Math 581, Spring 2017 Assignment 7, due Wednesday, April 26

In all problems below, $\mathfrak X$ is a complex Hilbert space. There is a problem on the back page.

- 1. Let a be a sesquilinear form on \mathcal{X} satisfying $|a(x,y)| \leq C_1 ||x|| ||y||$ and $|a(x,x)| \geq C_2 ||x||^2$ for some $C_1, C_2 > 0$ and all $x, y \in \mathcal{X}$. Show there exists a bounded invertible operator B on all of \mathcal{X} such that $\langle x, y \rangle = a(x, By)$ for all x, y.
- 2. Suppose P_1 , P_2 are orthogonal projections onto closed subspaces \mathcal{M}_1 , $\mathcal{M}_2 \subset \mathcal{X}$ respectively.
 - (a) Prove that $P_2 P_1$ is an orthogonal projection if and only if $P_1 \leq P_2$. Show that in this case, $P_2 - P_1$ is projection onto $\mathcal{M}_1^{\perp} \cap \mathcal{M}_2$.
 - (b) Prove that $P_2P_1=0$ if and only if $\mathcal{M}_1\perp\mathcal{M}_2$.
- 3. Let $\{\alpha(j)\}_{j=1}^{\infty}$ be a bounded sequence in \mathbb{R} and define $A:\ell^2\to\ell^2$ by

$$(Ax)(j) = \alpha(j)x(j).$$

It is not hard to check that A is bounded, linear, and self-adjoint (do this on your own).

(a) Show that

$$\inf_{\|x\|=1} \langle Ax, x \rangle = \inf_{j} \alpha(j), \qquad \sup_{\|x\|=1} \langle Ax, x \rangle = \sup_{j} \alpha(j).$$

- (b) Find explicit formulas for |A|, A^+ , and A^- . Be rigorous and appeal to the definitions of these operators given in class.
- (c) Show that if $\{E(\lambda)\}_{\lambda\in\mathbb{R}}$ is the resolution of the identity corresponding to A, then

$$(E(\lambda)x)(j) = \begin{cases} x(j), & \text{if } \alpha(j) \leq \lambda \\ 0, & \text{otherwise.} \end{cases}$$

4. Recall that a \mathbb{C} -valued function g is of bounded variation (BV) on an interval $[a,b]\subset\mathbb{R}$ if

$$\sup \left\{ \sum_{j=1}^{n} |g(\lambda_j) - g(\lambda_{j-1})| : \{\lambda_0, \lambda_1, \dots, \lambda_n\} \text{ is a partition of } [a, b] \right\} < \infty.$$

It is not hard to check that the functions of bounded variation on [a,b] is a vector space and if any BV function is extended to be constant outside of [a,b] the extension is also BV on any compact interval containing [a,b] (do this on your own). Let $\{E(\lambda)\}_{\lambda\in\mathbb{R}}$ be the resolution of the identity associated to a self-adjoint operator $A\in B(X)$ and set

$$m:=\inf_{\|x\|=1}\langle Ax,x\rangle, \qquad M:=\sup_{\|x\|=1}\langle Ax,x\rangle.$$

- (a) Show that any increasing function on a compact interval is of bounded variation and that for any $x \in \mathcal{X}$, $g(\lambda) := \langle E(\lambda)x, x \rangle$ is increasing on \mathbb{R} .
- (b) Now fix $x, y \in \mathcal{X}$ and consider $g(\lambda) = \langle E(\lambda)x, y \rangle$. Show that there exists increasing functions $g_i : \mathbb{R} \to \mathbb{R}, i = 1, 2, 3, 4$, such that

$$g(\lambda) = g_1(\lambda) - g_2(\lambda) + i(g_3(\lambda) - g_4(\lambda)).$$

Conclude g is of bounded variation on any compact interval in \mathbb{R} .

(c) Suppose a < m < M < b and $f : [a, b] \to \mathbb{C}$ is continuous. Since the g_i in the previous part are all increasing, the Riemann-Stieltjes integral $\int_a^b f(\lambda) dg_i$ exists for each i = 1, 2, 3, 4 and we may define

$$\int_a^b f(\lambda) dg := \int_a^b f(\lambda) dg_1 - \int_a^b f(\lambda) dg_2 + i \left(\int_a^b f(\lambda) dg_3 - \int_a^b f(\lambda) dg_4 \right)$$

With this interpretation, show that $\langle f(A)x, y \rangle = \int_a^b f(\lambda) dg$.

On your own: verify all the "on your own" elements of the above problems.