math 511 Assignment 3, due Friday, March 9

1. (Wade 12.1.4b) Prove that given r > 0, $B_r(0) := \{x \in \mathbb{R}^n : |x| < r\}$ is a Jordan Region.

Note: One way to start is by observing that it suffices to show that

$$\{x \in \mathbb{R}^n : x_1 \ge |x|/\sqrt{n} \text{ and } |x| = r\}$$

has volume zero (though you need to explain why this is sufficient). Then realize this set as the image of

$$E = \{ y \in \mathbb{R}^n : y_1 = 0, y_2^2 + \dots + y_n^2 \le \left(1 - \frac{1}{n} \right) r^2 \}$$

under the map $F(y_1, \ldots, y_n) = (y_1 + \sqrt{r^2 - (y_2^2 + \cdots + y_n^2)}, y_2, \ldots, y_n).$

- 2. (Wade 12.1.5) Let E be a Jordan region in \mathbb{R}^n .
 - (a) Prove that E^{o} and \overline{E} are Jordan regions (Recall Rudin, Ch.2, 9(e,f)).
 - (b) Prove that $\operatorname{Vol}(E^o) = \operatorname{Vol}(\overline{E}) = \operatorname{Vol}(E)$.
 - (c) Prove that $\operatorname{Vol}(E) > 0$ if and only if $E^o \neq \emptyset$.
- 3. (Wade 12.1.6 (a,b,c)) Suppose that E_1, E_2 are Jordan regions in \mathbb{R}^n .
 - (a) Prove that if $E_1 \subset E_2$, then $Vol(E_1) \leq Vol(E_2)$.
 - (b) Prove that $E_1 \cap E_2$ and $E_1 \setminus E_2$ are Jordan regions.
 - (c) Prove that if E_1 , E_2 are nonoverlapping, then $Vol(E_1 \cup E_2) = Vol(E_1) + Vol(E_2)$.

On your own, observe that $\operatorname{Vol}(E_1 \setminus E_2) = \operatorname{Vol}(E_1) - \operatorname{Vol}(E_2)$ when $E_1 \subset E_2$ and that more generally, $\operatorname{Vol}(E_1 \cup E_2) = \operatorname{Vol}(E_1) + \operatorname{Vol}(E_2) - \operatorname{Vol}(E_1 \cap E_2)$.

4. (Wade 12.2.9) Suppose that V is open in \mathbb{R}^n and that $f: V \to \mathbb{R}$ is continuous. Prove that if

$$\int_E f \, dV = 0$$

for all nonempty Jordan regions $E \subset V$, then f = 0 on V.

On your own:

1. (Wade 12.2.3) Let E be an open Jordan region in \mathbb{R}^n and $x_0 \in E$. If $f: E \to \mathbb{R}$ is integrable on E and continuous at x_0 , prove that

$$\lim_{r \to 0^+} \frac{1}{\operatorname{Vol}(B_r(x_0))} \int_{B_r(x_0)} f \, dV = f(x_0).$$

2. (Wade 12.2.5) If $E_0 \subset E$ are Jordan regions in \mathbb{R}^n and $f : E \to \mathbb{R}$ is integrable on E, prove that f is integrable on E_0 .