
Merging datasets, Chapter 10 in book

We often want to merge datasets into one new dataset in order to
combine variables.

We can also take one dataset and split it into new datasets, for example
by conditioning on a variable.

SAS Programming September 18, 2014 1 / 96

Splitting datasets

SAS Programming September 18, 2014 2 / 96

Splitting datasets

Note that the new dataset names must be in the data statement at the
beginning. In this case, the dataset named Other had no observations
output to it, and is created by SAS but is empty. (It is listed in the WORK
directory.) The statement to delete observations that don’t meet the
criteria (either salvage or clean) doesn’t seem to make a difference in
this case.

SAS Programming September 18, 2014 3 / 96

Combining datasets: concatenation

If two data sets have the same variables, they can be concatenated to
create a larger dataset. For example, from geonet.org, if you request one
year of earthquakes, to make the file sizes not too big, it splits it up into
two separate .csv files with exactly the same variables.

If my earthquake files are say, 2010a.csv and 2010b.csv, where the first
goes from January 2010 to June 2010, and the second from July to
December 2010, I can read them in separately and combine them into one
SAS dataset without having to combine my .csv files outside of SAS. To
do this, I can do the following:

SAS Programming September 18, 2014 4 / 96

Combining datasets: concatenation

data quake2010a;

infile "2010a.csv" dsd firstobs=2;

input id eventtype <etc.>;

run;

data quake2010b;

infile "2010b.csv" dsd firstobs=2;

input id eventtype <etc.>;

run;

data quake2010;

set quake2010a quake2010b;

run;

SAS Programming September 18, 2014 5 / 96

Combining datasets: concatenation

It is also easy to concatenate datasets in linux using cat

$ cat 2010a.csv 2010b.csv > 2010.csv

Here you would want to be careful that the 2010b.csv had the header
line removed.

SAS Programming September 18, 2014 6 / 96

Combining datasets: concatenating when variables differ

If you try to concatenate two datasets that have different variables, the
resulting concatenated datasets have all variables contained in both data
sets.

As an example, suppose you have the following datasets:

id name age salary

3387 Wang 29 32000

2445 Jones 45 33000

2432 Gonzalez 32 34000

1179 DeGiorgio 31 45000

1108 Castillo 26 18000

id name startDate insurance

2445 Jones 01/01/2010 BCBS

2432 Gonzalez 01/15/2009 BCBS

1179 Degiorgio 04/22/2006 UNM

1108 Castillo 10/05/2013 none

3387 Wang 08/08/2011 Pres

SAS Programming September 18, 2014 7 / 96

Concatenating data with differing variables

Note that the name variable has different lengths. This produces a warning
in the log file that the name variable
might get truncated; however, SAS does not treat them as distinct variables.

SAS Programming September 18, 2014 8 / 96

Concatenating data with differing variables

Note that startdate is missing for the first 5 observations and has a
period. Insurance is
also missing because it has a space, the missing string for character variables.

SAS Programming September 18, 2014 9 / 96

Merging datasets

What we might want with this data is to have one line per employee with
all of the variables: id, name, age, salary, startdate, and insurance. Note
that the names are not in the same order in the two datasets. Also note
that DeGiorgio is spelled with a capital G in the first but not second
dataset.

To merge the datasets this way, we need to sort the datasets by the
variable we want to use for merging, and use a BY statement to merge
using that variable.

SAS Programming September 18, 2014 10 / 96

Merging datasets

SAS Programming September 18, 2014 11 / 96

Merging datasets

SAS Programming September 18, 2014 12 / 96

Merging datasets

SAS Programming September 18, 2014 13 / 96

Merging datasets

SAS Programming September 18, 2014 14 / 96

Merging datasets

SAS Programming September 18, 2014 15 / 96

Merging datasets: the hard way

SAS Programming September 18, 2014 16 / 96

Merging datasets: the hard way

SAS Programming September 18, 2014 17 / 96

Notes on typos/bugs

1. Some bugs in your SAS code will generate error messages or warnings
in the log. If your output isn’t what you expect, or you get NO
output check the log first.

2. Common problems might be that your filename or path is incorrect, in
which case your SAS dataset might have 0 observations. Also
common is that the variables are read in incorrectly

3. Some bugs in your code do not generate errors in the log, and is good
to know which type of error you have to start off with (for example,
my weird dates)

4. If you are spending more than 50% of your time debugging instead of
analyzing data, then this is frustrating, but normal

SAS Programming September 18, 2014 18 / 96

Notes on typos/bugs

1. To minimize how much time you spend debugging, run your code
VERY often. Try not to write more than one procedure at a time
without running your code to make sure it is doing what you expect.
You can go to your libraries to view spreadsheets of SAS datasets you
create instead of printing everything out, or just print a few
observations to make sure things look ok

2. When doing datastep programming, you might want to run your code
after every few lines

3. When using first. and last. to subset your data, you might want
to see what happens without these lines first to make sure everything
is ok

4. You can use put statements to output what is going on in more detail
to the log to help debug.

SAS Programming September 18, 2014 19 / 96

Merging datasets: an easier (less hard) way

Recall that the first. and last. variables can be created by you instead
of relying on SAS to do it for you, but it is easier to let SAS do it. The
same is true for merging. Merging datasets is a strength for SAS, and you
don’t have to do everything from scratch.

To merge two data sets, use the MERGE statement instead of SET. The
MERGE statement assumes that your datasets are sorted by the variables
used for the MERGE. For the salary/insurance example, the data is sorted
by the id variable.

SAS Programming September 18, 2014 20 / 96

Merging datasets: the MERGE statement

SAS Programming September 18, 2014 21 / 96

Merging datasets: the MERGE statement

The output looks the same as before except that startdate2 hasn’t been
added. Note that the second instance of Degiorgio is used. This is
sensitive to the order in which the merge occurs. If you type merge

insurance salary;, then DeGiorgio will be used instead.

SAS Programming September 18, 2014 22 / 96

Merging datasets by name instead of ID

What happens if we merge by name instead of id?

SAS Programming September 18, 2014 23 / 96

Merging datasets by name instead of ID

This causes a problem. But sometimes we don’t have unique identifiers.
For a name like DeGiorgio, several variants might be common:
DeGiorgio

Degiorgio

De Giorgio

de Giorgio

What can be done?

Solution. String functions to the rescue!

SAS Programming September 18, 2014 24 / 96

Merging datasets by name instead of ID

For the DeGiorgio example, the problem in the original data can be
solved if we ignore case. We might also have to ignore spaces for the third
and fourth variants of the name.

To ignore case, the easiest thing to do is to convert the name to all
uppercase or all lowercase using the functions UPCASE or LOWCASE.
Here will try LOWCASE.

SAS Programming September 18, 2014 25 / 96

Merging datasets by name instead of ID

SAS Programming September 18, 2014 26 / 96

Merging datasets by name instead of ID

Here we sorted by lowName rather than name.

SAS Programming September 18, 2014 27 / 96

Merging datasets by name instead of ID

SAS Programming September 18, 2014 28 / 96

Merging datasets by name instead of ID: keeping a subset
of variables

Note that you could drop the variable lowName in the same datastep as
you used for merging, so that one of the formatted names (with
capitalization) appears, even though it was merged based on the lower
case version of the string. This is done by putting
drop lowName

at the end of the datastep. Often when merging, you only want a subset
of the variables available. You can also use a KEEP statement (instead of
DROP) to list the variables you want to KEEP. You can list multiple
variables to DROP or KEEP, depending on whichever is more convenient.

SAS Programming September 18, 2014 29 / 96

Merging datasets by name instead of ID

SAS Programming September 18, 2014 30 / 96

Merging datasets by name instead of ID

What if we also had names such as De Giorgio or de Giorgio?

To get rid of spaces, we can use the COMPRESS function. Here, we can
do something like this name2 = compress(lowcase(name)," ") where
I’ve used a single space between the quotes.

SAS Programming September 18, 2014 31 / 96

Merging datasets by name instead of ID

SAS Programming September 18, 2014 32 / 96

Merging datasets by name instead of ID

The merge was done based on lower case names with no spaces.

SAS Programming September 18, 2014 33 / 96

The COMPRESS function

The COMPRESS function is incredibly useful. In addition to removing
spaces, you can remove other unwanted characters. For example, for the
weird time format in the New Zealand data, you could type something like

date2 = compress(date1,"Z");

to get rid of the Z at the end. If you had strings representing dollar
amounts, such as US$1000 and GBP$500, you could remove all (upper
case) alphabetic characters using

money2 = compress(money,"ABCDEFGHIJKLMNOPQRSTUVWXYZ$");

SAS Programming September 18, 2014 34 / 96

Removing characters to make formatting compatible

Suppose you want to merge two datasets by phone number but the phone
numbers are stored differently in the two datasets. The first dataset has
data like this

phone city carrier

505-333-0904 Albuquerque Verizon

505-325-0999 Albuquerque T-Mobile

The second like this

phone name

5053330904 Tarzan

5053240999 Jane

A further complication is that the second dataset might store phone
numbers as numeric, whereas the first is character. A way of dealing with
this is to remove hyphens from the first dataset and convert to numeric.

phone2 = input(compress(phone,"-"),10.);
SAS Programming September 18, 2014 35 / 96

The COMPRESS function

The COMPRESS function removes any of the characters matching the
list. You can also have a modifier as a third argument to the function. For
example

newvar = compress(oldvar, ,"d")

Removes all digits from the string. This can be handy when you have
essentially numeric data, but someone has put in notes like unknown for
missing values instead of a standard value.

There are many modifiers available for the COMPRESS function:

SAS Programming September 18, 2014 36 / 96

The COMPRESS function (search online for complete
modifiers)

a adds alphabetic characters to the list of characters.

c adds control characters to the list of characters.

d adds digits to the list of characters.

f adds the underscore character and English letters to the list of characters.

g adds graphic characters to the list of characters.

h adds a horizontal tab to the list of characters.

i ignores the case of the characters to be kept or removed.

k keeps the characters in the list instead of removing them.

l adds lowercase letters to the list of characters.

n adds digits, the underscore character, and English letters to the list of characters.

o processes the second and third arguments once rather than every time the COMPRESS function is called. Using the O

modifier in the DATA step (excluding WHERE clauses), or in the SQL procedure, can make COMPRESS run much

faster when you call it in a loop where the second and third arguments do not change.

p adds punctuation marks to the list of characters.

s adds space characters (blank, horizontal tab, vertical tab, carriage return, line feed, and form feed) to the list of

characters.

t trims trailing blanks from the first and second arguments.

u adds uppercase letters to the list of characters.

w adds printable characters to the list of characters.

x adds hexadecimal characters to the list of characters.

SAS Programming September 18, 2014 37 / 96

Merging by two variables

Sometimes a variable you’d like to merge by is not really unique, or you
are not sure if it is unique. This is sort of the opposite of the DeGiorgio

problem. In that case, the same person could have multiple spellings of
their name. It is also possible of course, for multiple people to have the
exact same name, which can cause errors when merging.

In my case, I am James Degnan IV (the fourth), with my father and
grandfather (now deceased) having the exact same name, including middle
name, and none of using suffixes like III, IV, etc. or jr. (junior). As I result
I have sometimes gotten my father’s mail (who also lives in Albuquerque),
although I never received my grandfather’s mail (who lived in
Pennsylvania).

SAS Programming September 18, 2014 38 / 96

Merging by two variables

Sorting by two variables, such as name and address can help with these
problems by making the combination of variables more likely to be unique
(note that address might not be unique with multiple people at the same
address). Adding more variables or being more exact about the merging
variable makes it less likely that you will mix up two people, but runs the
risk that you will think the same person is two separate people, such as a
person who has changed their address.

It is easy to see how these problems can lead to getting on the wrong
mailing list or getting duplicate mailings sent to the same address.

Moral: Mergining can’t always be done perfectly.

SAS Programming September 18, 2014 39 / 96

Merging with the IN= option

If you want your merged dataset to only have observations that are
common to both incoming datasets, you can use the (IN=) option when
you merge. This is similar to the first. and last. variables in that it
creates a temporary variable that is not saved with your dataset, but you
can use it to subset your data based on the observations that are in one or
the other (or both) datasets.

SAS Programming September 18, 2014 40 / 96

Merging with the IN= option

SAS Programming September 18, 2014 41 / 96

Merging with the IN= option: double majors

The log file. Note that first. and last. were also created.

SAS Programming September 18, 2014 42 / 96

Merging with the IN= option: double majors

The output has only those students who were in both the math and
physics datasets.

SAS Programming September 18, 2014 43 / 96

Merging with the IN= option: only math majors

Suppose you want all math majors and an indicator of whether or not they
are majoring in physics as well? But you don’t want a list of physics
majors not double majoring in math?

SAS Programming September 18, 2014 44 / 96

Merging with the IN= option: only math majors

SAS Programming September 18, 2014 45 / 96

Merging and renaming variables

Sometimes you want to merge SAS datasets by a certain variable that has
slightly different names. For example, ID and StudentID. Possible
solutions are: (1) either create a new variable such as ID=studentID in a
previous dataset, (2) change the code for how the variable was read in
initially (might not be desirable if it will screw up other procedures you’ve
already written), and (3), use the RENAME option a previous dataset.
This is done by something like this

data ToBeMergedLater;

set originalData(rename=(StudentID=ID));

run;

SAS Programming September 18, 2014 46 / 96

One-to-one Merging

It is also possible to merge without using a BY statement if you have two
datasets that are the same length. This could be useful if, for example, you
have data for a matched pairs t-test but the two datasets are in different
files, and you want to combine them. This could happen, for example, if
the data were generated at different time points for the same subject.

This type of merging only works if observations are ordered in exactly the
same way in the two files. If there is a subject ID or any other variable in
common that uniquely identifies each observation, you can merge by that
variable instead of assuming that the data are in the right order. If you
don’t have an ID in each dataset, you can still merge them.

SAS Programming September 18, 2014 47 / 96

One-to-one merging

SAS Programming September 18, 2014 48 / 96

One-to-one merging

SAS Programming September 18, 2014 49 / 96

One-to-one merging

SAS Programming September 18, 2014 50 / 96

One-to-one merging

SAS Programming September 18, 2014 51 / 96

One-to-one merging

One-to-one merging is a bit like adding a new column to a dataset, similar
to cbind() in R, which allows you to attach columns to a dataframe
assuming that the dimensions match.

SAS Programming September 18, 2014 52 / 96

One-to-many merging

You might have one file with one observation per subject and another file
with many observations per subject. This situation is fine for merging.

SAS Programming September 18, 2014 53 / 96

One-to-many merging

SAS Programming September 18, 2014 54 / 96

One-to-many merging

SAS Programming September 18, 2014 55 / 96

Many-to-many merging

If you have multiple observations per BY variable in each data set, SAS
won’t generate an error, but might give unpredictable results. It is usually
best to make at least on dataset have one observation per BY variable
before merging with a BY statement.

SAS Programming September 18, 2014 56 / 96

Many-to-many merging

SAS Programming September 18, 2014 57 / 96

Many-to-many merging

SAS Programming September 18, 2014 58 / 96

Many-to-many merging

In this case the output might or might not be reasonable, depending on
what you want. If a student is taking, say 2 math courses and 1 physics
course, it just lists the physics course twice. If the student is taking 2
math courses and 3 physics courses (might be a hard semester...), then
the second math course gets listed twice.

SAS Programming September 18, 2014 59 / 96

Fuzzy merging

It is also possible to do fuzzy merging, but this is a fairly complicated issue.

The idea with fuzzy merging is that you consider two observations from
different data sets to match if they are close enough, within some
tolerance.

An example where this might be useful is for earthquake data, where you
have a timestamp on seismic events from different field station. The NZ
data is recorded to the nearest 100th of a second. But different field
stations that are say, 100km apart will have slightly different times at
which the earthquakes are recorded. For example, an earthquake in
between the stations might be 10km from one station and 90km from the
other. Or the clocks (or computers) at the different stations might be
calibrated a little differently.

It still might be reasonable to infer that two observations with reasonably
close time stamps are considered the same event.

SAS Programming September 18, 2014 60 / 96

Fuzzy merging

I don’t have an empirical example of fuzzy merging.

The NZ data is already largely cleaned, although revisions for earthquake
data are often necessary. We don’t have the “raw” data. As statisticians,
we often pretend that we are analyzing raw data, but this is often not the
case. For the NZ data, the location of the earthquake might have already
been inferred from comparing seismic data from different stations (one
website listed 34 stations with different designs and depths), and there is
therefore some measurement error in the data. Probably some sort of
fuzzy merging has already taken place before we got the data in the
relatively clean version we got from the web.

Nevertheless, to illustrate fuzzy merging, we’ll some example data.

SAS Programming September 18, 2014 61 / 96

Fuzzy merge example

File 1:

ID day hour magnitude

1001 2010-05-31 23:16:23.130 3.48

1002 2010-05-31 22:45:29.809 2.65

1003 2010-05-31 22:44:56.291 2.11

1004 2010-05-31 22:38:28.000 2.44

File 2:

ID day hour magnitude

2001 2010-05-31 23:16:54.224 2.15

2002 2010-05-31 22:55:29.912 1.35

2003 2010-05-31 22:44:16.012 2.02

2004 2010-05-31 22:36:28.000 2.77

SAS Programming September 18, 2014 62 / 96

Fuzzy merge example

Fuzzy merges aren’t built into SAS, so instead we’ll concatenate the data,
then sort by time. This will create interleaved data which should roughly
alternative between the two datasets. Seismic events that recorded at both
stations should be next to each other in the sorted data.

SAS Programming September 18, 2014 63 / 96

Fuzzy merging example

SAS Programming September 18, 2014 64 / 96

Fuzzy merging example

SAS Programming September 18, 2014 65 / 96

Fuzzy merging example

SAS Programming September 18, 2014 66 / 96

Fuzzy merging example

SAS Programming September 18, 2014 67 / 96

Fuzzy merging example

SAS Programming September 18, 2014 68 / 96

Fuzzy merging example

To create an ID for each event, I used the concatenation operator ||,
which concatenates two strings. I also wanted to remove spaces from the
concatenated string.

SAS Programming September 18, 2014 69 / 96

Fuzzy merging example

SAS Programming September 18, 2014 70 / 96

Fuzzy merging example

Finally, to create one record per event, I subset those events that don’t
have the value “repeat” for newid.

proc print data=fuzz1;

where newid ne "repeat";

run;

Note that special handling might be required if you have three or more
observations within a 60 second window, or say three earthquakes that are
45 seconds apart each. In this case you could make an arbitrary decision,
such as if quake 1 and quake 2 are “the same” and quake 2 and quake 3
are “the same”, then you arbitrarily call the first two quakes the same, and
treat quake 3 as a separate event.

Other criteria could also be used to decide whether two quakes were the
same event, such as their magnitudes being reasonably similar.

SAS Programming September 18, 2014 71 / 96

Fuzzy merging example

SAS Programming September 18, 2014 72 / 96

Phonetic merging

Phonetic merging is also possible. In this case, you might want to merge
one record against a long list of possible records and find the match.
To do a phonetic merge you can follow certain rules (which we won’t
entirely enumerate) to convert a string into a phonetic approximation to
the string in both files, then merge on the phonetic approximations.
This can be done ”on the fly” in real-time applications such as phone
voice-recognition systems where you say your name and phone number
and the computer tries to pull up the record of who you are. Here it can
match a phonetic version of the name you gave against a phonetic version
of your name its records. Example of rules for converting a word to a
phonetic equivalent are

1. Keep the first letter
2. Remove all vowels (A, E, I, O, U, Y) after the first letter.
3. Remove the letters W and H, after the first letter.
4. Convert the letters B, F, P, and V to 1.
5. etc.

SAS Programming September 18, 2014 73 / 96

Probabilistic merging

Sometimes this is called Probabilistic Record Linkage. The idea is that for
each pair of values for a variable (such as name), a similarity score is
computed and decisions to match or not are based on the similarity score.

Typically, you might want to clean the data first, by doing things like
removing blanks in names, so that De Giorgio becomes DeGiorgio,
removing capitalization, and standardizing address information (Street,
ST., and ST should all be the same). If one address says AVE and another
says ST, you might penalize this matching only partially.

SAS Programming September 18, 2014 74 / 96

Probabilistic merging

Instead of phonetic matching, you can also compute distances between
words so that mispelled words have a small distance to the correct
spelling. You might want to have a small distance between say, DEGNAN
and DEGMAN, or DEGNAN and DENGAN, even though they might not
match phonetically.
There are different metrics for distances between words, but a common
one is the Levenshtein distance, which determines the number of edits
needed to modify one string to produce another string.
Similarity scores for every combination of two records can be computed
using PROC SQL in SAS, but we won’t explore this further.

SAS Programming September 18, 2014 75 / 96

More on string functions: concatenation

Earlier I used the concatenation operator || to combine two strings. This
was used to create a new variable that contained information about two
other variables.
There are many other uses of the concatenation operator. Some examples
include

1. Combining month, day, and year to produce a date string

2. Combining First Name and Last Name to produce a single string with
both names

3. Combining area codes and local phone numbers to produce phone
numbers with area codes (note that you might need to get an area
code by merging with a file that has area codes with zip codes and
another file with addresses)

4. Making an identifier unique by combining it with other information,
such as subjectID with visitNumber

SAS Programming September 18, 2014 76 / 96

Other string functions

We’ve encountered a few string functions so far. Here is a list of some of
the more common string functions:

1. UPCASE/LOW CASE
2. LENGTH
3. COMPRESS (remove individual characters such as spaces, specified

letters, digits, or punctuation)
4. COMPL (similar to COMPRESS, but converts multiple spaces into

one space instead of removing all spaces)
5. The concatenation operator ||
6. Concatenation functions, CAT, CATS, CATX, CATT (different ways

of dealing with blank space)
7. FIND (finds a string within a string and returns the position where

the string occurs)
8. FINDW (finds a word within a string)
9. ANYDIGIT, ANYNUM, ANYPUNCT, ANYSPACE (determines

starting location of first type of character)
SAS Programming September 18, 2014 77 / 96

Other string functions

1. NOTDIGIT, NOTNUM, etc. (determines starting location of first
non-digit, etc.)

2. VERIFY (determines the first nonvalid character from user-defined
list)

3. SUBSTR (extract a substring of a string)

4. SCAN (extract the nth word of a string)

5. SPEDIS (spelling distance between words)

6. TRANSLATE (substitute one character for another)

7. TRANWRD (substitute one word for another—e.g. ”ST” for
”STREET”)

8. TRIM (remove trailing blanks from a word)

9. REVERSE (reverses a word character by character–useful for
determining the last characters in a string)

SAS Programming September 18, 2014 78 / 96

Concatenation

Instead of using the concatenation operator, you can use the CAT function
and it’s variants. Here are some examples:

data _null_;

length a b c $ 8;

a = ’some’; b = ’ text’; n = 123.456; c = ’together’;

cat = cat(a, b, n, c);

catt = catt(a, b, n, c);

cats = cats(a, b, n, c);

catx = catx(’,’, a, b, n, c);

put +1 cop= / +1 cat= / catt= / cats= /catx=; run;

Output:(from log)

cop=sometext123.456together

cat=some text 123.456together

catt=some text123.456together

cats=sometext123.456together

catx=some,text,123.456,together
SAS Programming September 18, 2014 79 / 96

Other string functions

Often string functions get combined, and we’ll illustrate some examples.
Suppose you have one variable for area code and another variable for the
local phone number. You might have data like this

areaCode local

505 255-6560

619 310-3481

You wish to produce a list of phone numbers that look like (505)
255-6560. How can you do this? Try the following

data phone;

infile "phoneNumbers.txt" firstobs=2;

input areaCode $ local $;

newNumber = compress("(" || areaCode || ")"," ") || " " || local;

run;

SAS Programming September 18, 2014 80 / 96

Compress with concatenation operator

Note that the concatenation operator behaves similarly to the paste

function in R. Here is the output from the previous code

area

Obs Code local newNumber

1 505 255-6560 (505) 255-6560

2 619 310-3481 (619) 310-3481

SAS Programming September 18, 2014 81 / 96

Phone number merging

Suppose you want to merge two files by phone number, but they are in
different formats:
File 1:

(505) 255-6560

(619) 310-3481

File 2

505-255-6560

619-310-3481

SAS Programming September 18, 2014 82 / 96

Phone number merging

How do you deal with the different formats?
Easiest thing to do might be to remove non-numeric characters, including
spaces, from the strings from both data sets, and then compare the
10-digit strings.

phone <- compress(phone,"()- ");

This should work for both types of phone numbers.

SAS Programming September 18, 2014 83 / 96

The FIND function

The FIND function allows you to search for a string within a longer string.
Suppose you have a list of music files where some are .mp3 and some are
.m4a (a newer file type). You want to create two datasets, one with a list
of .mp3 files, and one with a list of .m4a files. Your data might look like
this

Among The Living/01 Among The Living.mp3

Among The Living/02 Caught In A Mosh.mp3

Among The Living/03 I Am The Law.mp3

Among The Living/04 Efilnikufesin (N.F.L.).mp3

Among The Living/05 A Skeleton In The Closet.mp3

Among The Living/06 Indians.mp3

Among The Living/07 One World.mp3

Among The Living/08 A.D.I._Horror Of It All.mp3

Among The Living/09 Imitation Of Life.mp3

Persistence Of Time/01 Time.m4a

Persistence Of Time/02 Blood.m4a

Persistence Of Time/03 Keep It In The Family.m4a

Persistence Of Time/04 In My World.m4a

Persistence Of Time/05 Gridlock.m4a

Persistence Of Time/06 Intro To Reality.m4a

Persistence Of Time/07 Belly Of The Beast.m4a

Persistence Of Time/08 Got The Time.m4a

Persistence Of Time/09 H8 Red.m4a

Persistence Of Time/10 One Man Stands.m4a

Persistence Of Time/11 Discharge.m4a

SAS Programming September 18, 2014 84 / 96

The FIND function

To read in data like this, I might assume that every file name is some
maximum length, say 1000 characters. In this case, the name of the album
is a directory, and the name of the file follows a slash, so I might read in
the data using the forward slash as a delimiter.

data files;

infile "songs.txt" dlm="/";

input album :$1000. song :$1000.;

run;

data mp3 mp4;

set files;

if find(song,".mp3") then output mp3;

else if find(song,".m4a") then output m4a;

run;

How would you determine the number of albums (instead of songs) that
were saved using .m4a?

SAS Programming September 18, 2014 85 / 96

Using FINDW instead

The FINDW function finds a word in the string, and you can choose your
own delimiter. Note that if I used periods as a delimiter when I first read
in the data to separate mp3 and m4a as a separate word, this wouldn’t have
worked, because some of the song titles have periods in them. However, I
can specify a delimiter within the FINDW function, so I could have used

if findw(song,"mp3",".") then output mp3

instead.

SAS Programming September 18, 2014 86 / 96

The SCAN function

In the previous example, I might have known that there were only two file
formats for my data, .mp3 and .m4a. Suppose I don’t know how many file
formats, and I want to make a list of all file formats used and their
frequencies. How could I do this with just a list of files names?

If I don’t know the names of all the file extensions, I could try to look for
the last few characters in the file extension. I don’t want to assume that
all file extensions have 3 characters, since occassionally you get things like
.jpeg instead of .jpg. Instead, I’ll think of the file extension as the last
“word” in the character string. I’m not aware of a way of extracting the
last word directly, so we’ll reverse the string, then get the first word, then
reverse the first word again.

SAS Programming September 18, 2014 87 / 96

The SCAN function

The following code could go at the end of the original data step. The
COMPRESS function here wasn’t necessary, but the output does funny
things with the spacing without it.

data files;

infile "songs.txt" dlm="/";

input album :$1000. song :$1000.;

extension = reverse(song);

extension = scan(extension,1,".");

extension = compress(reverse(extension)," ");

run;

proc freq data=files;

tables extension;

run;

SAS Programming September 18, 2014 88 / 96

More phone number questions

The middle three numbers, e.g., 255 in 505-255-6560, should determine
whether a phone number is associated with a cell phone or not. Suppose
you have phone numbers in this format. How can get the middle three
numbers?

An easy way is to think of the three blocks of numbers as words delimited
by hyphens, so you can use

middle = findw(phone,2,"-");

SAS Programming September 18, 2014 89 / 96

More phone number questions

Again suppose I want the middle three numbers, but the phone number
looks like (505) 255-6560. Now what to do? You could first replace the
hyphen with a space (or the space with a hyphen), and then get the
second word. For example

middle = findw(translate(phone,"-"," "),2,"-");

If you know that the string starts at certain position, say the 5th character
and ends at the 7th, you could use the SUBSTR function instead:

middle = substr(phone,5,7);

SAS Programming September 18, 2014 90 / 96

Phylogenetic trees

Phylogenetic trees are often represented in Newick format, which looks like
this
((A:0.01342,B:0.040330):0.502001,C:0.551032);

A second tree might be quite similar but with different numeric values:
((A:0.02145,B:0.05231):0.41205,C:0.46139);

Whereas a third tree might show a different relationship:
((A:0.02145,C:0.05231):0.41205,B:0.46139);

To compare if two trees have the same relationships but ignoring the
branch length information (the quantitative values), we want to get rid of
numeric values, to get the strings ((A,B),C), ((A,B),C), and
((A,C),B). This is most easily done by

tree = compress(tree,":.;","d"); which removes digits from the
tree strings as well as the colon and period symbols.

SAS Programming September 18, 2014 91 / 96

The VERIFY function

The VERIFY function is useful for checking that values are legitimate. For
example when using a Likert scale (1=Strongly Agree, 2=Agree, ...,
5=Strongly Disagree), the only legitimate values are 1, 2, 3, 4, 5, and
probably missing. Answers like 0, 6, or A, are invalid, and should either be
coded as invalid or set to missing. Another example might be multiple
choice tests where the possible responses are A, B, C, or D, or a yes/no
question that only allows two answers.

Another example might be DNA sequences. A DNA sequence is a string of
characters usually from A, C, G, T; however, there are also special
missing value codes such as Y when it is known that the character should
be C or T, but it is not certain which, and ?, when it is completely unknown
what the character should be. Scanning the sequence to make sure only
allowable letters are used could be done with the VERIFY function.

SAS Programming September 18, 2014 92 / 96

String functions and the Wikipedia data

If you are having trouble reading in the Wikipedia data, there are some
things you can do:
(1) If you are having trouble with reading in missing values, you can
convert them by hand in the original data to periods for the variables you
need (a lot of the missing values are for variables we aren’t using). When I
tried, SAS correctly converted N/A to .

(2) Be sure to use the comma9. informat to read in values of numeric
values that have commas. Quite a few of the variables need to have this
because they have counts over 1000.
(3) Also make sure you are letting your strings be long enough to not cut
off names of cities or states (e.g., New Mexico is more than 8 characters).
(4) Make sure you are using Tab delimited for the delimiter (see notes
from week 1 or 2, or look online or in the book for dealing with this).
(5) If you were really desperate with horrible data (but you shouldn’t need
to for Wikipdia), you could read in the data one line at a time as a single
character variable, then parse the line using string functions. For example,
you could remove commas from all variables, then replace tabs with
spaces, then replaces multiple spaces with single spaces.

SAS Programming September 18, 2014 93 / 96

Desperate use of string functions: crime data

I don’t recommend the following approach for the Wikipedia data, but this
sort of approach can be useful if you have highly unstructured data that
isn’t organized consistently into columns by delimiters, or has lots of
comments and other stuff in it. The approach is based on a linux text file,
and might require a different newline character for Windows.

SAS Programming September 18, 2014 94 / 96

Desperate use of string functions

SAS Programming September 18, 2014 95 / 96

