
Overview

Welcome to ADA 2. The course will be similar to ADA1. We will use R to
analyze data sets. The techniques used will sometimes be extensions from
techniques in ADA1, and sometimes seem completely new.

Grades will be based on homeworks, two in-class tests, and a final project.
The final project will be a data analysis that is presented to the class using
slides, or if you wish to not present, you can turn in a poster as it might
be presented at a conference. You can either work in small groups or as
individuals for your project, and you can also use data from your research
area in other departments. However, you must use techniques from the
class. More details will be given about the final project as we progress
through the semester.
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Overview

The assessment will be broken down as follows:

I Homeworks, 50% (each homework will be equally weighted, and the
lowest hw grade will be dropped)

I In-class tests, 15% each

I Final project, 20%

Topics in the course will include multiple regression (i.e., multiple predictor
variables), model selection, experimental design, ANCOVA, logistic
regression, principal component analysis, cluster analysis, and discriminant
analysis. The last few examples are part of multivariate analysis.
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Overview

We’ll begin with a review of what occurred in ADA1 and a review of R,
the software used for the course. Most students in the course will have
had ADA1, but not all will have, and might need a review of R especially.
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R review

To use R, we will usually read data from a file. For this class, these files
will usually be either .txt, .dat, or .csv. The last version is a comma
delimited file, where each field is separated by a comma instead of space
or tabs. If you have data in an Excel spreadsheet, you can save it as a
.csv file so that it can be read into R.

To read in data from a file, you can either type the website of the data (if
you are online), or you can read the data from your computer. If you read
data from your computer, you need to specify the path to the file, or have
the file in the same directory as your R session.
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R review

Here we’ll give an example of reading in a file from my website

x <- read.table("http://www.math.unm.edu/~james/chile.txt",header=T)

If copying and pasting this code generates errors in R, then try typing the
text directly inside R without copying and pasting (common problems are
the quoation marks or the tilde sign copying and pasting differently). Also,
try going to the website and see if you can download the data.
If the data exists in your computer in your current directory, you can type

x <- read.table("chile.txt",header=T)
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R review

Here is an example of not reading in a file correctly. In this case, I didn’t
type http:// at the start of the URL, and R was unable to find the file.
This happens a lot when you either get the URL wrong or try to read in
data that is mistakenly in a different directory from your R session.

> x <- read.table("www.math.unm.edu/~james/chile.txt")

Error in file(file, "rt") : cannot open the connection

In addition: Warning message:

In file(file, "rt") :

cannot open file ’www.math.unm.edu/~james/chile.txt’:

No such file or directory
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R review

Here we extract a variable and print a subset of the observations

> x$Length[x$group=="Chimayo"]

[1] 14.0 15.5 12.5 16.0 8.5 12.5

15.0 13.0 11.0 10.0 12.8

> x[x$Length>13,]

group Length Width Thickness

14 Casados 13.5 3.5 1.55

15 Casados 14.0 3.0 1.77

16 Casados 15.0 3.0 1.59

18 Casados 13.5 3.0 1.58

21 Casados 14.0 4.0 1.99

22 Casados 13.3 3.3 1.71

23 Chimayo 14.0 3.5 1.80

24 Chimayo 15.5 3.5 1.81

26 Chimayo 16.0 3.5 1.82

29 Chimayo 15.0 3.5 1.95
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R review

We’ll continue the review using this data set. The data set consists of
measurements of length, width, and thickness of green chiles cultivated at
four locations in New Mexico in a particular year. There are a total of 44
observations (rows), and four variables (columns). Here are some things
you can do with a data set that will be used to review some R functions

> head(x) # show the first 6 observations to check that

# data was read in correctly

> head(x)

group Length Width Thickness

1 Alcalde 10.5 3.0 1.53

2 Alcalde 7.0 3.5 1.76

3 Alcalde 10.5 3.5 1.82

4 Alcalde 11.5 4.0 1.58

5 Alcalde 11.5 3.5 1.84

6 Alcalde 9.5 3.0 1.86
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> table(x$group)

Alcalde Casados Chimayo Cochiti

11 11 11 11

> mean(x$Length)

[1] 11.075

> sd(x$Width)

[1] 0.5032597

> by(x$Length,x$group,mean)

x$group: Alcalde

[1] 9.25

------------------------------------------------------------

x$group: Casados

[1] 13.3

------------------------------------------------------------

x$group: Chimayo

[1] 12.8

------------------------------------------------------------

x$group: Cochiti

[1] 8.95
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To use by() with combinations of variables, select a list of the columns
used in the data set as follows: (here this is for columns 1 and 3):

> by(x$Length,x[,c(1,3)],mean)

group: Alcalde

Width: 2

[1] NA

------------------------------------------------------------

group: Casados

Width: 2

[1] NA

------------------------------------------------------------

group: Chimayo

Width: 2

[1] 12.5

------------------------------------------------------------

group: Cochiti

Width: 2

[1] 9
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Here are some graphical ways to look at the data. Here cex.axis=1.3
increases the label sizes by 30% to make them more readable. The code
pairs(x[,2:4]) means to make pairwise scatterplots for all rows,
columns 2 through 4 of the data (so column 1 isn’t included).

> boxplot(x$Length ~ x$group, cex.axis=1.3)

> pairs(x[,2:4])

> pairs(x[,-1]) # is equivalent
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Boxplots
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Boxplots
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R can also be used as a calculator, or to enter data directly by typing it in.

> a <- 2

> b <- c(4,5,7)

> a

[1] 2

> b

[1] 4 5 7

> a*b

[1] 8 10 14

> a+b

[1] 6 7 9

> b^2

[1] 16 25 49

> sqrt(b)

[1] 2.000000 2.236068 2.645751

> log(b)

[1] 1.386294 1.609438 1.945910
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As a review of some of the statistical procedures we used last semester,
here is a table

one sample t test one group/population, quantitative data
matched pairs t test one sample t-test on differences, quantitative data
two sample t-test 1 quantitative variable, 1 group variable (2 groups)
anova quantitative response, 1 group variable with 2 or more groups
simple linear regression 1 predictor, 1 response, both quantiative
correlation test 2 quantitative variables that are paired, but not

(e.g.,GPA and SAT score)
proportion test binary variable (0 or 1), test whether frequency of

1s equal some proportion
2-sample proportion test binary variable for two groups, test for

equality of proportions
chi-square test (one way) several categories, testing for equality of

proportions or proportions matching theoretical values (e.g., blood types)
chi-square test (two-way) two table test of association, e.g.,

college major versus political affiliation
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As a review of some of the statistical procedures we used last semester,
here is a table

one sample t test t.test(x)

matched pairs t test t.test(x-y) or diff <- x-y; t.test(diff)

two sample t-test t.test(x,y) or t.test(x ∼ group)

anova a <- aov(x ∼ group) or a <- lm(x ∼ group)

simple linear regression model <- lm(y ∼ x)

correlation test cor.test(x,y)

proportion test prop.test(x,p=.5)

2-sample proportion test e.g., prop.test(c(45,55),c(100,100))
chi-square test (one way) chisq.test()

chi-square test (two-way) chisq.test(M) where M is a matrix
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Many of the above procedures could be employed with the chile.txt

data set. For example, we could

I use a t-test to see whether the length of the chile pods differs for
Chimayo versus Cochiti

I use a t-test to see whether the width of the child pods differes for
Chimayo versus Casados

I use ANOVA to test whether length is the same for all four types of
chiles

I use regression to determine the relationship between length and width
of child pods (either ignoring chile type or separately for each type)

I test the correlation of length and thickness

I Classify chiles as long verus short (say, greater than 11cm) and test
whether the proportion of child pods that are long is greater than
50%. (proprtion test).

I test whehter the proportion of chile pods classified as long differs by
location (this would be a one-way chi-squared)
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In this exampe, a t-test is done for the Length of the Cochiti chiles. Note
that the hypothesis test is testing whether the length is 0. The confidence
interval is probably more useful.

> t.test(x$Length[x$group=="Cochiti"])

One Sample t-test

data: x$Length[x$group == "Cochiti"]

t = 30.101, df = 10, p-value = 3.833e-11

alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:

8.287493 9.612507

sample estimates:

mean of x

8.95
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> t.test(x$Length[x$group=="Cochiti"],

x$Length[x$group=="Alcalde"])

Welch Two Sample t-test

data: x$Length[x$group == "Cochiti"] and x$Length[x$group == "Alcalde"]

t = -0.48637, df = 15.546, p-value = 0.6335

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-1.610688 1.010688

sample estimates:

mean of x mean of y

8.95 9.25
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> a <- aov(x$Length ~ x$group)

> summary(a)

Df Sum Sq Mean Sq F value Pr(>F)

x$group 3 173.5 57.83 22.45 1.1e-08 ***

Residuals 40 103.0 2.58

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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logic and for-loops in R

> sum(Long)

[1] 25

> length(Long)

[1] 44

> prop.test(25,44)

1-sample proportions test with continuity correction

data: 25 out of 44, null probability 0.5

X-squared = 0.56818, df = 1, p-value = 0.451

alternative hypothesis: true p is not equal to 0.5

95 percent confidence interval:

0.4114174 0.7131820

sample estimates:

p

0.5681818
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logic and for-loops in R

Although you can do a lot of statistics in R without logic and for-loop
programming in R, it would be a shame to take this course without
learning a little about logic control and for-loops. These are extremely
general concepts used in programming that is ubiquitous in our lives
(Google, Facebook, cell phones, etc.).

R can evaluate statements as true or false. These true and false values can
then be converted into 1s (TRUEs) and 0s (FALSEs).

> x$Length>10

[1] TRUE FALSE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE

[13] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

[25] TRUE TRUE FALSE TRUE TRUE TRUE TRUE FALSE TRUE FALSE FALSE FALSE

[37] FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE

> as.numeric(x$Length>10)

[1] 1 0 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 0 0 0 0 1

[39] 0 0 0 0 0 0
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for loops

As another example, suppose you have Likert scale data, such as
1=strongly disagree, 2=disagree, 3=neutral, 4=agree, 5=stronngly agree.
Now suppose you want to transform the data so that you collapse
categories, and just want 1=disagree, 2=neutral, 3=agree.

One way of processing the data is with a for loop. For example

> data <- c(5,3,4,3,1,2,1,5,4,3)

> newdata <- 1:length(data)

> for(i in 1:length(newdata)) {

+ if(data[i] <= 2) newdata[i] <- 1

+ if(data[i] == 3) newdata[i] <- 2

+ if(data[i] >= 4) newdata[i] <- 3

+ }

> newdata

[1] 3 2 3 2 1 1 1 3 3 2
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for loops

Another way of achieving the same result is

> data <- c(5,3,4,3,1,2,1,5,4,3)

> newdata <- 1*(data <= 2) + 2*(data==3) + 3*(data >= 4)

> newdata

[1] 3 2 3 2 1 1 1 3 3 2
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logic and for-loops in R

For loops allow you to process a data set one row at a time or one column at a
time, or to do a repetetive thing one at a time.
A simple example of a for loop is

> for(i in 1:10) {

+ print(i^2)

+ }

[1] 1

[1] 4

[1] 9

[1] 16

[1] 25

[1] 36

[1] 49

[1] 64

[1] 81

[1] 100
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logic and for-loops in R

Often in R you can avoid for loops by processing a vector all at once, such
as testing whether each element is above or below a certain threshold. But
sometimes it is useful to do things one at a time. For loops can also be
useful for simulation. Here we simulate the probability of getting four aces
in a poker hand. Cards are numbered 1 through 52, and I assume cards 1
through 4 are aces.

> cards <- 1:52

> fourAces <- 1:100000

> for(i in 1:100000) {

+ hand <- sample(cards,5,replace=TRUE)

+ num_aces = sum(hand <= 4)

+ fourAces[i] <- (num_aces == 4)

+ }

> sum(fourAces)/100000

[1] 0.00016 # estimated probability is 0.016%
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Multiple Regression

This ends the review. For more review, please see slides from ADA 1.

We’ll now begin the topic of Regression. The idea for multiple regression is
similar to simple regression, but now there are multiple predictors. There is
still a single response variable, which is assumed to be normally distributed
for combination of predictors, and there can be any number of predictor
variables. The predictor variables can be numeric, binary (0/1), or even
categorical. We’ll start with examples where all predictors are quantitative.
Note that the predictors are not assumed to be normally distributed.
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Multiple regression

We’ll use the chile.txt data set as an example. Initially, we’ll analyze all 44
chile peppers and not use their location, and we’ll analyze the length of the chile
pod as a function of the width and thickness. In this case there are two predictors
and one response variable.

Note that this is an arbitrary choice on my part—I could have chosen to predict
width based on length and thickness, thickness based on length and width, and so
on. Which variable you want to consider a response and which the predictors can
depend on your research question. In an experiment, you normally use as
predictors those variables under control. For agricultural experiments, you might
use as predictors the type of fertilizer (or nitrogen content in the fertilizer), the
amount of water used, etc. as predictors, and crop yield would be the response.

Often predictors are not completely under experimental control, for example the

amount of rainfall in plots in an agricultural experiment, the abundance of

parasites, etc., might not be controlled but could still be relevant.
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Multiple regression

We can think of the model as

length = β0 + β1×width + β2×thickness + error

More informally, we might just write

length = width + thickness + error

where the addition sign isn’t literal addition since there are regression
coefficients involved.
The regression analysis will find the optimal values of β0, β1 and β2 to
minimize the sum of squared residuals.
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Multiple regression

A more formal way to write the model is

yi = β0 + β1x1i + β2x2i + εi

where

I yi is the length of the ith chile

I x1i is the width of the ith chile

I x2i is the thickness of the ith chile

I εi is the residual, or the deviation from the actual response to the
mean response

I β0 is the intercept (the predictred length when length and thickness
are 0)

I β1 is the coefficient for the length

I β2 is the coefficient for the width
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> m1 <- lm(x$Length ~ x$Width + x$Thickness)

> summary(m1)

Call:

lm(formula = x$Length ~ x$Width + x$Thickness)

Residuals:

Min 1Q Median 3Q Max

-5.0991 -1.4546 -0.2972 1.5957 4.0967

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.2619 2.4315 1.342 0.1871

x$Width 2.1134 0.9221 2.292 0.0271 *

x$Thickness 0.8183 1.8380 0.445 0.6585

---

Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1

Residual standard error: 2.282 on 41 degrees of freedom

Multiple R-squared: 0.2277,Adjusted R-squared: 0.1901

F-statistic: 6.045 on 2 and 41 DF, p-value: 0.005003
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Multiple regression

The output can be interpreted very similarly to simple linear regression.
Here the column of estimated coefficients gives you the estimated values
for β0, β1, and β2. The fitted model is

Expected length = 3.2619 + 2.1134 ∗ width + 0.8183 ∗ thickness

This gives a formula for predicting the expected length of a new chile pod
with a given width and thickness.

These estimated coefficients can be notated as b0, b1,and b2, or as β̂0, β̂1,
β̂2. Putting a “hat” symbol over a parameter indicates that it is an
estimate of the parameter. Thus for this example,

b0 = β̂0 = 3.2619

b1 = β̂1 = 2.1134

b2 = β̂2 = 0.8183
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Multiple regression

As an example of using the regression equation, we might first note that
the range of values for width and thickness is 2.0 to 3.0 for width and 1.04
to 2.20 for thickness. To predict the length of a new chile pod, we might
consider only examples within those ranges. Otherwise, we risk
extrapolation, which is dangerous to do in linear regression since the same
relationships might not hold outside of the range of the data.

Suppose we want to predict the average elength of a chile pod with width
of 2.5 and thicknss of 1.3. (We don’t really need to worry about the units
here, but I think they are in cm.)

We can plug these values into the regression equation to get

Expected length = 3.2619 + 2.1134 ∗ (2.5) + 0.8183 ∗ (1.3) = 9.6

in cm.
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Multiple regression

Note the positive correlation between length and width, and also length
and thickness.
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Multiple regression

Note the signs of the estimated coefficients. The estimate for β1 is 1.837,
which is positive. This means that for every 1 cm increase in width, when
thickness is held constant, you expect an increase in length by 1.837 cm.

The estimate of β2 is 0.8183, which means that for every unit increase in
thickness (assuming width is held constant), you expect the length to
increase by 0.8183 units.
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Multiple regression

The difficulty with interpreting the regression coefficients in multiple
regression is that they determine the effect of the variable
when other variables are in the model. Thickness and width are not
independent of one another (they are fairly strongly correlated), so if width
is in the model, some of the effect of thickness is already taken into
account. This makes it a little unpredictable what will happen when both
thickness and width are in the model.
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Multiple regression

We can imagine instead doing simple linear regressions of length against
width or thickness.

> m1 <- lm(x$Length ~ x$Width + x$Thickness)

> m2 <- lm(x$Length ~ x$Width)

> m3 <- lm(x$Length ~ x$Thickness)

> m1$coefficients

(Intercept) x$Width x$Thickness

3.2619337 2.1134285 0.8182887

> m2$coefficients

(Intercept) x$Width

3.771047 2.384964

> m3$coefficients

(Intercept) x$Thickness

5.169273 3.604549
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Multiple regression

Each of these models gives different predictions for the length of a chile
pod. The first model uses both width and thickness to make a prediction.
The second model uses width but ignores thickness. And the third model
uses thickness but ignores width. Because width and thickness are highly
correlated, we might expect all three models to make similar predictions.

Generally, we prefer models with as few predictors as possible. There are
several reasons for this. One is that when making predictions, it is cheaper
(for example, it takes less time) to measure fewer variables. For the chile
example, you might wonder if you can just use width to predict the length
instead of width and thickness, for example. The topic of model
selection deals with trying to determine which model is preferable when
there is a choice of several.
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Multiple regression

To continue with the example of a chile pod with width 2.5 and thickness
1.3, the three models predict the following lengths

> m1$coefficients

(Intercept) x$Width x$Thickness

3.2619337 2.1134285 0.8182887

> m2$coefficients

(Intercept) x$Width

3.771047 2.384964

> m3$coefficients

(Intercept) x$Thickness

5.169273 3.604549

m1 :3.2619 + 2.1134 ∗ (2.5) + 0.8183 ∗ (1.3) = 9.61

m2 :3.7710 + 2.3850 ∗ (2.5) = 9.73

m3 :5.1693 + 3.6045 ∗ (1.3) = 9.86
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The three models give slightly different predictions for these values of
width and thickness. You could also compare the fitted values, the
predicted lengths on all the observed combinations of length and width:

> m1$fitted.values

34 35 36 37 38 39 40 41

8.938373 9.975457 8.512369 8.536036 9.407451 9.080375 8.634964 9.577380

42 43 44

7.750766 9.080375 8.956455

> m2$fitted.values

34 35 36 37 38 39 40 41

8.916667 9.083333 8.916667 8.916667 9.083333 8.916667 8.750000 8.916667

42 43 44

9.083333 8.916667 8.950000

> m1$fitted.values - m2$fitted.values

34 35 36 37 38 39

0.021706638 0.892123716 -0.404298094 -0.380631165 0.324117405 0.163708216

40 41 42 43 44

-0.115035621 0.660713737 -1.332567666 0.163708216 0.006454617
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Visualizing multiple regression

Before trying to visualize multiple regression, recall simple linear
regression, here from model m2.

ADA2 January 22, 2018 41 / 55



Visualizing multiple regression

source:
https://my.vertica.com/blog/machine-learning-series-linear-regression/
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Visualizing multiple regression
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Multiple regression

Usually, we don’t bother to make a 3D scatterplot with one response and
two predictors. It is difficult to visualize, and the plot depends on the
angle you use. Instead it is more common to just use a scatterplot matrix.

Most regression problems involve more than two predictors, and this gets
even more difficult to visualize. If there are three predictors, the plot would
have to be three dimensional. For p predictors, there would be p + 1
dimensions (the extra dimension is for the response).

With two predictors, the regression problem is to find the plane that
minimizes the sum of squared distances from points to the plane. For
more than three predictors, things get more abstract, and mathematically
you are minimizing distances from points to ”hyperplanes”.
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Multiple regression

One way of thinking about what occurs with multiple regression is that for
each value of thickness, we get a different regression line for length versus
width, and similarly, for each value of width, we get a different regression
line for length versus width.

From the model

> m1$coefficients

(Intercept) x$Width x$Thickness

3.2619337 2.1134285 0.8182887

If we fix the thickness at 1.5, the model predicts

Length = 3.2619 + (0.8183) ∗ (1.5) + 2.1134 ∗Width

= 4.4893 + 2.1134 ∗Width
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Multiple regression

At thickness equals 2.0, the model predicts

Length = 3.2619 + (0.8183) ∗ (2.0) + 2.1134 ∗Width

= 4.8985 + 2.1134 ∗Width

This is the same slope but a slightly different intercept.
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Visualizing multiple regression
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Multiple regression

Something to notice about the regression output is that R gives tests of
significance for the individual predictors. The column of p-values is giving tests
for whether or not the coefficients β0, β1, and β2 are equal to 0 or not.

Usually whether or not β0 = 0 is not as interesting–this is whether the intercept is
0. What is more interesting is whether β1 or β2 is equal to 0. If one of these is
equal to 0, that means that the independent variable does not significantly
improve the ability to predict the response variable. For the chile example, width
appears to significantly predict length, but thickness does not, at least when both
variables are in the model. We usually use p ≤ .05 to indicate statistical
significance.

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.2619 2.4315 1.342 0.1871

x$Width 2.1134 0.9221 2.292 0.0271 *

x$Thickness 0.8183 1.8380 0.445 0.6585

Multiple R-squared: 0.2277,Adjusted R-squared: 0.1901
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Multiple regression

Since thickness does not seem to be significant when width is in the model, we
might think about dropping thickness from the model. Note that doing so will
change the estimate of the effect of width and it’s p-value.

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.771 2.125 1.774 0.08324 .

x$Width 2.385 0.685 3.482 0.00118 **

---

Residual standard error: 2.26 on 42 degrees of freedom

Multiple R-squared: 0.224,Adjusted R-squared: 0.2055

Note that the p-value has decressed from 0.027 to 0.001.
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Multiple regression

Since thickness had a p-value that was greater than .05 (actually about 0.66)
when width and thickness were both in the model, can we conclude that thickness
is not significantly associated with length? We can fit the model with just
thickness as a predictor to check.

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.169 2.397 2.156 0.0368 *

x$Thickness 3.605 1.447 2.492 0.0167 *

---

Residual standard error: 2.395 on 42 degrees of freedom

Multiple R-squared: 0.1288,Adjusted R-squared: 0.108

Note that when width is not in the model, thickness actually is significantly

associated with length (p=.0167). However, when width is in the model, thickness

is not adding much extra information. Essentially, you can think of thickness as

being redundant when width is in the model. This is partly because thickness and

width are correlated. They are not giving independent information about length.

However, width seems to be giving somewhat more information than thickness.
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Multiple regression

The topic of model selection—which we’ll get into more—deals with
choosing which of these multiple models to prefer. Usually we prefer to
have fewer predictors if the extra predictors do not provide much extra
information. In this case, it would be usual to use width but not thickness
as a predictor.

Later on, we’ll look at more formal methods for model selection.
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Multiple regression

Something that is frequently used in the output is the R-squared (R2) value. In
simple linear regression (i.e., one predictor), R2 is the square of the correlation
between the response and the predictor. The mutliple R2 is the square of the
correlation between the response and the fitted values, i.e., between y and ŷ . For
example,

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.2619 2.4315 1.342 0.1871

x$Width 2.1134 0.9221 2.292 0.0271 *

x$Thickness 0.8183 1.8380 0.445 0.6585

Residual standard error: 2.282 on 41 degrees of freedom

Multiple R-squared: 0.2277,Adjusted R-squared: 0.1901

> cor(m1$fitted.values,x$Length)^2

[1] 0.2277329
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Multiple regression

R2 is also interpreted as the amount of variability in the response that is
“accounted for”, or predicted by the model. In other words, there is
variability in the length of the chile peppers. Some of the variability is
associated with the width and thicknesses, but even taking these into
account, there is still additional variability.

Generally, the more predictor variables you have, the more variability in the
response you can predict, so the higher R2 becomes. However, adding
more variables sometimes barely increases R2, indicating that adding a
new variable doesn’t necessarily contribute much useful information.
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Multiple regression

Because R2 always increases with more variables, using (multple) R2 by
itself doesn’t necessarily indicate the best model. Another approach is to
use adusted R2, which penalizes for the number of predictor variables.
This is also in the R output. You don’t need the formula for this, but it is

R2
adj = 1 − (1 − R2)

[
n − 1

n − k − 1

]
The adjusted R2 is based on R2, but is modified depending on the overall
sample size, n, and the number of predictors, k . The adjusted R2 value
does not necessarily increase when you add more predictors. Note that if n
is much larger than k , then the adjusted R2 is very close to the multiple
R2.
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Multiple regression

For the chile pepper example, we get

model R2 adjusted R2

width+thickness 0.2277 0.1901
width 0.2240 0.2055
thickness 0.1288 0.1080

Note that the model with width but not thickness has the highest adjusted
R2, and that its multiple R2 value is not much lower than the model with
both predictors.
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