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CHAPTER THREE

Understanding  Host- Multipathogen Systems: 

Modeling the Interaction Between 

Ecol ogy and Epidemiology

Pejman Rohani, Helen J. Wearing, Daniel A. Vasco, and Yunxin Huang

Summary

We present a new mathematical framework  for exploring the 
 ecological and immunological interactions between multiple infectious 
diseases. The mechanism underlying the ecological interaction is the 
modulation of susceptible numbers for one pathogen as a result of quar-
antining or mortality following infection with a competitor. Immuno-
logical interactions are assumed to result from immunosuppression or 
 cross- immunity to co-circulating pathogens, both during and after infec-
tion. This model is briefl y examined to explore the consequences of these 
factors for the coexistence of multiple infectious diseases. We show that 
strong competition among pathogens reduces the region of coexistence, 
while substantial immunosuppression acts to facilitate pathogen commu-
nity per sis tence. The dynamics of this model in the presence of seasonal 
changes in contact rates are presented and compared with historical case 
notifi cation data for measles and whooping cough. We fi nish by high-
lighting how such a mathematical framework may be used to systemati-
cally investigate the role played by alternative competing mechanisms in 
shaping the observed dynamics of multipathogen systems.

Background

Infectious diseases have become an increasingly important and  high-
 profi le public health issue, in large part as a result of the emergence of 
new pathogens (Daszak et al. 2000; Dobson and Foufopoulos 2001; 
Lipsitch et al. 2003), the continued per sis tence and resurgence of older 
infectious diseases (Keeling and Gilligan 2000; Orenstein et al. 2004), 
and concerns over possible deliberate exposure (Halloran et al. 2002). 
Indeed, the World Health Or ga ni za tion’s Global Burden of Disease 
project estimated that in 2000, more than 10 million deaths worldwide 
 were due to infectious and parasitic diseases. Understanding the precise 
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mechanisms underlying disease dynamics, spread, and evolution, there-
fore, has never been of greater importance.

To achieve detailed understanding for a par tic u lar pathogen, epide-
miologists routinely study aspects of the causative etiological agent (be it 
a virus, bacterium, fungus, or protozoan) and typically assume no inter-
action with other pathogens. A good example of such an approach 
would be the study of measles, which some have argued has become the 
C. elegans of  large- scale epidemiological dynamics (Grenfell et al. 2001). 
Many de cades of research, coupled with extensive  long- term data, have 
resulted in a deep understanding of measles epidemiology, with a large 
body of work to explain its observed epidemics (Bartlett 1957; Bjorns-
tad et al. 2002; Bolker and Grenfell 1996; Ellner et al. 1998; Ferguson 
et al. 1996; Rohani et al. 1999; Schenzle 1984; Soper 1929) and explore 
the most effective eradication programs (Earn et al. 1998; Hethcote 
1988; Nokes and Swinton 1997).

These pop u lar approaches to epidemiology may, however, represent 
an oversimplifi cation of disease communities and may be ignoring some 
key interactions. In a nutshell, the understanding obtained from study-
ing (for example) only the measles virus and its interaction with humans 
may paint only part of the true picture. In recent years, these  single-
 host,  single- pathogen approaches have been extended to incorporate 
multiple hosts (see chapter 1, this volume; Dobson 2004; Gog et al. 
2002; Greenman and Hudson 1999) and multiple pathogens (Ferguson 
et al. 2003; Gupta et al. 1998). These studies of “community epidemiol-
ogy” can be broadly categorized according to the scale of interest. At 
the antigenic and cellular scale, studies have typically explored the im-
munological interaction between pathogens as a result of coinfection 
within a host (Garcia- Garcia et al. 2003; Kirschner 1999; May and 
Nowak 1994). An especially exciting area of recent research in this fi eld 
is bacterial interference, a pro cess in which competing autochthonous 
microorganisms block adhesion events and prevent infection by patho-
genic bacteria (Reid et al. 2001). This mechanism, which has also been 
studied in the context of viral infections, is considered by some to have 
greater public health potential than vaccines because it relies on the 
competitive exclusion of pathogens and does not require host immune 
stimulation (Huovinen 2001; Reid et al. 2001; Tano et al. 2002). There 
are, however, obvious concerns surrounding the prophylactic adminis-
tration of live organisms. At the ecological level, shared pathogens have 
been demonstrated to be infl uential in shaping extinction dynamics by 
causing apparent competition between species (Holt 1977; Tomkins 
et al. 2001). The area that has received much attention has been the dy-
namics of pathogens with  well- established antigenic polymorphism, 
such as infl uenza, malaria, adenoviruses, poliovirus, cholera, and dengue 
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(Earn et al. 2002; Ferguson et al. 2003; Gupta et al. 1998; Koelle et al. 
2005; Read and Taylor 2001). In such systems, it is empirically docu-
mented that different strains fl uctuate out of phase with each other. This 
observation is summed up by Bang (1975): “If a signifi cant proportion of 
a population is not immune to a given agent, the presence of that agent as 
an epidemic will tend to suppress the appearance of other agents of a simi-
lar nature with which interference may occur.” He went on to propose 
that epidemiological interference may account for spatial asynchrony in 
outbreaks of adenoviruses (1, 2, and 5) and the temporal asynchrony in 
poliomyelitis (3, 2, and 1) epidemics observed in West Bengal. More re-
cent work in this area has highlighted the signifi cance of  cross- immunity 
between strains that may shape the coexistence, dynamics, and evolution 
of strains (Dietz 1979; Elveback et al. 1968; Gog and Grenfell 2002; 
Kamo and Sasaki 2002; Koelle et al. 2005; White et al. 1998).

Until recently, however, the possibility that epidemics of unrelated 
pathogens might interact has been ignored, despite the suggestion of its 
likelihood in historical epidemiological literature. For example, in his 
classic 1894 book, A History of Epidemics in Britain, the learned medi-
cal historian Charles Creighton commented that “again, the great mea-
sles epidemic of 1808 in Glasgow was indeed followed by many deaths 
from  whooping- cough in 1809. What ever correspondence or relation 
there may be between measles and  whooping- cough, (and it has been re-
marked by many in the ordinary way of experience), it eludes the method 
of statistics.” Creighton clearly envisaged a strong interaction between 
these infectious diseases, though he was unclear on the underlying mech-
anism and had no mathematical framework for its exploration.

One obvious candidate mechanism would be  immunity- mediated in-
teraction. Consider the words of James S. Laing, the resident physician of 
Aberdeen City Hospital, who in 1902 stated, “Most writers assert that 
there is an intimate association between epidemics of measles and epi-
demics of  whooping- cough, and that an epidemic of the former disease 
strongly predisposes to the subsequent development of the latter.” This re-
fl ects the widely recognized fact that after infection with measles, the im-
mune system is suppressed for a period of time, during which an individual 
may be more susceptible to colonization by other (particularly bacterial) 
pathogens. It is interesting to note, however, that after studying the aver-
age time between successive measles and whooping cough epidemics in 
case notifi cation data for Aberdeen (fi gure 3.1), Laing and Hay (1902) 
concluded, “It would thus appear as if  whooping- cough rather paved the 
way for measles than measles for whooping cough”!

In 1998, Rohani and colleagues proposed an additional ecological 
mechanism that may also contribute to  interaction—specifi cally, 
 interference—among unrelated acute infectious diseases. This possible in-
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terference was proposed to arise from the temporary or permanent re-
moval of potential hosts from the susceptible population for one pathogen 
following an acute infection by one of its direct competitors. The primary 
mechanism for this removal is the convalescence period, during which in-
dividuals are in quarantine and hence unavailable to contract “competing” 
pathogens. As documented by Emerson (1937), following measles infec-
tion, children in the major U.S. cities in the 1920s and 1930s  were quaran-
tined for an average of almost ten days, while isolation after an episode of 
whooping cough lasted nearly four weeks. Modern infection management 
practices similarly result in the quarantining of infected children for one 
week after measles infection and two weeks for whooping cough (Nelson 
et al. 2001). In addition to the possible dynamical consequences of en-
forced convalescence, in conditions under which infected individuals may 
suffer death as a result of infection, removal from the susceptible pool can 

Measles
Whooping Cough

1884 1886 1888 1890 1892 1894 1896 1898 1900
0

2

4

6

8

10

12

Year

S
qr

t(
M

on
th

ly
 F

at
al

iti
es

)

1884 1886 1888 1890 1892 1894 1896 1898 1900
0

10

20

30

40

Year

S
qr

t(
M

on
th

ly
 C

as
es

)

Figure 3.1. Long- term patterns in measles (black lines) and whooping cough 
(gray lines) epidemics in Aberdeen from 1883 to 1901 (data from Laing and 
Hay 1902). Panel a shows monthly case notifi cations, while monthly case fatali-
ties are shown in b. The time series for both infections exhibit a strong biennial 
component, with a striking phase difference between measles and whooping 
cough outbreaks.
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become permanent, and the interaction between pathogens is predicted to 
become stronger. Dynamically, this is very similar to the effects of  cross-
 immunity in strain polymorphic systems, whereby individuals previously 
infected with one strain may have partial protection against infection by 
other competing strains (Kamo and Sasaki 2002). The signifi cant predic-
tion of the model of Rohani et al. (1998) was that the epidemics of compet-
ing infections would be temporally segregated, with major outbreaks out 
of phase with each other (as alluded to by Creighton [1894]).

Empirical support for interference effects is provided by case fatality 
data for measles and whooping cough for fi fteen Eu ro pe an cities in the 
 pre- and  post- World War I years (Rohani et al. 2003). In this era, in-
fected individuals  were likely to be as a result of complications following 
infection, typically secondary viral and bacterial lung infections (pneu-
monia). In sixteen cities, the population demographic characteristics 
(notably the per capita birth rates)  were conducive to biennial outbreaks. 
The epidemics of measles and whooping cough  were statistically signifi -
cantly out of phase with each other in fi fteen of these sixteen cities (Ro-
hani et al.  2003)—that is to say, epidemic years for these infections did 
not coincide. This work suggests, therefore, that when disease preva-
lence is very high and is associated with signifi cant mortality, as remains 
the case in many developing nations, it may be impossible to fully un-
derstand epidemic patterns by studying pathogens in isolation.

Although the patterns revealed in these historical data are consistent 
with model prediction of disease interference, there remains a need for 
systematic study of the different possible routes of interaction between 
different infectious diseases (or strains of the same disease) and their 
dynamical consequences. In this chapter, we aim to further develop 
theory on the interaction between infectious diseases. We present a 
novel general model for examining systems with multiple pathogens. 
For illustration purposes, our model analyses are focused on measles 
and whooping cough, but the proposed framework is fl exible and may 
be applied to strain polymorphic as well as to other unrelated diseases. 
The key ingredient of the formalism we develop is the simultaneous in-
clusion of immunologically determined components (immunosuppres-
sion and  cross- immunity) and ecological factors (quarantine and 
 infection- induced mortality).

The  Two- Disease Model

Much of the infl uential epidemiological theory has been based on the 
SEIR (susceptible, exposed, infected, recovered) paradigm (Anderson 
and May 1991; Dietz 1976; Keeling and Rohani 2007). In this frame-
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work, individuals are categorized according to infection status: the 
 infection- naïve are thought of as susceptible, upon infection they be-
come exposed, and once latency is over they are infected and proceed to 
transmit the pathogen. After successfully overcoming the infection, in-
dividuals are considered recovered and immune for life. This picture 
does not take into account the possible infl uence that infection by one 
pathogen may exert on the community of pathogens competing for the 
same hosts. A case in point is childhood infections: children may con-
tract a number of infectious diseaes, such as measles, pertussis, mumps, 
chickenpox, or rubella. Because any child infected with, for example, 
measles is unavailable to contract any other infectious disease for a pe-
riod of time (perhaps up to two weeks), we may wonder what effect an 
outbreak of measles would have on the dynamics of the other candidate 
infections.

An important step in developing an understanding of the dynamical 
interaction between multiple infections has been to develop a novel, 
conceptually simple, mathematical framework that incorporates two 
pathogens. This work follows in the footsteps of a distinguished and sig-
nifi cant body of work dealing with multipathogen interactions, focusing 
on infections such as infl uenza, malaria, or dengue, in which ge ne tic di-
versity is well established (Andreasen et al. 1997; Dietz 1979; Earn et al. 
2002; Ferguson et al. 2003; Gilbert et al. 1998; Gog and Grenfell 2002; 
Gomes et al. 2002; Gupta et al. 1998; Kamo and Sasaki 2002; Taylor 
et al. 1997). In developing the model, we envisage a simplifi ed natural 
history of infection for each disease:

• All newborns are fully susceptible to both infections.

• Upon infection, a susceptible individual enters the exposed 
(infected but not yet infectious) class and has a probability of 
contracting the “competing” disease simultaneously (represented by 
the  cross- immunity pa ram e ter φi, where i = 1, 2).

• After the latent period, the individual becomes infectious but is 
not yet symptomatic and still has a defi ned probability (φi, i = 1, 2) 
of becoming coinfected with the other disease.

• Typically, when symptoms appear, the disease is diagnosed and 
the individual is sent home to convalesce for an average period, 
given by 1/δi (i = 1, 2). During convalescence, the competing infec-
tion may be contracted, with the transmission rate additionally 
modulated by the pa ram e ter ξi (i = 1, 2), which may represent 
quarantine or temporary  cross- immunity (if less than 1) or tempo-
rary immunosuppression (if greater than 1).
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• Depending on the disease, host age, and host condition (typically 
nutritional status), infection may be fatal owing to complications 
(such as pneumonia and encephalitis, in the case of measles and 
pertussis). This is represented by per capita  infection- induced 
mortality probabilities ρi (i = 1, 2).

• Upon complete recovery, the individual is assumed immune to the 
infection (disease 1) and reactivates susceptibility to disease 2, if 
previously not exposed to it. At this stage, we introduce the term χi 
to explore the implications of longlasting immunosuppression 
(χi > 1) or  cross- immunity (χi < 1) for the transmission rate of disease 
j following infection with disease i.

The mathematical repre sen ta tion of these assumptions is presented in the 
appendix to this chapter. The key strength of this framework is its fl exibil-
ity, allowing us to establish unambiguously the dynamical role played by 
each of the features of the model. For example, as demonstrated rigorously 
in the appendix, by removing all  immune- mediated interaction between 
infections (i.e., φi = χi = ξi = 1, i = 1, 2) and ignoring ecological consider-
ations (ρi = 0, i = 1, 2), we can strictly decouple the dynamics of the two 
infections; the model contains two pathogens with entirely in de pen dent 
transmission dynamics. It is also straightforward to extend the model to 
incorporate vector transmission in order to better understand the serotype 
dynamics of dengue, for instance (Wearing and Rohani 2006).

Model Predictions

One intuitively obvious possible consequence of interaction among infec-
tions is reduced abundance. Surprisingly, however, detailed equilibrium 
analyses have demonstrated that disease interference does not manifest it-
self by signifi cantly altering infection prevalence; changes in model pa ram-
e ters such as the convalescence period translate into negligible changes in 
the number of infectives of either infection (Huang and Rohani 2005). 
Perhaps more surprisingly, epidemiological interference exerts little infl u-
ence on the coexistence likelihood of pathogens. Defi ning the basic repro-
ductive ratio of each infection as Rj

0 = βjσj /(σj + μ)(γj + μ) (j = 1, 2), it is 
straightforward to show that coexistence requires Rj

0 > 1 and
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i, j = 1, 2, j ≠ i. The diseases are assumed to have symmetrical values of 
φ, χ, and ξ (details provided in Vasco et al. 2007). In fi gure 3.2, we ex-
plore the conditions for disease coexistence in this model. In the absence 
of  pathogen- induced mortality (ρ1 = ρ2 = 0), the quarantine period alone 
has little effect on the stable  two- disease equilibrium, with the coexis-
tence criterion effectively reducing to R1

0, R
2
0 > 1, since in e qual ity (1) is 

always satisfi ed (assuming no immune effects, χ = 1). It is only after we 
assume a 50% (dash- dotted line) probability of death following infec-
tion that the region of endemic  two- disease coexistence shrinks slightly. 
On the other hand, if we ignore ecological factors (such as quarantining 
and pathogen virulence), immunosuppression resulting from one infec-
tion can facilitate the invasion and per sis tence of the competing disease 
even if the invading infection has R0 less than 1 (dashed line).
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Figure 3.2. The coexistence of two infectious diseases can be affected by immu-
nosuppression and disease interference. In the absence of immunemediated inter-
actions (φi = χi = 1, i = 1, 2), large levels of  disease- induced mortality (50%: 
 dot- dashed line) can cause the region of  two- disease coexistence to shrink some-
what. In contrast, strong levels of permanent immunosuppression (φi = 1, χi = 2, 
ρi = 0, i = 1, 2) can expand the coexistence domain. Model pa ram e ters  were
μ = 0.02, 1

1σ  = 1
2σ  = 8 days, 1

1γ  = 5 days, 1
2γ  = 14 days, ξ = 1, 1

1δ  = 7 days and
1
2δ   = 14 days. (From Vasco et al. 2007.)
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To identify the dynamical consequences of disease interaction, Vasco 
et al. (2007) carried out a systematic comparison of the predicted equi-
librium dynamics of the general  two- disease model (described in the ap-
pendix to this chapter) with the dynamics of each infection in isolation 
(when φ = χ = ξ = 1). Similar to the underlying  single- disease model, in 
the absence of seasonality in the transmission rate, the  two- infection 
system demonstrates damped oscillations for much of the pa ram e ter 
space. It is possible to show, however, that when coinfection probability 
(φ) is very small, relatively large levels of permanent immunosuppression 
(χ) can destabilize the equilibrium (via a Hopf bifurcation), giving rise 
to  large- amplitude cycles. The precise extent of this effect is determined 
by the assumed quarantine periods and birth rate (Vasco et al. 2007). 
High birth rates make destabilization less likely, while increased conva-
lescence periods increase the possibility.

While equilibrium studies of system dynamics are illuminating for 
general multipathogen interactions, an important ingredient for the spe-
cifi c study of childhood infections is seasonal variation in transmission 
rates due to the school calendar. It is well established that such external 
forcing can have dramatic effects on measles dynamics (Dietz 1976), 
with a low amplitude of seasonality generating annual epidemics, while 
greater levels of forcing can produce biennial and  longer- term dynamics 
(Schwartz and Smith 1983). The dynamics of whooping cough, on the 
other hand, are rigidly annual, irrespective of changes in the seasonal 
amplitude (Rohani et al. 2002). When both infections are included in 
the seasonally forced  two- disease model, the epidemics of measles are 
largely unaffected, while the pattern of whooping cough outbreaks 
mimics those of measles exactly (Rohani et al. 1998). The explanation 
for this observation lies in the primary factors that determine an infec-
tion’s R0, namely, the transmission rate (β) and the infectious period ( 1

γ ). 
Therefore, depending on the precise combination of these traits, infections 
respond differentially to seasonal variation in contact rates. In general, 
one of the predictions of the work on  two- disease models is that given 
R1

0 = R2
0, the bifurcation structure of the model is dictated by the infec-

tion with the higher transmission  rate—in this case, measles (Huang 
and Rohani 2005). The most plausible explanation is that at the start of 
the epidemic calendar (early autumn), when there is a substantial infl ux 
of susceptibles in the young school cohort, a higher transmission rate 
permits an infection to get established fi rst, and its pattern of epidemics 
sets the template for the competitor.

Here we extend these previous studies by examining the dynamics of 
the seasonal  two- disease model (see the appendix to this chapter) as the 
coinfection probability (φ) and the strength of immunosuppression (χ) are 
varied. The results of this approach are presented in fi gure 3.3. The main 
(central) panel shows how the measles outbreak period changes as φ and χ 
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are varied. For much of the pa ram e ter space (when φ > 0.4), measles epi-
demics are either annual or biennial. When φ is small and coinfection is 
unlikely, however, changes in immunosuppression levels can give rise to 
bifurcations, with epidemic patterns that have periods ranging from one 
to ten years. Of note, χ is clearly the major determinant of dynamics. This 
fi gure can be useful in examining the combination of ecological and im-
munological traits that gives rise to dynamics consistent with data. As 
shown in fi gure 3.1, measles and whooping cough epidemics in Aberdeen 
 were both biennial and clearly out of phase with one another. The dynam-
ics summarized in fi gure 3.3 show, for example, that when infectious 
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Figure 3.3. The dynamical implications of varying the probability of coinfection 
(φ1 = φ2 = φ) and immunosuppression/cross- immunity (χ1 = χ2 = χ) in a season-
ally forced model. The middle panel shows the period of oscillations (in years) 
observed for disease 1 (measles) as the control pa ram e ters are varied. The color 
coding is explained in the key to the right of the panel. The top and bottom pan-
els represent time series for measles (black lines) and whooping cough (gray 
lines) in the regions of pa ram e ter space marked by crosses. Model pa ram e ters
are μ = 0.02, b1 = 0.25, ξ = 1, 1

1σ  = 1
2σ  = 8 days, 1

1γ  = 5 days, 1
2γ  = 14 days,

1
1δ  = 7 days 1

2δ  = 14 days, b̄1 = 1,250 per year and b̄2 = 446 per year. The dynamics

  were obtained by numerical integration.
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 diseases are strictly in de pen dent (χ = φ = 1), measles epidemics are bien-
nial, whereas whooping cough exhibits annual cycles (bottom right 
panel), in contrast to empirical fi ndings. As the competitive strength of 
the interaction is increased (φ smaller), whooping cough epidemics also 
become biennial, but, of importance, their major outbreaks are out of 
phase with measles epidemics (fi gure 3.3, bottom left panel), as seen in 
fi gure 3.1. In the presence of coinfection (φ = 1), increasing permanent 
immunosuppression leads to annual outbreaks of both infections (fi gure 
3.3, top right panel). This effect is relatively straightforward to explain, 
since contracting one infection essentially “primes” individuals for con-
traction of the other infection, resulting in seasonally driven annual cy-
cles. Strong immunosuppression in conjunction with strong competitive 
effects generates multiennial quasiperiodic dynamics, with negatively cor-
related epidemics.

The  take- home message from this analysis is that the pa ram e ters χ 
and φ both have substantial dynamical consequences, though in subtly 
different ways. The permanent immunosuppression (or  cross- immunity) 
factor χ strongly affects epidemic periods, while the coinfection pa ram e-
ter φ is largely responsible for generating negative correlation between 
the outbreaks of the two infections (Vasco et al. 2007).

When Would Infections Interfere?

Throughout the model formulation and analyses of data, we have placed 
heavy emphasis on the study of measles and whooping cough. Children, 
however, are typically exposed to many more infectious diseases, such as 
mumps, rubella, or chickenpox. Would we expect all of these infections 
to dynamically interact? By extension, ideally, would any modeling work 
need to include all of these infections? We believe the answer to this 
question is likely to be no. Using simple homogeneous models without 
age structure, it has been demonstrated that dynamical interference ef-
fects are most pronounced between infections with a similar basic repro-
ductive ratio (Dietz 1979; Rohani et al. 1998, 2003; Huang and Rohani 
2005). A complete understanding of this issue will, however, need age 
dependence in contact rates to be taken into account. This is because the 
interference concept relies on “competition” for resources (hosts) be-
tween pathogens. For the dynamical effects of this competitive interac-
tion to be noticeable, the pathogens should be infecting largely the same 
cohort of hosts. Hence, the extent of interference effects is likely to be de-
termined by the relative distributions of age at infection. One way of ex-
amining this issue is by studying the mean age at infection, which is 
dictated by the transmission potential of the disease or its basic repro
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ductive ratio, R0. For SIR- type diseases, the mean age at infection (A) is

approximately the life expectancy of the host 1
μ( ) divided by R0 (more 

precisely, A
R

~
( ( ))

1
10μ −  (Anderson and May 1991; Keeling and Rohani 

2007). Table 3.1 shows that, of the potential childhood infections, mea-
sles and whooping cough have very similar mean ages at infection (ap-
proximately four to fi ve years; Anderson and May 1982). Hence, these 
diseases are likely to have been strongly “competing” for children in the 
same age cohorts, while their interaction with the other childhood infec-
tions is likely to have been less intense. This logic suggests that infections 
such as rubella and chickenpox may also be good potential candidates 
for the study of interference. We are currently examining this issue using 
the  two- disease model with  age- specifi c transmission (Huang and Ro-
hani 2006).

Conclusions

Understanding the ecol ogy of infectious diseases has become an in-
creasingly important endeavour. Many of the important and  high- profi le 
 infections, such as infl uenza, malaria, and dengue, have  well- established 

TABLE 3.1
Historical estimates of the mean age at infection for a number of childhood 
diseases in the twentieth century

Disease Time Period Mean Age at Infection (yr) R0

Measles 1944–1979
1912–1928

4.4–5.6
5.3

13.7–18.0
12.5

Whooping cough 1944–1978
1908–1917

4.1–4.9
4.9

14.3–17.1
12.2

Chickenpox 1913–1917
1918–1921

6.7
7.1

9.0
8.5

Mumps 1943
1912–1916

9.9
13.9

7.1
4.3

Rubella 1972 10.5 6.7
1979 11.6 6.0

Poliomyelitis 1960
1955

11.2
11.9

6.2
5.9

Note: Data from Anderson and May (1982).
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antigenic polymorphism. It is generally acknowledged that taking into 
account  immune- mediated interactions among strains is necessary for 
explaining the ecological and evolutionary dynamics of these infections 
(Elveback et al. 1968; Ferguson et al. 2003; Gog and Grenfell 2002; 
Levin et al. 2004). In this chapter, we have reviewed some recent work 
that has proposed an ecological mechanism for possible interaction 
among antigenically distinct infections (Rohani et al. 1998, 2003). Spe-
cifi cally, we have put forward a general mathematical and conceptual 
framework within which issues pertaining to immunological and ecolog-
ical scale interactions may be explored.

Recent work on the epidemiological dynamics of dengue fever pro-
vides an illustration of how this framework may be used in a systematic 
way to investigate alternative competing hypotheses about the mecha-
nisms responsible for observed patterns of disease. Dengue is a  mosquito-
 borne fl avivirus of varying clinical severity that is composed of four 
antigenically distinct but related serotypes.  Long- term surveillance in hy-
perendemic regions suggests that individual dengue serotypes fl uctuate 
out of phase with each other, while aggregated dengue data exhibit pre-
dominantly annual outbreaks together with a less pronounced,  two- to 
 four- year cyclic signature (Cummings et al. 2004; Nisalak et al. 2003). 
Mathematical models of dengue epidemiology have previously been de-
veloped to explain these empirical observations. These models can be 
broadly split into two kinds. The fi rst kind attempts to include as much 
ecological detail as possible, incorporating a complex array of external 
environmental factors (Focks et al. 1995); the second is reductionist and 
focuses on the prevailing immunological hypothesis of  antibody-
 dependent enhancement (ADE), whereby infection with one serotype in-
creases an individual’s susceptibility to 20 (or mortality from) infection 
with another (Ferguson et al. 1999; Kawaguchi et al. 2003). Using the 
mathematical framework laid out in this chapter and extending it to in-
corporate a vector population, we  were able to take an intermediate 
route and explore both ecological and immunological mechanisms in a 
tractable manner (Wearing and Rohani 2006). Our results suggest that 
ADE may not be as important to explain dengue epidemics as is cur-
rently thought. Specifi cally, in the presence of seasonal variation in the 
vector population, the key  immune- mediated interaction that is neces-
sary to explain the observed dynamics of endemic dengue incidence is 
the  well- documented temporary period of  cross- protection. This fi nding 
is important for two reasons. First, if ADE is indeed the primary mecha-
nism generating dengue dynamics, then in our model, this gives rise to 
rapid disease extinction unless the host population size exceeds 107. Sec-
ond, the levels of vaccination required to eradicate serotypes would 
clearly be different, depending on which factors dominate.
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The  near- term research agenda for exploring multipathogen interac-
tion will likely involve a number of key issues. Developing a broad un-
derstanding of the dynamical consequences of different factors is 
obviously important. This will ultimately provide some insights into the 
kinds of patterns that may result from different modes of pathogen in-
teraction. One of the important outstanding issues is when disease dy-
namics infl uence each other. The use of  age- structured, multipathogen 
models is likely to be informative in generating theory concerning the 
necessary ingredients for disease interference or facilitation. Explora-
tion of model dynamics will also permit the establishment of rigorous 
signatures of interaction, with the associated statistical methodologies 
that may be used to interrogate disease data.

An exciting potential area of application of the generalized model we 
have proposed in this chapter is the study of a variety of multistrain 
pathogens whose epidemiological dynamics are intrinsically coupled to 
evolutionary pro cesses (e.g., dengue, cholera, meningitis, poliovirus, 
echoviruses). The next step toward a greater understanding of patho-
gen diversity and dynamics is merging the information contained in 
both epidemiological and ge ne tic data, an approach recently referred to 
as phylodynamics (Grenfell et al. 2004). A cogent statistical problem in 
this area involves the simultaneous estimation of epidemiological and 
ge ne tic pa ram e ters using ecological and ge ne tic time series. Recent ad-
vances in population ge ne tics, in par tic u lar coalescent theory, enable us 
to use sequence information sampled from rapidly evolving pathogens 
over time to infer ecological and ge ne tic pa ram e ters (Drummond et al. 
2002; Emerson et al. 2001; Vasco et al. 2001). For multistrain patho-
gens, selective pressures arising from the host immune system can po-
tentially drive the evolutionary outcome and interact with the stochastic 
forces of mutation, ge ne tic drift, and recombination to determine the 
fi nal set of sampled sequences and infecteds. The precise form of  cross-
 immunity, enhancement, or immunosuppression will determine how 
pathogen populations eventually become structured into different anti-
genic strains and persist or replace each other through time. These con-
siderations imply that incorporating basic evolutionary mechanisms 
into the  two- disease model presented  here will have substantial concep-
tual consequences for our understanding of the population dynamics of 
epidemics.

Finally, the potential public health implications of disease interference 
and facilitation remain largely unexamined. Intuitively, one may expect 
that interference or enhancement between infections may be informative 
in designing successful vaccination programmes. For instance, if substan-
tial interference between two diseases is well established, then this in-
formation can be usefully deployed to derive optimal vaccine pulses. 

U N D E R S T A N D I N G  H O S T - M U L T I P A T H O G E N  S Y S T E M S  61

34276_ch01.indd   6134276_ch01.indd   61 8/17/07   3:56:17 PM8/17/07   3:56:17 PM



-1—
0—

+1—

According to theory, successful vaccination requires the reduction of sus-
ceptible numbers in the population below some critical threshold, N/R0 
(Anderson and May 1991; Kermack and McKendrick 1927; Keeling and 
Rohani 2007). Therefore, violent epidemics of one disease, together with 
the associated reduction in susceptible persons following the quarantining 
of all those infected during the outbreak, can, in theory, be used to time 
immunization pulses so that eradication may occur with fewer units of 
vaccine used than predicted by  single- disease models (P. Rohani, unpub-
lished data). Additionally, we may also expect interference or enhance-
ment effects to be relevant when contemplating vaccination using multiple 
vaccines (such as the  measles- mumps- rubella and the  diphtheria- tetanus-
 pertussis triple vaccines).
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APPENDIX

In this appendix, we describe the mathematical equations used in the 
 two- disease model. The basic approach is similar to  status- based (rather 
than  history- based) models:

 
dS
dt

vN
S
N

S0
1 2

0
0= − + −( )λ λ μ  (3)

 

dE
dt

S
N

E
N

E1
1
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(4)
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 dS
dt

C
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N
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1
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 dS
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where all those susceptible to both infections denoted by S0. The vari-
ables Ei, Ii, and Ci (i = 1, 2) represent those currently exposed, infec-
tious, or convalescing (respectively) after infection with disease i, with 
no previous exposure to any infection. The terms Si (i = 1, 2) represent 
all individuals who are only susceptible to infection j (j ≠ i) following re-
covery from i. For bookkeeping purposes, we let εi and λi/βi represent in-
dividuals latent and infectious with disease i (i = 1, 2). Additionally, S12 
are all those no longer susceptible to either infection and may include 
those who are still exposed or infectious with one or both diseases (i.e. 
also in ε1, ε2, λ1 or λ2). The total population size (N) is the sum of the 
fi rst ten variables only ( ( ))N S S E I C Si i i i i= + + ∑ + + +=0 12 1

2 . The mod-
el’s pa ram e ters are explained in table 3.2.

It is straightforward to demonstrate that diseases 1 and 2 can be eas-
ily decoupled within this framework. Assume there is no  disease- induced 
mortality for either disease (ρ1 = ρ2 = 0) and no  immune- mediated inter-
action (χi = φi = 1, i = 1, 2). Then, if we let Zi = Ei + Ii + Ci + Si + S0, 
i = 1, 2, our equations can be rewritten as:

dS
dt

vN
S
N

S0
1 2

0
0= − + −( )λ λ μ

dZ
dt

vN
Z
N

Z1
2

1
1= − −λ μ

dZ
dt

vN
Z
N

Z2
1

2
2= − −λ μ

TABLE 3.2
Description of model pa ram e ters

Pa ram e ter Epidemiological Description Typical Range

ν Host per capita birth rate 0–1 per year
μ Host per capita death rate 0–1 per year
βi Transmission rate 100–2,000 per year
1/σi Latent period 1–2 weeks
1/γi Infectious period 1–3 weeks
1/δi Quarantine period 1–4 weeks
ρi Probability of  infection- induced mortality 0–1
φi Coinfection probability 0–1
ξi Temporary immunosuppression/ 

 cross- immunity
≥ 0

χi Permanent immunosuppression/
 cross- immunity

≥ 0

ψi Differential  infection- induced mortality 0–1

Note: Subscripts refer to disease i (i = 1, 2).
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dS
dt

Z S
N

Z S
N

S12
2

1 0
1

2 0
12= − + − −λ λ μ

d
dt

Z
N

ε λ σ μ ε1
1

2
1 1= − +( )

d
dt

Z
N

ε λ σ μ ε2
2

1
2 2= − +( )

d
dt
λ β σ ε γ μ λ1

1 1 1 1 1= − +( )

d
dt
λ β σ ε γ μ λ2

2 2 2 2 2= − +( ) .

These equations represent a decoupled system with two dynamically 
distinct infections (Z1, ε2, λ2) and (Z2, ε1, λ1).

Seasonality

Following the classic work of Schenzle (1984), the transmission rate in 
this model is assumed to be high during school terms and low at other 
times. In this manner, the equation describing the transmission rate for 
disease i can be rewritten as follows:

 βi(t) = β̄i(1 + b1Term(t)), (17)

where Term(t) is +1 during school term and −1 at other times. The pa-
ram e ter β̄ i represents the baseline (or mean) transmission rate. We use 
the pa ram e ter b1 to represent the amplitude of seasonality. The his-
torical dates of school terms in En gland and Wales are presented in 
table 3.3.

TABLE 3.3
Timings of the major school holidays when Term = −1 (during all other times 
Term = +1)

Holiday Model Days Calendar Dates

Christmas 356–6 21 December–6 January
Easter 100–115 10–25 April
Summer 200–251 19 July–8 September
Autumn  Half- Term 300–307 27 October–3 November

Note: The autumn  half- term break is included as this is the only short holiday that has 
an identifi able signature in the En gland and Wales data.
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