
Chapter 6: MANOVA

Multivariate analysis of variance (MANOVA) generalizes ANOVA to allow
multivariate responses.

We’ll start by reviewing ANOVA (the balanced case), particularly to
develop the notation consistent with the MANOVA presentation.
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ANOVA review

In balanced one-way ANOVA, there are k samples one from each of k
different populations, each with n observations. The populations being
sampled might be individuals subjected to different treatments in a
medical experiment, crops being given different fertlizer/watering regimes.
If it is not an experiment, the different populations might represent
different groups, such as different varieties of a crop, or different
ethnicities/nationalities for people.

Values from observations within a particular group are denoted by yij ,
where i = 1, . . . , k denotes the sample and j = 1, . . . n denotes the
observation within the sample.
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ANOVA review
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ANOVA review

The ith group has mean

y i . =
1

n

n∑
j=1

yyij

and total

yi . =
n∑

j=1

yyij

The ANOVA model is that each observation is due to an overall mean, a
treatment (or population) mean, and an unobserved error term

yij = µ+ αi + εij = µi + εij

where i = 1, . . . , k and j = 1, . . . , n.
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ANOVA review

The null hypothesis is H0 : µ1 = · · · = µk , and the alternative is
H1 : µi 6= µj for some i 6= j . (alternatively we could express this interms of
αi s instead of µi s). The model assumes that all populations have the
same variance σ2. Assuming this, we wish to test whether the means differ
for the different populations.

The basic idea of ANOVA is that if the null hypothesis is true, then the
common variance σ2 can be estimated either by averaging the variances of
the separate samples, or by using the sample standard deviation of the
sample means.
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ANOVA review

The pooled standard deviation is

s2
e =

1

k

k∑
i=1

s2
i =

1

k(n − 1)

k∑
i=1

n∑
j=1

(yij − y i )
2

The sample standard deviation of the sample means is

s2
y =

1

k − 1

k∑
i=1

(y i . − y ..)
2

where y .. is the mean of the observations over both groups (samples) and
observations. You can also think of it as the mean of the sample means

y .. =
1

nk

k∑
i=1

n∑
j=1

yij =
1

k

k∑
i=1

y i .
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ANOVA review

Under the null hypothesis and model assumptions, both sample variances
are related to σ2:

E (s2
e ) = σ2; E (ns2

y ) = σ2

If the null hypothesis is false (but all populations have the same variance),
then it is still the case that E (s2

e ) = σ2. However, the variability of ns2
y is

higher because there is variability due to both the sample means and the
variability of the population means themselves. In this case

E (ns2
y ) = σ2 +

n

k − 1

k∑
i=1

αi
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ANOVA review

The ratio of ns2
y and s2

e has an F distribution under the hypothesis. It is

partly feasible to work out the distribution because ns2
y and s2

e are
independent random variables (under H0). This is a consequence of y and
s2 being independent for samples from a normal distribution and from the
assumption that each of the k samples is independent. The numerator and
denominator are therefore each related to χ2 random variables, and the
ratio of χ2 random variables is related to the F distribution.
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ANOVA review

F =
ns2

y

s2
e

=
SSH/(k − 1)

SSE/(k(n − 1))
=

MSH

MSE

has an Fk−1,k(n−1) distribution. Note that the expected value of the
numerator divided by the expected value of the denominator is equal to 1;
however the expected value of a ratio is typically not the ratio of the
expected values, and we have

E (Fk−1,k(n−1)) =
k(n − 1)

k(n − 1)− 2
=

n − k

n − k − 2

This is close to 1 for large nk when n is much larger than k . Note that the
expected value of an F random variable only depends on the denominator
degrees of freedom.
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ANOVA review

Hypothesis testing is done as a one-sided test, only rejecting H0 for
sufficiently large F . The F distribution is skewed to the right, and the
p-value is the area under the curve to the right of the observed F value.
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MANOVA

For the MANOVA set up, we have observation vectors yij from sample
i = 1, . . . k , with j = 1, . . . , n indexing the observation. Each observation
vector yij is a p-dimensional multivariate normal vector with mean vector
µi and common covariance matrix Σ. The set up can be written in a way
analgous to balanced one-way ANOVA with individual observations
replaced with observation vectors.
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MANOVA
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MANOVA

The model can be written as

yij = µ+αi + εij = µi + εij

where we assume
yij ∼ Np(µi ,Σ)
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MANOVA

For r = 1, . . . , p, we can also write the model as
yij1
yij2

...
yijr

 =


µi1
µi2

...
µir

+


εij1
εij2

...
εijr


so that for each variable r = 1, . . . , p, the model is

yijr = µir + εijr

The null and alternative hypotheses are

H0 : µ1 = · · · = µk , H1 : µi 6= µj for at least one pair i 6= j

i.e., that each population has the same mean vector and that that at least
two populations have different mean vectors, or that at least two
populations have at least one variable with different means.
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MANOVA

The null hypothesis can be written also as p sets of k − 1 equalities:

µ11 = µ21 = · · · = µk1

µ12 = µ22 = · · · = µk2

... =
... = =

...

µ1p = µ1p = · · · = µkp

This is a total of p(k − 1) equalities, and any one of these failing is
sufficient to make H0 false.
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MANOVA

Analogous to the SSH (Sums of squares hypothesis) and SSE (sums of
squares for error), we have

H = n
k∑

i=1

(yi . − y..)(yi . − y..)′ =
k∑

i=1

1

n
yi .y
′
i . −

1

kn
y..y
′
..

E =
k∑

i=1

n∑
j=1

(yij − yi .)(yij − yi .)
′ =

∑
ij

yijy
′
ij −

1

n

∑
i

yi .y
′
i .
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MANOVA

The E and H matrices are both p × p, but not necessarily full rank. The
rank of H is min(p, vH), where vH is the degrees of freedom associated
with the hypothesis, i.e. k − 1.
We can think the pooled covariance matrix as

Spl =
E

(n − 1)k

with
E (Spl) = Σ

However, if the sample mean vectors were equal for each population, then
we would have H = 0.
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MANOVA
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MANOVA
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MANOVA

The E and H matrices can be used in different ways to test the null
hypothesis. Wilks’ Test Statistic is

Λ =
|E|

|E + H|

The null is rejected if Λ < Λα,p,vH ,vE where vH is the degrees of freedom
for the hypothesis, k − 1, and vE is degrees of freedom for error, k(n − 1).
Critical values are in Table A9. The test statistic can instead be converted
to an F , but there are different cases.
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MANOVA
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Properties of Wilks’ Λ

I We need vE = (n − 1)k ≥ p for the determinants to be positive

I The degrees of freedom for error and hypothesis are the same as for
univariate ANOVA

I The distribution of Λp,vH ,vE is the same as Λp,vE ,vH . This saves some
space for the table of critical values.

I Wilks’ Λ can be written as

Λ =

min(p,vH)∏
i=1

1

1 + λi

where λi is the ith eigenvalue of E−1H. Here s = min(p, vH) is the
rank of s, which is also the number of nonzero eigenvalues of E−1H.

I Λ is in the interval [0,1]. If the sample mean vectors were all equal
(for example, if they were all equal to their expected values under the
null), then H = 0.
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Properties of Wilks’ Λ

I Increasing the number of variables p decreases the critical value for Λ
needed to reject the null hypothesis. This means that it is more
difficult to reject H0 (since we reject for small Λ) unless the null
hypothesis is false for the new variables. I.e., adding new variables for
which the populations are equal makes it harder to reject the null
hypothesis.

I When vH = 1, 2 or p = 1, 2, Wilks’ Λ is equivalent to an F statistic.
Otherwise, an approximate transformation to an F can be used:
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Properties of Wilks’ Λ
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Properties of Wilks’ Λ

If the null hypothesis is rejected, then follow up tests could be made.
Fixing r ∈ {1, . . . , p}, one could test

H0r : µ1r = µ2r = · · · = µkr

which would be a univariate ANOVA test to see if the k populations differ
on variable r .

As usual, testing all variables simultaneously and then testing individual
variables has better type I error than just testing all variables separately to
begin with. It is also possible that the simultaneous test rejects H0 but
that each H0r for r = 1, . . . , p fails to be rejected.
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Example where Wilks’ Λ rejects but individual ANOVAs
don’t reject
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Other statistics

There are alternatives to Wilks’ Λ, but my impression is that Wilks’ Λ is
the most widely used. Common alternatives are

I Hotelling’s Trace statistic, tr(E−1H) =
∑s

i=1 λi considered more
liberal than Wilks’ Λ

I Pillai’s Trace statistic:

tr[(E + H)−1)H] =
s∑

i=1

λi
1 + λi

considered more conservative than Wilks’ Λ

I Roy’s largest root:
λ1

1 + λ1

uses the variance from the variable that separates the group most
based on the largest eigenvalue.
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Other statistics

For our purposes, we can just use Wilks’ Λ, but it is good to be aware of
other statistics if they are output from software. These generally can be
related to an F distribution, except Roy’s largest root test, which is just
bounded by an F statistic. In other words, the F statistic bounding Roy’s
largest root test essentially gives a lower bound on the p-value, so that if
this bound is above α, then you can safely not reject H0, but if the bound
is below α, then it is not clear whether you should reject (based on the F
alone).
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Chile example

As an example, we’ll use part of a data set on chile varieties grown in New
Mexico. The variables included here are length, width, and thickness for
individual chile pods randomly selected from three varieties: Alcalde,
Casados, Chimayo, and Cochiti. The question is whether the chile pods
differ in any of the variables at the four locations.

As a first step, we might try to plot the data. The R code is (assuming
that the file is in your working directory for R):

> y <- read.table("chile.txt",header=T)

> plot(y)
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> x

group Length Width Thickness

1 Alcalde 10.50 3.00 1.53

2 Alcalde 7.00 3.50 1.76

3 Alcalde 10.50 3.50 1.82

4 Alcalde 11.50 4.00 1.58

5 Alcalde 11.50 3.50 1.84

6 Alcalde 9.50 3.00 1.86

7 Alcalde 6.50 3.00 1.71

8 Alcalde 8.50 3.00 1.73

9 Alcalde 10.00 3.00 1.60

10 Alcalde 7.00 2.50 1.47

11 Alcalde 9.25 3.20 1.69

12 Casados 12.00 3.00 1.73

13 Casados 12.00 4.00 1.69

14 Casados 13.50 3.50 1.55

15 Casados 14.00 3.00 1.77

16 Casados 15.00 3.00 1.59

17 Casados 13.00 3.50 1.61

18 Casados 13.50 3.00 1.58

19 Casados 13.00 3.50 1.91

20 Casados 13.00 2.50 1.69

21 Casados 14.00 4.00 1.99

22 Casados 13.30 3.30 1.71

23 Chimayo 14.00 3.50 1.80

24 Chimayo 15.50 3.50 1.81

25 Chimayo 12.50 2.00 1.48

26 Chimayo 16.00 3.50 1.82

27 Chimayo 8.50 2.50 1.70
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Chile example
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Chile example

To do MANOVA for this example without relying on built-in procedures,
we need to construct the H and E matrices. Recall that

H = n
k∑

i=1

(yi . − y..)(yi . − y..)′ =
k∑

i=1

1

n
yi .y
′
i . −

1

kn
y..y
′
..

E =
k∑

i=1

n∑
j=1

(yij − yi .)(yij − yi .)
′ =

∑
ij

yijy
′
ij −

1

n

∑
i

yi .y
′
i .
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Chile example

First, It will be convenient to relabel the groups as 1, 2, 3, and 4.

> y$group = 1*(y$group=="Alcalde") + 2*(y$group=="Casados")

+ 3*(y$group=="Chimayo") + 4*(y$group=="Cochiti")

> y

group Length Width Thickness

1 1 10.50 3.00 1.53

2 1 7.00 3.50 1.76

3 1 10.50 3.50 1.82

4 1 11.50 4.00 1.58

5 1 11.50 3.50 1.84

6 1 9.50 3.00 1.86

7 1 6.50 3.00 1.71

8 1 8.50 3.00 1.73

9 1 10.00 3.00 1.60

10 1 7.00 2.50 1.47

11 1 9.25 3.20 1.69

12 2 12.00 3.00 1.73

13 2 12.00 4.00 1.69
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Chile example

For this data, k = 4 and p = 3.

We need to define yi . for i = 1, 2, 3, 4. Note that yi . is a vector of length 3
because of the three variables. As an example, y4. represents the average
length, width, and thickness for the Cochiti Peublo green chiles.
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Chile example

> y1. <- colMeans(y[y$group==1,2:4])

> y2. <- colMeans(y[y$group==2,2:4])

> y3. <- colMeans(y[y$group==3,2:4])

> y4. <- colMeans(y[y$group==4,2:4])

> y1.

Length Width Thickness

9.25 3.20 1.69

> y2.

Length Width Thickness

13.300000 3.300000 1.710909

> y.. <- colMeans(y[,2:4])

> y..

Length Width Thickness

11.075000 3.062500 1.638409
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Chile example

> H <- 10*((y1.-y..) %*% t(y1.-y..) + (y2.-y..) %*% t(y2.-y..) +

(y3.-y..) %*% t(y3.-y..) + (y4.-y..) %*% t(y4.-y..))

> H

Length Width Thickness

[1,] 173.49750 15.523750 9.2122500

[2,] 15.52375 3.265625 1.6948750

[3,] 9.21225 1.694875 0.9966795
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Chile example

> E <- matrix(rep(0,9),ncol=3)

> for(i in 1:4) { # using second equation for E

+ for(j in 1:11) {

+ E <- E + Y[(i-1)*11+j,2:4] %*% t(Y[(i-1)*11+j,2:4])

+ }}

> E # still need to subtract some terms

Length Width Thickness

[1,] 5673.3950 1518.3300 808.2775

[2,] 1518.3300 423.5625 224.3895

[3,] 808.2775 224.3895 120.8541

> E <- E- 11*(y1. %*% t(y1.) + y2. %*% t(y2.) +

y3. %*% t(y3.) + y4. %*% t(y4.))

> E

Length Width Thickness

[1,] 103.0500 10.450 0.668500

[2,] 10.4500 7.625 1.919000

[3,] 0.6685 1.919 1.744509
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Chile example

To construct different test statistics, we need the eigenvalues of E−1H.
These are

> lambda <- eigen(solve(E) %*% H)

> lambda

$values

[1] 2.06508208 0.34193415 0.05798507

$vectors

[,1] [,2] [,3]

[1,] -0.2289322 -0.1022592 0.00809076

[2,] 0.2804863 0.5704725 0.45630477

[3,] -0.9321574 0.8149259 -0.88978677
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Chile example

Note that in this case, p = 3 and vH = k − 1 = 3, so we should get full
rank H and E with three positive eigenvectors. The following are the test
statistics:

> b <- lambda$values

> b1 <- 1/(1+b)

> prod(b1)

[1] 0.2297985 #Wilks’ Lambda

> b2 <- b/(1+b)

> sum(b2)

[1] 0.9833585 #Pillai’s trace

> sum(b)

[1] 2.465001 #Hotelling’s trace

> b[1]/(1+b[1])

[1] 0.6737445 #Roy’s largest root
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MANOVA in R

> a <- manova(Y[,2:4] ~ Y[,1])

> summary(a,test="W")

Df Wilks approx F num Df den Df Pr(>F)

Y[, 1] 1 0.76113 4.1845 3 40 0.01146 *

> summary(a,test="H")

Df Hotelling-Lawley approx F num Df den Df Pr(>F)

Y[, 1] 1 0.31384 4.1845 3 40 0.01146 *

> summary(a,test="P")

Df Pillai approx F num Df den Df Pr(>F)

Y[, 1] 1 0.23887 4.1845 3 40 0.01146 *

> summary(a,test="R")

Df Roy approx F num Df den Df Pr(>F)

Y[, 1] 1 0.31384 4.1845 3 40 0.01146 *
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MANOVA in R

The results disagree with my calculations. However, I don’t trust that I set
things up correctly in R. In particular, if I look for the eigenvalues, I get
only one non-zero eigenvalue:

> summary(a)$Eigenvalues

[,1] [,2] [,3]

Y[, 1] 0.3138357 1.076934e-17 1.076934e-17

and this doesn’t square with the theory, so something isn’t quite right, but
I’m not sure what! Unfortunately, I don’t see a way of getting the H and
E matrices out of the R output.
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MANOVA in R

Trust me, I was quite annoyed that I couldn’t get this working last night.
Any ideas for how I set up the model incorrectly?
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MANOVA in R: grouping variables shouldn’t be numeric!

> a <- manova(Y[,2:4]~factor(Y[,1]))

> summary(a,test="W")

Df Wilks approx F num Df den Df Pr(>F)

factor(Y[, 1]) 3 0.2298 8.5413 9 92.633 3.307e-09 ***

> summary(a,test="H")

Df Hotelling-Lawley approx F num Df den Df Pr(>F)

factor(Y[, 1]) 3 2.465 10.043 9 110 3.836e-11 ***

> summary(a,test="P")

Df Pillai approx F num Df den Df Pr(>F)

factor(Y[, 1]) 3 0.98336 6.5016 9 120 1.663e-07 ***

> summary(a,test="R")

Df Roy approx F num Df den Df Pr(>F)

factor(Y[, 1]) 3 2.0651 27.534 3 40 7.967e-10 ***
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Interpretation

Consistent with the idea that the Pillai test is conservative and Hotelling is
liberal, these two tests have the highest and lowest p-values, respectively,
although all tests agree that the chile peppers are different on the three
variables.

You could do additional tests to determine which populations are different
or which variables contribute most to differences between the chile
varieties. Some subsets of the data will not show evidence of a difference
between two groups.

If you don’t specify a particular test, then the default output is the Pillai’s
trace test only. Unfortunately, you seem to need to call the summary
function once for each test.
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Assumptions

We went ahead and proceeded with the data analysis without testing
assumptions. In particular, the data might not be multivariate normal for
the different groups. Visual tests don’t show anything alarming. In the
scatterplot matrix, bivariate plots look roughly like clouds, although
Length versus Thickness might have some multivariate outliers. However,
individual tests of normality do fail using shapiro.test(), so there is
evidence against normality and therefore multivariate normality as well.

In spite of the fact that the data are not normal, averages will be closer to
multivariate normal than individual data points, and so it might not be a
problem to use methods assuming multivariate normality.
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Unbalanced MANOVA

If the sample sizes are unequal, then the MANOVA is called unbalanced.
Here the ith sample has sample size ni . The computation of the test
statistics is very similar, with

N =
k∑

i=1

ni , yi . =
1

ni

ni∑
j=1

yij , y.. =
1

N

k∑
i=1

ni∑
j=1

yij

H =
k∑

i=1

ni (yi . − y..)(yi . − y..)
′ =

k∑
i=1

1

ni
yi .y
′
i . −

1

N
y..y
′
..

E =
k∑

i=1

ni∑
j=1

(yij − yi .)(yij − yi .)
′ =

k∑
i=1

ni∑
j=1

yi .)yi .)
′ −

k∑
i=1

1

ni
yi .y
′
i .
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η2

The quantity

η2 =
between sum of squres

total sum of squares

is called Fisher’s correlation ratio for ANOVA, and is similar to R2. It is
also a measure of model fit, since if it is large, then this means that the
sum of squares error is small.

For MANOVA, we can get similar expressions for η2 based on Wilks’ Λ and
Roy’s root test with

η2
Λ = 1− Λ

and

η2
θ =

λ1

1 + λ1
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Canonical correlation

The value
√
λ1/(1 + λ1) is the maximum correlation between a linear

combination of the p variables and a linear combination of dummy
variables representing the groups.

If you only had two variables, then you would have x = 0, 1 depending on
whether an observation belonged to one of two groups. In this case, the
value is the maximum correlation between a linear combination of the p
response variables and x . If there were three groups, you could have x1 = 1
if an observations was from group 1; otherwise x1 = 0. Similarly, let x2 = 1
if an observation is from group 2; otherwise x2 = 0. Gerenally, let xi = 1 if
an observation is from group i . Then we only need k − 1 dummy variables
since an observation belongs to group k if and only if x1 = · · · = xk−1 = 0.

These correlations between groups and variables are called canonical
correlations.
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Canonical correlation

Generally define r2
i = λi/(1 + λi ). Then r2

i s is called the ith squared
canonical correlation, which will play a role later in canonical correlation
analysis.

The test statistics for MANOVA such as Wilks’ Λ and Pillai’s trace can be
expressed in terms of the ri values as

Λ =
s∏

i=1

1− r2
i

Pillais trace =
2∏

i=1

r2
i
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Two-way ANOVA/MANOVA

Analogous to two-way ANOVA, we can do two-way MANOVA as well.
This is when we have separate samples for combinations of two factors.
For the ANOVA, the model is

yijk = µ+ αi + βj + γij + εijk = µij + εijk

where γij is an interaction term.

The book points out that other books recommend testing for an
interaction first, and if it is significant, then include both main effects (i.e.
both α and β), and only test for significance of main effects if the
interaction is not significant. The author takes the interesting position
that it is reasonable to test for main effects even in the presence of an
interaction. This seems to be a minority view, and not one that I was
taught, but I actually have no opinion on this and don’t feel I understand
it well enough...
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Two-way ANOVA/MANOVA

The value αi represents the average effect of the ith level of the first
factor, averaging over the levels of the second factor. We can also
interpret this as the average when the first factor is at the ith level, minus
the overal average

αi = µi . − µ..
SImilarly

βj = µ.j − µ..
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Two-way balanced ANOVA/MANOVA
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Two-way balanced ANOVA/MANOVA

To test main effects or the interaction term, the appropriate sum of
squares is divided by degrees of freedom to obtain the mean squares, the
mean squaure for the effect is divided by mean squared error for an F test.
For example, to test whether factor A is significant, i.e.,

H0A : α = 0

use
SSA/(a− 1)

SSE/(ab(n − 1))

where a is the number of levels of factor A and b is the number of levels of
b.

April 23, 2018 53 / 93



Two-way balanced ANOVA/MANOVA

MANOVA is analogous to ANOVA, with the model being

yijk = µ+αi + βj + γ ij + εijk = µij + εijk

where, for example αi is a p-dimension vector which is the effect of ith
treatment on each of the p variables. All vectors in the model are
p-dimensional.

Again we have αi = µi . − µ..

The total sum of squares can be partitioned as

T = HA + HB + HAB + E
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Two-way balanced MANOVA
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Two-way balanced MANOVA

Tests can be based on Wilks’ Λ using

ΛA =
|E|

|E + HA|
∼ Λp,a−1,ab(n−1)

ΛB =
|E|

|E + HB |
∼ Λp,b−1,ab(n−1)

ΛAB =
|E|

|E + HAB |
∼ Λp,(a−1)(b−1),ab(n−1)

Or you can use eigenvalues of E−1HA, E−1HB , E−1HAB
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Two-way balanced MANOVA example

An example is a test on bars of steel measuring torque and strain when
bars of steel are rotated either fast or slow (factor A) and using four
different lubricants (factor B). This is a bivariate example with p = 2,
a = 2, and b = 4. There are 2× 4 = 8 samples, but they are not
indepedent because we expect the slow rotating examples might be more
similar to each other than fast rotating examples, and similarly test results
for the same lubricant might be related.
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Two-way balanced MANOVA
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Two-way balanced MANOVA
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Two-way balanced MANOVA

From these results, there is no interaction between lubricant and speed (so
the lubricants do not perform differently at different speeds for those
speeds in the experiment). Also, speed had an effect on torque and strain,
but lubricant did not. From a manufacturing point of view, this might lead
to a decision about using a cheaper lubricant.
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Two-way balanced MANOVA example

> x <- read.table("steel.txt",header=T)

> x

speed lube torque strain

1 1 1 7.80 90.4

2 1 1 7.10 88.9

3 1 1 7.89 85.9

4 1 1 7.82 88.8

5 1 2 9.00 82.5

6 1 2 8.43 92.4

7 1 2 7.65 82.4

8 1 2 7.70 87.4

9 1 3 7.28 79.6

10 1 3 8.96 95.1

11 1 3 7.75 90.2

12 1 3 7.80 88.0

13 1 4 7.60 94.1

14 1 4 7.00 86.6

15 1 4 7.82 85.9

16 1 4 7.80 88.8

17 2 1 7.12 85.1

18 2 1 7.06 89.0

19 2 1 7.45 75.9

20 2 1 7.45 77.9
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Two-way balanced MANOVA in R

> a <- manova(cbind(x$torque,x$strain) ~ x$speed + x$lube + x$speed*x$lube)

> summary(a,test="W")

Df Wilks approx F num Df den Df Pr(>F)

x$speed 1 0.49222 13.9266 2 27 6.985e-05 ***

x$lube 1 0.98899 0.1503 2 27 0.8612

x$speed:x$lube 1 0.99321 0.0923 2 27 0.9121

Residuals 28

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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Two-way balanced MANOVA in R

Consistent with the previous results, this suggests that the interaction isn’t
important, and lubricant also doesn’t seem important. You could use
backward selection two settle upon a model, and this won’t change the
results in this case:

> a <- manova(cbind(x$torque,x$strain) ~ x$speed + x$lube)

> summary(a,test="R")

Df Roy approx F num Df den Df Pr(>F)

x$speed 1 1.02826 14.3956 2 28 5.015e-05 ***

x$lube 1 0.01113 0.1558 2 28 0.8564

Residuals 29

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

> a <- manova(cbind(x$torque,x$strain) ~ x$speed)

> summary(a,test="R")

Df Roy approx F num Df den Df Pr(>F)

x$speed 1 1.0237 14.843 2 29 3.639e-05 ***

Residuals 30

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1April 23, 2018 63 / 93



Higher-order models

The two-way approach can be extended to have more main effects and
more interaction terms, and this is easy to implement in R using the
modeling notation.

Other designs from ANOVA, such as split plot designs, random effects
models, mixed models, and so on can also be generalized to the
multivariate setting.
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Checking assumptions

To check the assumption of multivariate normality, you can look visually
for violations of the multivariate normality. In particular, you can check for
each pair of factors whether the responses appear to be bivariate normal,
and whether individual variables tend to be normally distributed.

A limitation of this approach is if each of the samples is small. In the steel
bar example, there were four replicates per combination of treatments.

A more thorough approach is to examine the residuals of the model. The
residuals should be multivariate normal from the same distribution, you
could look at scatterplot matrices and test univariate normality of each
vector of the residuals.
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Checking assumptions

The residuals from the model are

ε̂ijk = yijk − yij .

The residuals should be distributed as Np(0,Σ) These are easily available
from R. A formal test of univariate normality shows that the residual
vectors fail in one of the dimensions, so multivariate normality is not
formally passed for this data.
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Checking assumptions

> names(a)

[1] "coefficients" "residuals" "effects" "rank"

[5] "fitted.values" "assign" "qr" "df.residual"

[9] "xlevels" "call" "terms" "model"

> a$residuals

[,1] [,2]

1 -0.037500 2.4625

2 -0.737500 0.9625

3 0.052500 -2.0375

4 -0.017500 0.8625

5 1.162500 -5.4375

6 0.592500 4.4625

...

32 0.250625 -2.7750

April 23, 2018 67 / 93



Checking assumptions

> shapiro.test(a$residuals[,1])

Shapiro-Wilk normality test

data: a$residuals[, 1]

W = 0.9075, p-value = 0.009693

> shapiro.test(a$residuals[,2])

Shapiro-Wilk normality test

data: a$residuals[, 2]

W = 0.9813, p-value = 0.8377

April 23, 2018 68 / 93



Two-way balanced MANOVA
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Two-way balanced MANOVA

The residuals here are NOT a typical residual plot where you plot the
residuals against the fitted values. Here we’ve plotted just the residual
vectors, one component against the other. This is more like plotting a
histogram of the residuals in a univariate ANOVA. The plot here seems
more spread out than it should be for a bivariate normal, but there aren’t
any huge outliers.
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Chapter 6: overview of remainder

Other applications of MANOVA are profile analysis, repeated measures
versions of MANOVA, and growth curves in a multivariate setting.

Profile analysis and repeated measures MANOVA can be extended to
k ≥ 2 groups instead of having a single group, and can have additional
factors in the model (e.g., sex can be a factor within two separate groups).

For growth curves, you can test for linear, quadratic, and other polynomial
trends in quantitative factors, such as years of age, in addition to having
multiple groups. An example of a type of problem here might be testing
whether growth curves for kids are the same for kids who were either
nursed or formula-fed, where sex of the child is treated as a covariate.
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Tests of covariance matrices

First, in testing properties of covariance matrices, there are many types of
questions we might be interesting in testing about covariance matrices
such as

I does a covariance matrix equal a hypothesized matrix: Σ = Σ0?

I are the variables independent? (Covariances equal to 0 for
multivariate normal)

I does a covariance matrix have a special structure, such as all
covariances being equal?

I do two covariance matrices come from the same population,
Σ1 = Σ2?
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Tests of covariance matrices

To test H0 : Σ = Σ0 versus H1 : Σ 6= Σ0, it isn’t necessary to specify µ.
For this hypothesis all variances and covariances are specified under the
null.

To test the hypothesis, we see if an observed sample covariance S is
significantly different from Σ0. The test statistic can either be expressed
in terms of determinants or eigenvalues:

u = v
[
ln |Σ0| − ln |S|+ tr(SΣ−1)− p

]
= v

[
p∑

i=1

(λi − lnλi )− p

]

where v = n − 1 for a one-sample problem and v =
∑k

i=1 nk − k = N − k
for a pooled covariance matrix obtained from k samples.
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Tests of covariance matrices

Under H0, when v is large, the test has an approximate χ2 distribution
with

(p
2

)
= p(p + 1)/2 degrees of freedom, which is also the number of

off-diagonal elements in the upper or lower triangle of the matrix. (I.e.,
there are

(p
2

)
terms σij with i < j in a covariance matrix.) For smaller v ,

there is a correction to make the test perform a little better.

A special case is the test of the hypothesis H0 : Σ = I, testing whether the
a set of variables has unit variance and are uncorrelated. If you are not
interested in whether the variances are equal to 1, but are interested in the
covariances (correlations), you could standardize the variables first (get
their z-scores) and then do the tests, so that there variances will be equal
to 1. In this case, you are really just testing whether all the correlations
are equal to 0. In a two variable case, this amounts to testing whether the
correlation between two variables is 0.
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Tests of covariance matrices

We can take the chile data as an example, just using one variety, those
grown on Casados farms. Testing whether the variances are equal to 1 or
not is not very interesting, so we’ll standardize the data first.

> y <- read.table("chile.txt",header=T)

> y2 <- y[y$group=="Casados",2:4] # Casados only

> cor(y2)

Length Width Thickness

Length 1.00000000 -0.1627035 -0.03993501

Width -0.16270351 1.0000000 0.37510947

Thickness -0.03993501 0.3751095 1.00000000

> z <- scale(y2,center=T,scale=T) #R does the z-scores for you

> cov(z) #note that the covariance of the z-scores is the correlation

# on the original scale...

Length Width Thickness

Length 1.00000000 -0.1627035 -0.03993501

Width -0.16270351 1.0000000 0.37510947

Thickness -0.03993501 0.3751095 1.00000000
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Tests of covariance matrices

You might first consider doing pairwise tests of correlations. The sample
size is small here, only 11 observations, so there isn’t much power to
detect correlations that exist. So it might be better to test all correlations
simultaneously first. We’ll see what happens if we test individual
correlations afterward. First we need to define Σ0.

> I <- diag(3) # the identity matrix is our null covariance matrix

> p <- 3

> S <- cov(z)

# sum(diag(S)) is the trace of S

> u = v*(log(det(I)) - log(det(S)) + sum(diag(S)) - 3)

> u

[1] 1.790068

# modification for small samples suggested by book

> uprime <- (1 - (1/(6*v-1))*(2*p+1-2/(p+1)))*u

> uprime

[1] 1.592857
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Tests of covariance matrices

We compare this to a χ2 with
(3

2

)
= 3 degrees of freedom, which has a

mean of 3 (since the expected value of a χ2 is its degrees of freedom. This
means that if the data came from a N3(µ, I), then you’d expect to get a
larger test statistic than this on average, so the data is quite consistent
with length, width, and thickness being uncorrelated.

To quantify how consistent the data is with the null hypothesis, you can
use a pvalue:

> 1-pchisq(1.593,3)

[1] 0.6609781

Keep in mind that this was a small sample, so there wasn’t much power to
detect correlations.
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Tests of covariance matrices: sphericity

A slightly stronger condition to test is that the variables are independent
AND have the same variance, although the variance might not be 1.

Here the null hypothesis is H0 : Σ = σ2I and the alternative is
H1 : Σ 6= σ2I.

If the variables are multivariate normal, then

(y − µ)′Σ−1(y − µ) = c2

describes an ellipsoid, while if H0 is true, then plugging in Σ = σ2I leads to

(y − µ)′(y − µ) = σ2c2,

which is the equation for a p-dimensional “sphere”.
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Tests of covariance matrices: sphericity

One could instead test the hypothesis H0 : CΣC′ = σ2I, where C is a
contrast matrix, which is useful for repeated measures.

A test statistic based on the likelihood ratio is

−2 ln(LR) = −n
[

|S|
(tr S/p)p

]n
which can be improved by

u′ = −
(
v − 2p2 + p + 2

6p

)
(−2 ln(LR))

Then u′ is approximately χ2 with binomp + 12− 1 degrees of freedom.
The degrees of freedom comes from the number of parameters under the
alternative minus the number of parameters under the null. Under the
alternative, there are p variances and

(p
2

)
covariances with

p +
(p

2

)
=
(p+1

2

)
. Under the null, covariances are 0 and there is a common

variance, so there is 1 parameter.
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Tests of covariance matrices: sphericity

To apply this to the chile data from Casados, we would expect the test to
reject the null because thickness is much less variable than length or
width, with the variances being 0.760, 0.210, and 0.019 for length, width,
and thickness, respectively. But, just to illustrate, we get

> n <- 11

> LR <- (det(S)/(sum(diag(S)))^p)^(n/2)

> LR

[1] 6.347235e-15

> uprime <- -(v - (2*p^2+p+2)/(6*p))*log(LR^(2/n))

> uprime

[1] 51.84292
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Tests of covariance matrices: sphericity

We compare this number to a χ2 with
(4

2

)
− 1 = 5 degrees of freedom, so

the mean is 5. The variance is 2k for k degrees of freedom, so in this case
the variance is 10, and the standard deviation is a little more than 3. So
the test statistic is more than 15 standard deviations above the mean.
Again, to quantify this as a p-value,

> 1 - pchisq(51.84,5)

[1] 5.818157e-10

So, although we don’t have sufficient evidence to conclude that the
variables are uncorrelated, we have sufficient evidence to conclude that
that it’s not the case that they are independent with a common variance.
This null hypothesis could be false either due to different variances or due
to correlation.
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Tests of covariance matrices: common covariance and
variance

The test for a common covariance and variance throughout the covariance
matrix is an important covariance structure that is often used in repeated
measures. The idea is that the covariance matrix looks like this

σ2


1 ρ ρ · · · ρ
ρ 1 ρ · · · ρ
...

...
...

...
ρ ρ ρ · · · 1


The idea is that all variables are correlated to the same degree, and all
variables have the same covariance. When this assumption is met, you can
analyze repeated measures data using ANOVA. This covariance structure
is called compound symmetry, uniform, or intraclass correlation
model. Often in software, such as in mixed models in SAS, there are a
limited number of covariances structures that you can assume for the data
and analyze the data assuming that particular structure.
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Tests of covariance matrices: common covariance and
variance

The null hypothesis can be written as

H0 : Σ = σ2[(1− ρ)I + ρJ]

We can’t really state what the covariance matrix is under the null exactly,
but we can estimate it under the null by using the average of the p
variances and the average of the

(p
2

)
covariances. Thus, let

s2 =
1

p

p∑
i=1

sii , r =
1(p
2

)∑
i>j

sij
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Tests of covariance matrices: common covariances and
variance

The estimated covariance matrix under the null is

S0 =


s2 s2r · · · s2r
s2r s2 · · · s2r

...
...

...
s2r s2r · · · s2

 = s2[(1− r)I + rJ]

Here r = s2r/s2 estimates the correlation, and s2r estimates the
covariance.

Let S be the usual sample estimate of the covariance matrix without the
constraint that variances are equal to each other and covariances are equal
to each other. Then let

u =
|S|
|S0|
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Tests of covariance matrices: common covariances and
variance

and the test statistic is

u′ = −
[
v − p(p + 1)2(2p − 3)

6(p − 1)(p2 + p − 4)

]
and this is approximately χ2 with

(p+1
2

)
− 2 degrees of freedom. We have

-2 instead of -1 becuase under the null, there are two parameters being
estimated instead of 1.
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Tests of covariance matrices: common covariances and
variance

To test the chile data for compound symmetry,

> S <- cov(y2)

> (S[1,2] + S[1,3] + S[2,3])/3

[1] -0.01536667

> rs2 <- (S[1,2] + S[1,3] + S[2,3])/3

> s2 <- (var(y2$Length) + var(y2$Width) + var(y2$Thickness))/3

> r <- rs2/s2

> J <- matrix(rep(1,9),ncol=3)

> S0 <- s2*((1-r)*I + r*J)

> S0

[,1] [,2] [,3]

[1,] 0.32966970 -0.01536667 -0.01536667

[2,] -0.01536667 0.32966970 -0.01536667

[3,] -0.01536667 -0.01536667 0.32966970
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Tests of covariance matrices: common covariances and
variance

> u <- det(S)/det(S0)

> u

[1] 0.07127613

> uprime <- -(v-p*(p+1)^2*(2*p-3)/(6*(p-1)*(p^2+p-4)))*log(u)

> uprime

[1] 22.45015

This gives us a large χ2 value with 4 degrees of freedom, so there is strong
evidence against compound symmetric structure in the green chile data.

April 23, 2018 87 / 93



Comparing covariance matrices

MANOVA assumes that covariances are equal between different
populations that are being sampled. Although MANOVA is considered to
be fairly robust against this assumption, we can test this assumption by
testing

H0 : Σ1 = Σ2 = · · · = Σk

A univariate analogue is

H0 : σ2
1 = σ2

2 = · · · = σ2
k
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Comparing covariance matrices

The univariate, multi-sample case can be testing using

c = 1 +
1

3(k − 1)

[
k∑

i=1

1

vi
− 1∑k

i=1 vi

]

s2 =

∑k
i=1 vi s

2
i∑k

i=1 vi

m =

(
k∑

i=1

vi

)
ln s2 −

k∑
i=1

vi ln s2
i

Then m/c is roughly χ2
k−1. The test assumes that the k samples are

indepedent, so it is not a test of whether the diagonals of a covariance
matrix are equal in a multivariate setting where variables are correlated.
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Comparing covariance matrices

The multivariate analogue for Bartlett’s test uses

Spl =

∑k
i=1 viSi∑k
i=1 vi

=
E

vE

M =
|S1|v1/2|S2|v2/2 · · · |Sk |vk/2

|Spl|
∑

i vi/2

c =

[
k∑

i=1

1

vi
− 1∑k

i=1 vi

] [
2p2 + 3p − 1

6(p + 1)(k − 1)

]
u = −2(1− c) lnM

Then u is approximately χ2 with degrees of freedom (k − 1)
(p+1

2

)
.
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Comparing covariance matrices

A warning about Bartlett’s test in the univariate case is that it is very
sensitive to departures from normality. In particular, if two indepednent
populations have the same variance but are not normally distributed, then
Bartlett’s test might reject the null hypothesis of equal variance much
more often than α for an α-level test.

In particular, if you are sampling from non-normal distributions with equal
variances and apply Bartlett’s test, then the type I error rate can increase
with increasing sample sizes. We tried this last semester in the SAS class
with two independent exponential samples. This is a very bad situation,
since we usually expect our inferences to improve with more data. So this
caveat about Bartlett’s test should apply to the multivariate version also.
Departures from multivariate normality could lead to too easily rejecting
the null hypothesis.
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Comparing covariance matrices

For this reason Bartlett’s test is often not used and tests of equality of
variance are often not done very formally. Instead informal measures are
often used such as looking at side-by-side box plots to look for gross
violations of equal variance.
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Comparing covariance matrices: chile example

We’ll check the equality of the green chile covariance matrices:

> y1 <- y[y$group=="Alcalde",2:4]; y2 <- y[y$group=="Casados",2:4]

> y3 <- y[y$group=="Chimayo",2:4]; y4 <- y[y$group=="Cochiti",2:4]

> S1 <- cov(y1); S2 <- cov(y2); S3 <- cov(y3); S4 <- cov(y4)

> Spl <- S1 + S2 + S3 + S4

> M <- det(S1)^5 * det(S2)^5 + det(S3)^5 + det(S4)^5

> M <- M/det(Spl)^20

> c <- (4/10 - 1/40)*(2*3^2 + 3*3-1)/(6*(3+1)*(4-1))

> u <- -2*(1-c)*log(M)

> u

[1] 31.36207

> 1-pchisq(u,18) #18 degrees of freedom

[1] 0.02613031

There is evidence, but not strong evidence against equal variances.
Particular since the data might not be multivariate normal, this is not very
strong evidence. I would not be uncomfortable using MANOVA based on
this result.
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