Professor James Ellison - DOE Grant Works, Updated September 3, 2017
Return to Home Page
  1. H.S. Dumas, J.A. Ellison and G. Hoffstaetter, Elementary proof of an adiabatic invariance for spins in a circular particle accelerator. Draft.
      
  2. K. Heinemann, D. Barber, J.A. Ellison and M. Vogt, A unified treatment of spin-orbit systems using tools distilled from the theory of bundles. Submitted to PRAB, reviewed and in revision (See GW10 below). We received a positive review with a request to split it into two parts. Part I is based on Chapters 1-7 and is nearly complete, see A detailed and unified treatment of spin-orbit systems using tools distilled from the theory of bundles:Part I. Part II is based on Chapter 8 and is in progress.
      
  3. K. Heinemann, D. Barber, J.A. Ellison and M. Vogt, A new and unifying approach to spin dynamics and beam polarization in storage rings, encouraged revision resubmitted to NIMA .
      
  4. R.L. Warnock and D. A. Bizzozero, Efficient computation of coherent synchrotron radiation in a rectangular chamber, Phys. Rev. Accel. Beams 19, 090705 (2016).
      
  5. J.A. Ellison, K. Heinemann, and S.R. Lau, Distributional analysis of radiation conditions for the 3+1 wave equation. Submitted for publication.
      
  6. D.A. Bizzozero, J.A. Ellison, K. Heinemann, and S.R. Lau, Rapid Evaluation of Two-Dimensional Retarded Time Integrals, Journal of Computation and Applied Mathematics, 324(2017) 118-141.
      
  7. D. Bizzozero, Studies of coherent synchrotron radiation with the Discontinuous Galerkin Method. Ph.D. Dissertation with distinction, Math and Stat, University of New Mexico, July 2015.
      
  8. B.E. Billinghurst, J.C. Bergstrom, C. Baribeau, T. Batten, L. Dallin, T.E. May, J.M. Vogt, W.A. Wurtz, R. Warnock, D.A. Bizzozero, and S. Kramer Observation of Wakefields and Resonances in Coherent Synchrotron Radiation.Phys. Rev. Lett. 114, 204801, 2015.
      
  9. K. Heinemann, D. Barber, J.A. Ellison and M. Vogt, An informal summary of a new formalism for classifying spin-orbit systems using tools distilled from the theory of bundles. Proc.21st Int. Spin Physics Symposium, Beijing, China, October 2014. On archive at arXiv:1502.00538 [physics.acc-ph].
      
  10. K. Heinemann, D. Barber, J.A. Ellison and M. Vogt, A detailed and unified treatment of spin-orbit systems using tools distilled from the theory of bundles. On the archive at arXiv:1501.02747 [physics.acc-ph].
      
  11. K. Heinemann, D. Barber, J.A. Ellison and M. Vogt, A New and Unifying Approach to Spin Dynamics and Beam Polarization in Storage Rings, on archive at arXiv:1409.4373 [physics.acc-ph] and accessible from math-ph as well. Also published as DESY report 14-163.
      
  12. D.A. Bizzozero, R. Warnock, and J.A. Ellison, Modeling CSR in a Vacuum Chamber by Partial Fourier Analysis and the Discontinuous Galerkin Method, Proceedings of FEL14, Basel, Switzerland, TUP02.
      
  13. K. Heinemann, D. Barber, J.A. Ellison and M. Vogt, New and Unifying Formalism for Study of Particle-Spin Dynamics Using Tools Distilled From Theory of Bundles, Proceedings of IPAC14, Dresden, Germany, THPRO061.
      
  14. J.A. Ellison, K. Heinemann, M. Vogt and M. Gooden, Planar Undulator Motion Excited by a Fixed Traveling Wave: Quasiperiodic Averaging, Normal Forms and the FEL Pendulum, Phys. Rev. ST Accel. Beams 16, 090702 September 2013. An earlier version is on the archive at arXiv:1303.5797 (2013) and published as DESY report 13-061.
      
  15. K. Heinemann, J.A. Ellison and M. Vogt, Quasiperiodic Method of Averaging Applied to Planar Undulator Motion Excited by a Fixed Traveling Wave, Proceedings of FEL13, New York, NY, USA, MOPSO31. Poster.
      
  16. D.A. Bizzozero, J.A. Ellison, K. Heinemann, and S.R Lau, Paraxial Approximation in CSR Modeling Using the Discontinuous Galerkin Method, Proceedings of FEL13, New York, August 2013. Poster.
      
  17. G. Bassi, J.A. Ellison, and K. Heinemann, Comparison of 1D and 2D CSR Models with Application to the Fermi@Elettra First Bunch Compressor System, Proceedings of PAC2011, New York, March 2011.
      
  18. J.A. Ellison, H. Mais, and G. Ripken, Orbital Eigen-Analysis for Electron Storage Rings in "Handbook of Accelerator Physics and Engineering", second edition, edited by A.W. Chao, K.H. Mess, M. Tigner, and F. Zimmermann, 2013.
      
  19. K. Heinemann, D.A. Bizzozero, J.A. Ellison, S.R. Lau, and G. Bassi, Rapid Integration Over history in Self-Consistent 2D CSR Modeling, Proceedings of ICAP2012, Rostock-Warnemunde, Germany, August 2012.
      
  20. K. Heinemann, Two Topics in Particle Accelerator Beams: Vlasov-Maxwell Treatment of Coherent Synchrotron Radiation and Topological Treatment of Spin Polarization, PhD Dissertation with distinction, Department of Mathematics and Statistics, University of New Mexico, May 2010.
      
  21. Presentations at Microbunching Workshops:

    1. G. Bassi, Self-Consistent Monte-Carlo Method to Study CSR Effects from Arbitrary Planar Orbits, Sincrotrone Trieste, September 2007.

    2. G. Bassi, J.A. Ellison, and K. Heinemann, A Vlasov-Maxwell Solver to Study Microbunching Instability in the Fermi@Elettra First Bunch Compressor System, LBNL, October 2008.

    3. R. Warnock and J.A. Ellison, Unrecognized Singularity in the Field of a One-Dimensional Evolving Bunch, LBNL, October 2008.

    4. G. Bassi, Modelling the Microbunching Instability for Bunch Compressor Systems, INFN-LNF, Frascati, March 2010.
      
  22. G. Bassi, J.A. Ellison, K. Heinemann, and R. Warnock, Transformation of Phase Space Densities Under the Coordinate Changes of Accelerator Physics, Phys. Rev. ST Accel. Beams 13, 104403 (2010).
      
  23. G. Bassi, J.A. Ellison, K. Heinemann, and R. Warnock, Microbunching Instability in a Chicane: Two-Dimensional Mean Field Treatment, Phys. Rev. ST Accel. Beams 12, 080704 (2009).
      
  24. ICAP2009 Papers:

    1. GG. Bassi, J.A. Ellison, and K. Heinemann, Self Field of a Sheet Bunch: A Search for Improved Methods, Proceedings of ICAP09, San Francisco, September 2009.

    2. R. Warnock, Y. Cai, and J.A. Ellison, Construction of Large-Period Symplectic Maps By Interpolative Methods, Proceedings of ICAP09, San Francisco, September 2009.
      
  25. S. Di Mitri, et.al., Design and Simulation Challenges for FERMI@Elettra, Nucl. Instr. Meth. Phys. Res. A 608, (2009).
      
  26. EPAC08 Papers:

    1. G. Bassi, J.A. Ellison, and K. Heinemann, A Vlasov-Maxwell Solver to Study Microbunching Instability in the Fermi@Elettra First Bunch Compressor System, Proceedings of EPAC08, Genoa, Italy, June 2008.

    2. R. Warnock, J.A. Ellison, K. Heinemann, and G.Q. Zhang, Meshless Solution of the Vlasov Equation Using a Low-discrepancy Sequence, Proceedings of EPAC08, Genoa, Italy, June 2008.
      
  27. J.A. Ellison, G. Bassi, K. Heinemann, M. Venturini, R. Warnock, Self-Consistent Computation of Electromagnetic Fields and Phase Space Densities for Particles on Curved Planar Orbits, Proceedings of PAC07, Albuquerque, New Mexico, June 2007.
      
  28. G. Bassi, J.A. Ellison, K. Heinemann, and R. Warnock, Self-Consistent Monte Carlo Method to Study CSR Effects in Bunch Compressors, THPAN084 in Proceedings of PAC07, Albuquerque, New Mexico, June 2007.
      
  29. G. Bassi, J.A. Ellison, and K. Heinemann, Equilibrium Fluctuations in an N-Particle Coasting Beam: Schottky Noise Effects, Proceedings of PAC07, Albuquerque, New Mexico, June 2007.
      
  30. J.A. Ellison, K. Heinemann, Polarization Fields and Phase Space Densities in Storage Rings: Stroboscopic Averaging and the Ergodic Theorem , Physica D 234, 131 (2007).
      
  31. J.A. Ellison, A.V. Sobol, and M. Vogt, A New Model for the Collective Beam-Beam Interaction, New Journal of Physics, 9, 32 (2007).
      
  32. A.V. Sobol, A Vlasov Treatment of the 2DF Collective Beam-Beam Interaction: Analytical and Numerical Results, PhD Dissertation with distinction, Department of Mathematics and Statistics, University of New Mexico, July 2006.
      
  33. EPAC06 Papers:

    1. G. Bassi, J.A. Ellison, and K. Heinemann, Self Field of Sheet Bunch: A Search for Improved Methods, Proceedings of EPAC06, Edinburgh, Scotland, June 2006.

    2. G. Bassi, J.A. Ellison, and K. Heinemann, CSR Effects in a Bunch Compressor: Influence of the Transverse Force and Shielding, Proceedings of EPAC06, Edinburgh, Scotland, June 2006.

    3. K. Heinemann, G. Bassi, and J.A. Ellison, Comparison of Three Radiation Powers for Particle Bunches and Line Charges, Proceedings of EPAC06, Edinburgh, Scotland, June 2006.
      
  34. G. Bassi, T. Agoh, M. Dohlus, L. Giannessi, R. Hajima, A. Kabel, T. Limberg, and M. Quattromini, Overview of CSR Codes, Nucl. Instr. Meth. Phys. Res. A 608, (2006).
      
  35. M. Venturini, R. Warnock, R. Ruth, and J.A. Ellison, Coherent Synchrotron Radiation and Bunch Stability in a Compact Storage Ring, Phys. Rev. ST Accel. Beams 8,014202 (2005).
      
  36. R. Warnock, R. Ruth, M. Venturini, and J.A. Ellison, Impedance Description of Coherent Synchrotron Radiation with Account of Bunch Deformation, Phys. Rev. ST Accel. Beams 8, 014402 (2005).
      
  37. D. Barber, J.A. Ellison, and K. Heinemann Quasiperiodic Spin-Orbit Motion and Spin Tunes in Storage Rings, Phys. Rev. ST Accel. Beams 7, 124002 (2004).
      
  38. H.S. Dumas, J.A. Ellison, and M. Vogt, First-Order Averaging Theorems for Maps with Applications to Accelerator Beam Dynamics, SIAM J. Applied Dynamical Systems 3, 409 (2004).
      
  39. R. L. Warnock and J.A. Ellison Equilibrium State of Colliding Electron Beams, Phys. Rev. ST Accel. Beams 6, 104401 (2003).
      
  40. R. Warnock and J.A. Ellison, A General Method for Propagation of the Phase Space Distribution, with Application to the Saw-Tooth Instability, Proceedings of 2nd ICFA Advanced Workshop on Physics of High Brightness Beams, UCLA, Los Angeles, November 1999.
      
Grant Work Seminars

  1. J.A. Ellison,K. Heinemann, and G. Bassi, From Microscopic Klimontovich-Maxwell to Macroscopic Vlasov-Maxwell: Relativistic N-particle electron bunches in modern particle accelerators, N large, Seminar Talk, UNM, October 20, 2014.
      
  2. J.A. Ellison, G. Bassi and K. Heinemann, Microscopic Klimontovich-Maxwell (KM) to Macroscopic Vlasov-Maxwell (VM): Kinetic theory based on the random initial value problem and coarse graining, Seminar Talk, UNM, December 5, 2016.
      
  3. J.A. Ellison, G. Bassi and K. Heinemann, Random N-Particle Klimontovich-Maxwell System: Probabilistic Analysis, Fluctuations from Mean and Ecker Hierarchy, IPAM Beam Dynamics Workshop, UCLA, January 25, 2017.
      
Grant Work Drafts

  1. H.S. Dumas, J.A. Ellison, and K. Heinemann, Averaging for Quasiperiodic Systems with Applications, research completed, draft nearly complete.
      
  2. J.A. Ellison, H. Mais, K. Heinemann, Details of Orbital Eigen-Analysis for Electron Storage Rings Handbook Article, in progress.
      
Grant Work Notes

  1. J.A. Ellison and K. Heinemann, Unpublished Notes on Collective 1D FEL Theory, November 2012.
      
  2. K. Heinemann, Preliminary Note on Yang-Mills, April 2013.
      
  3. K. Heinemann, G. Bassi, and J.A. Ellison, Axiomatic Treatment of Saldin's 1D Model and an Associated 4D Vlasov Equation, September 2011.
      
  4. R. Warnock, D.A. Bizzozero and J.A. Ellison, The Energy Deposited in Resistive Walls from Coherent Synchrotron Radiation, Late 2016.
      
Department of Mathematics and Statistics       University of New Mexico      SMLC 204     Albuquerque     NM     87131