Math 510, Fall 2017 Assignment 9, due Wednesday, November 8

Exercises to hand in. As usual, hand in Parts I and II separately:

Part I:

- 1. Rudin, Chapter 6, #3.
- 2. Let $f : [a,b] \to \mathbb{R}$ be bounded on [a,b] and Riemann integrable on [c,b] for every $c \in (a,b)$. Prove that f is integrable on [a,b] and that

$$\int_{a}^{b} f(x) \, dx = \lim_{c \to a+} \int_{c}^{b} f(x) \, dx.$$

Part II:

- 1. In this problem, consider a real valued function $f : [a, \infty) \to \mathbb{R}$ which is Riemann integrable over any compact subinterval $[c, d] \subset [a, \infty)$. f is said to be *improperly integrable* on $[a, \infty)$ if the limit $\lim_{b\to\infty} \int_a^b f(x) dx$ exists as a real number, in which case we denote this limit as $\int_a^{\infty} f(x) dx$.
 - (a) Suppose f is a nonnegative function which is improperly integrable on [a,∞). Show that

$$\int_{a}^{\infty} f(x) \, dx = \sup \left\{ \int_{a}^{R} f(x) \, dx : R > a \right\}.$$

- (b) Prove that if |f| is improperly integrable on $[a, \infty)$, then so is f.
- (c) Prove the *integral test*: Suppose $f : [1, \infty) \to [0, \infty)$ is a nonnegative decreasing function. The series $\sum_{n=1}^{\infty} f(n)$ converges if and only if f is improperly integrable on $[1, \infty)$.
- 2. Suppose $f : [a, b] \to \mathbb{R}$ is Riemann integrable. Using Theorem 6.6, show that f^2 is also a Riemann integrable function. In other words, show directly that for any $\varepsilon > 0$ there exists a partition P of [a, b] such that

$$U(P, f^2) - L(P, f^2) < \varepsilon.$$

You may not apply Theorems 6.11 or 6.13 in the book to this problem.

Hint: For any bounded function g on [a, b], Exercise 3 in Part II of Assignment 1 shows that taking A = g([a, b]) (the image of [a, b] under g), we have

$$\sup_{x \in [a,b]} g(x) - \inf_{x \in [a,b]} g(x) = \sup\{|g(x) - g(y)| : x, y \in [a,b]\}$$
$$= \sup\{g(x) - g(y) : x, y \in [a,b]\}.$$

On your own: Rudin, Chapter 6: 1, 2, 4, 5, 8 and the following problems:

- 1. Use Exercise 2 from Part I to show that any function $f : [0,1] \to \mathbb{R}$ agreeing with $\sin(1/x)$ for $x \neq 0$ is integrable.
- 2. Find a nonnegative function f which is improperly integrable on $[0,\infty),$ but f is unbounded on that domain.

Reading: Rudin, Chapter 6.