Math 510, Fall 2017
 Assignment 9, due Wednesday, November 8

Exercises to hand in. As usual, hand in Parts I and II separately:

Part I:

1. Rudin, Chapter 6, $\# 3$.
2. Let $f:[a, b] \rightarrow \mathbb{R}$ be bounded on $[a, b]$ and Riemann integrable on $[c, b]$ for every $c \in(a, b)$. Prove that f is integrable on $[a, b]$ and that

$$
\int_{a}^{b} f(x) d x=\lim _{c \rightarrow a+} \int_{c}^{b} f(x) d x
$$

Part II:

1. In this problem, consider a real valued function $f:[a, \infty) \rightarrow \mathbb{R}$ which is Riemann integrable over any compact subinterval $[c, d] \subset[a, \infty) . f$ is said to be improperly integrable on $[a, \infty)$ if the limit $\lim _{b \rightarrow \infty} \int_{a}^{b} f(x) d x$ exists as a real number, in which case we denote this limit as $\int_{a}^{\infty} f(x) d x$.
(a) Suppose f is a nonnegative function which is improperly integrable on $[a, \infty)$. Show that

$$
\int_{a}^{\infty} f(x) d x=\sup \left\{\int_{a}^{R} f(x) d x: R>a\right\}
$$

(b) Prove that if $|f|$ is improperly integrable on $[a, \infty)$, then so is f.
(c) Prove the integral test: Suppose $f:[1, \infty) \rightarrow[0, \infty)$ is a nonnegative decreasing function. The series $\sum_{n=1}^{\infty} f(n)$ converges if and only if f is improperly integrable on $[1, \infty)$.
2. Suppose $f:[a, b] \rightarrow \mathbb{R}$ is Riemann integrable. Using Theorem 6.6 , show that f^{2} is also a Riemann integrable function. In other words, show directly that for any $\varepsilon>0$ there exists a partition P of $[a, b]$ such that

$$
U\left(P, f^{2}\right)-L\left(P, f^{2}\right)<\varepsilon
$$

You may not apply Theorems 6.11 or 6.13 in the book to this problem.
Hint: For any bounded function g on $[a, b]$, Exercise 3 in Part II of Assignment 1 shows that taking $A=g([a, b])$ (the image of $[a, b]$ under g), we have

$$
\begin{aligned}
\sup _{x \in[a, b]} g(x)-\inf _{x \in[a, b]} g(x) & =\sup \{|g(x)-g(y)|: x, y \in[a, b]\} \\
& =\sup \{g(x)-g(y): x, y \in[a, b]\}
\end{aligned}
$$

On your own: Rudin, Chapter 6: $1,2,4,5,8$ and the following problems:

1. Use Exercise 2 from Part I to show that any function $f:[0,1] \rightarrow \mathbb{R}$ agreeing with $\sin (1 / x)$ for $x \neq 0$ is integrable.
2. Find a nonnegative function f which is improperly integrable on $[0, \infty)$, but f is unbounded on that domain.

Reading: Rudin, Chapter 6.

