
ANOVA

We think of regression as having a quantitative response and (usually)
quantitative predictors, while ANOVA has a quantitative response and
qualitative predictors. We’ll see later that ANOVA is a really a special case
of regression. The regression framework can handle qualitative predictors
and mixes of qualitative and quantitative predictors.

We’ll spend some time in the ANOVA setting, where all predictors are
qualitative, before going back to the general regression setting.
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ANOVA

Often ANOVA arises in designed experiments, where the the experimenter
decides certain conditions to be manipulated. A lot of concepts from
ANOVA historically came from agricultural experiments, where different
growing conditions were randomly assigned to different plots of land to see
which farming techniques affected the yield of the crop. Variables that
could be manipulated might include things like watering regimes and type
of fertilizer used.

In a greenhouse, experimenters can also control things like temperature
and humidity. Whether or not these are considered qualitative or
quantitative can depend on the design of the experiment. In many cases,
experiments designed as ANOVAs just use high and low values for
variables that could be treated as quantitative, such as temperature.
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ANOVA

There are different types of experimental designs that can be described,
depending on how individual observations are assigned to different
treatments (i.e., predictors). In many studies, some aspects are
observational and some experimental. For example, in a medical study,
subjects might be randomly assigned either a placebo or a control, where
the age of the patient is just observed.
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ANOVA

The phrase completely randomized design is used to refer to an
experiment in which only one primary factor (i.e., treatment) is analyzed,
and this factor or treatment is randomly assigned to each individual.

What exactly is meant by random might not be completely clear. The
experimenter can decide how many times each treatment is given. For
example, if an experiment has 3 levels (treatment A, treatment B, and
placebo) for blood pressure, and there will be 30 subjects, then the
experimenter can randomly choose 10 patients to receive treatment A,
then randomly pick 10 patients from the remaining 20 to receive treatment
B, then give the placebo to the remaining 10 subjects.
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ANOVA

This randomization is more like distributing cards from a shuffled deck
(where you sample without replacement) than rolling a die (sampling with
replacement). This randomization could be accomplished in R as follows,
assuming that patients are numbered with IDs 1 through 30:

> patient <- 1:30

> treatment <- c(rep("a",10),rep("b",10),rep("placebo",10))

> treatment <- sample(treatment,replace=F)

> mydata <- data.frame(cbind(patient,treatment))

> head(mydata)

patient treatment

1 1 b

2 2 placebo

3 3 placebo

4 4 a

5 5 placebo

6 6 a
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ANOVA

In this example, because the total sample size is a multiple of the number
of groups (30 is a multiple of 3), you can have equal sample sizes in each
group. This is called balanced ANOVA or a balanced design. This is
usually preferable in terms of statistical power. In other words, if there are
different means for the groups, then you have a higher probability of
detecting those differences using equal sample sizes than using unequal
sample sizes if other assumptions are met (such as equal variances).

This is one reason for using the sampling without replacement approach. If
each of the 30 subjects was assigned each treatment independently (using
replace=T), then it would be unlikely to get exactly 10 individuals
assigned to each of the three possible treatments.
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ANOVA

Although this example is considered an experiment (because of random
assignment), differences in blood pressure could be due to a number of
unmeasured variables such as age, sex/gender, initial blood pressure,
genetic influences to responses to the drugs, differences in lifestyle etc. It
is usually hoped that by doing random assignment, the different groups
will be similar in terms of the distribution of age, sex, genetics, etc. for the
different groups. This is more likely for large samples than for small
samples. Alternately, the experimenters could try to make the population
sampled from more uniform by only recruiting people from one sex, one
age range, etc.
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ANOVA

So far, we have described a one-factor ANOVA, which was also analyzed
last semester. ANOVA can still be an appropriate analysis tool even if the
factor isn’t controlled via randomization, but as we get into more complex
designs and more complicated variables, it will be useful to introduce
concepts of design. In addition, we introduce some new notation to help
generalize to more complex designs.

Thinking of the ANOVA model as a response and predictors, we can write
the model as

yij = µi + εij

Here yij refers to the jth individual in the ith treatment group. For the
blood pressure example, we would have j = 1, . . . , 10 and i = 1, 23. The
quantity y2,5 for example, would mean the 5th indvidual receiving
treatment B, and y3,2 would be the second individual receiving the placebo.
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ANOVA

Based on the model, we assume that there is a mean value associated with
each treamtent, µ1, µ2 and µ3. An individual in group 2 has an expected
blood pressure of µ2, and ε2,j represents the deviation of the jth individual
in group 2 from µ2. As in regression, the values εij is a residual, meaning
the difference between the observed and expected values for the individual.

Although I have said that ANOVA is a special case of regression, the
notation used here is a bit different from simple linear regression, where
there is only one subscript for the response and one subscript for the
residuals and predictor values.
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ANOVA

Note that the null hypothesis for ANOVA is that

µ1 = µ2 = · · · = µI

were I is the number of groups. (For the blood pressure example, I = 3.)

If the null hypothesis is true, we can let µ = µ1 = µ2 = · · · = µI , so that

yij = µ+ εij
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ANOVA

Another way of thinking about the model is that there is an overall mean,
µ, and each treatment might have a different effect:

yij = µ+ αi + εij

Here µi = µ+ αi , were the null hypothesis can be written as αi = 0 for
each i = 1, . . . , I .
We can also think of µ as the Grand mean

µ =
1

I

I∑
i=1

µi

and αi = µ− µi as the treatment effect.
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ANOVA

Typically, computer programs will estimate µ, the grand mean, which
serves as an intercept, plus αi , . . . , αI−1, setting αI = 0. The reason for
these is that you can’t separately estimate µ and all of the αi terms
because there isn’t a unique solution. If there are I groups, then only I
means can be estimated.

Typically, the first or last group is used as the default. For example if
placebo is the default, you might be looking at the effect of treatment A
or treatment B in comparison to the placebo used as a baseline.
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ANOVA: randomized block design

The completely randomized design assigned treatments randomly to each
subject, treating the pool of subjects as coming from a single population
or group. This works best when the subjects come from a fairly
homogeneous pool.

If the subjects come from different groups but are fairly homogeneous
within these groups, then it might make sense to use a randomized block
design, where you estimate the effect of being in different groups. Blocks
for medical patients could be based on say, sex, age category, or whether
or not the person smokes. Subejcts within each block are then randomly
assigned to the possible treatments.
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ANOVA: randomized block design

In a randomized block design, you estimate effects contributed by each
block as well as the treatment effects.

In agriculture, randomized block designs came about because there might
be differences in soil fertility in different plots of land. Researchers wanted
the effect of fertilizer (for example) to be estimated but needed to account
for the fact that some plots of land might have had different types of soil,
so that differences in crop yield depended on both the treatment (type of
fertilizer) and block (type of soil). The desire is to account for the effect
of the soil wen estimating the effect of the fertilizer.

Another example of a block effect would be different varieties of a species
(such as different strains of corn). Individuals can also be considered as
blocks when the same individual is exposed to different treatments.
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ANOVA: randomized block design

As an example where blocking is done on individuals is a study from Beecher
(1959) on treatments for itching. There were 10 patient volunteers, all male and
between 20 and 30 years old. There were seven treatments — 5 drugs, a placebo,
and no drug — to relieve itching. Each subject was given a different treatment on
seven study days. The time ordering of the treatments was randomized across
days.

Randomizing the time ordering is not part of the statistical analysis but is
scientifically a good idea — this helps reduce any accident effect due to time
ordering. Without ordering, it could be the patients become more or less sensitive
to itching over time regardless of treatment.

Except on the no-drug day, the subjects were given the treatment intravenously,
and then itching was induced. on their forearms using an effective itch stimulus
called cowage. The subjects recorded the duration of itching, in seconds. The
data are given in the table below. From left to right the drugs are: papaverine,
morphine, aminophylline, pentobarbitol, tripelenamine.
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ANOVA: randomized block design

Here the subjejcts are treated as blocks because some subjects might have
different mean levels of itchiness than others, and the effect of the
treatments should have these differences accounted for.

Patient Nodrug Placebo Papv Morp Amino Pento Tripel

1 174 263 105 199 141 108 141
2 224 213 103 143 168 341 184
3 260 231 145 113 78 159 125
4 255 291 103 225 164 135 227
5 165 168 144 176 127 239 194
6 237 121 94 144 114 136 155
7 191 137 35 87 96 140 121
8 100 102 133 120 222 134 129
9 115 89 83 100 165 185 79

10 189 433 237 173 168 188 317
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ANOVA: itching data example

ADA2 February 5, 2018 17 / 100



ANOVA: itching data example
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ANOVA: randomized block design

Now to write the model, yij again represents the jth treatment for the ith
block. The model is

yij = µij + εij

Here each individual has their own mean. This might sound impossible to
estimate because we only have one observation for each combination of
block and treatment. However, we can also think of the model this way
where µij = µ+ αi + βj :

yij = µ+ αi + βj + εij

That is, µ is the grand mean, αi is the effect of block i (i.e., subject i),
and βj is the effect of treatment j . Less formally

Response = Grand mean + Treatment effect + Block effect
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ANOVA: randomized block design

The ANOVA table can be written as follows, where y ·· is the mean of all
observations, y i · is the mean of

Source df SS MS

Blocks I − 1 J
∑

i (y i · − y ··)
2

Treatments J − 1 I
∑

i (y ·j − y ··)
2

Error (I − 1)(J − 1)
∑

ij(yij − y i · − y ·j + y ··)
2

Total IJ − 1
∑

ij(yij − y ··)
2

The MS (Mean square) column is filled in using SS/df for the same row.
For the itching data set, there are I = 10 blocks and J = 7 treatments, so
the total degrees of freedom is 70 − 1 = 69.
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ANOVA: randomized block design

Usually you are more interested in testing whether the treatment effects
are 0 rather than whether the blocking effects are 0. In other words the
hypothesis test of greatest interest is

H0 : β1 = β2 = · · · = βJ = 0

However, mathematically and in the software, there are really just two
types of effects (blocks and treatments), but the computer doesn’t care
which is which.
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ANOVA: randomized block design

The formal hypothesis test is based on an F test using

Fobs =
MS Treat

MS Error

Using J − 1 numerator degrees of freedom and (I − 1)(J − 1) denominator
degrees of freedom. (Recall that for the F test, there are numerator and
denominator degrees of freedom, so F distributions are indexed by two
kinds of degrees of freedom).
Usually, the randomized block design is used when blocks are very different
but observations within blocks would be very similar if the null hypothesis
of no treatment effect is true. However, you could test

H0 : α1 = α2 = · · · = αI = 0

using an F test based on

Fobs =
MS Blocks

MS Error
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ANOVA: randomized block design

The estimates for µ, αi and βj are

µ̂ = y ··

α̂i = y i · − y ··

β̂j = y ·j − y ··

µ̂ij = µ̂+ α̂i + β̂j

In other words, the estimated treatment effect (for a particular treatment)
is the average response for that treatment minus the overall mean, and the
estimated block effect (for a particular block) is the mean response in that
block (i.e., for that patient) minus the overall mean.
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ANOVA: randomized block design

The model can be fitted in R.

> x <- read.csv("itch.csv")

> head(x)

Patient Nodrug Placebo Papv Morp Amino Pento Tripel

1 1 174 263 105 199 141 108 141

2 2 224 213 103 143 168 341 184

3 3 260 231 145 113 78 159 125

4 4 255 291 103 225 164 135 227

5 5 165 168 144 176 127 239 194

6 6 237 121 94 144 114 136 155
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ANOVA: randomized block design

To analyze in R, the data should be in narrow format, with one column for
the patient, one for the treatment, and one for the response.

> install.packages("reshape2")

> library(reshape2)

Warning message:

package ‘reshape2’ was built under R version 3.4.3

> R.Version()$version.string

[1] "R version 3.4.2 (2017-09-28)"
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ANOVA: randomized block design

> itch.long & <- melt(x

+ , id.vars = "Patient"

+ , variable.name = "Treatment"

+ , value.name = "Seconds"

+ )

> head(itch.long)

Patient Treatment Seconds

1 1 Nodrug 174

2 2 Nodrug 224

3 3 Nodrug 260

4 4 Nodrug 255

5 5 Nodrug 165

6 6 Nodrug 237

ADA2 February 5, 2018 26 / 100



ANOVA: randomized block design

It is important to make the Patient ID a factor variable. Otherwise the patient ID
is treated as quantitative!!

> itch.long$Patient <- factor(itch.long$Patient)

> attach(itch.long)

> model1 <- lm(Seconds ~ Patient + Treatment)

> library(car)

> Anova(model1,type=3)

Anova Table (Type III tests)

Response: Seconds

Sum Sq Df F value Pr(>F)

(Intercept) 155100 1 50.1133 3.065e-09 ***

Treatment 53013 6 2.8548 0.017303 *

Patient 103280 9 3.7078 0.001124 **

Residuals 167130 54

---

Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1
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ANOVA: randomized block design

Based on the output, both the treatment and the patient are significant. To me,
this suggests that it was important to take into account differences between
patients. If we fit the model as a one-factor ANOVA (ignoring the effect of the
individual patients), the evidence appears not as strong against the null
hypothesis.

> model2 <- lm(Seconds ~ Treatment)

> Anova(model2,type=3)

Anova Table (Type III tests)

Response: Seconds

Sum Sq Df F value Pr(>F)

(Intercept) 364810 1 84.9935 2.709e-13 ***

Treatment 53013 6 2.0585 0.07082 .

Residuals 270409 63

---

Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1
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ANOVA: randomized block design

Note that there are slight differences between type I, II, and III sums of
squares. Type III sums of squares include an intercept term and is based
on testing predictors in the context of other predictors. Type III is the
default in SAS, while type II is the default in R. The two give equivalent
p-values when the design is balanced (equal sample sizes in each
combination of predictors).
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> summary(model1)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 188.286 26.598 7.079 3.07e-09 ***

TreatmentPlacebo 13.800 24.880 0.555 0.58141

TreatmentPapv -72.800 24.880 -2.926 0.00501 **

TreatmentMorp -43.000 24.880 -1.728 0.08965 .

TreatmentAmino -46.700 24.880 -1.877 0.06592 .

TreatmentPento -14.500 24.880 -0.583 0.56245

TreatmentTripel -23.800 24.880 -0.957 0.34303

Patient2 35.000 29.737 1.177 0.24436

Patient3 -2.857 29.737 -0.096 0.92381

Patient4 38.429 29.737 1.292 0.20176

Patient5 11.714 29.737 0.394 0.69518

Patient6 -18.571 29.737 -0.625 0.53491

Patient7 -46.286 29.737 -1.557 0.12543

Patient8 -27.286 29.737 -0.918 0.36292

Patient9 -45.000 29.737 -1.513 0.13604

Patient10 82.000 29.737 2.758 0.00793 **

Multiple R-squared: 0.4832,Adjusted R-squared: 0.3397

F-statistic: 3.367 on 15 and 54 DF, p-value: 0.00052
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To interpret the output, the no drug treatment is a baseline, and Patient 1 is a
baseline. So the estimate (fitted value) for patient 1 is the intercept, 188.286
seconds. Patient 1 actually recorded 174 seconds, so why isn’t that the estimate?
You can think of this.as meaning that if the experiement were performed again,
you might expect patient 1 to itch for 174 seconds. The idea is that you are using
information about that individual on the different treatments and other subjects
on the no-drug treatment to have additional information to predict what patient 1
might experience on a new exposure to the treatment.

Based on the output, the fitted value for patient 10 on morphine is

188.286 − 43.000 + 82.000 = 227.286

seconds. Something to notice in the output is that every treatment other than
placebo tended to reduce the itchiness, with papeverine as having te greatest
expected reduction and also the strongest p-value.
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In this sort of example, predicting the reduction in seconds is probably not
as interesting as learning whether the treatments were different from each
other, and which treatments were most effective.

From the linear model output, we also get an F test with a p-value, which
is a p-value for testing whether both variables together (blocks and
treatments) are significantly different from 0. This is usually not as
interesting as testing whether just treatments are different from each other
taking blocks into account.
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In order to test which treatments are significantly different from no
treatment, we should take into account that we are doing multiple
comparisons. The package multcomp can be used to help do multiple
comparisons.

> install.packages("multcomp")

> library(multcomp)

> comp.itch <- glht(aov(model1),linfct =

mcp(Treatment = "Tukey"))

> summary(comp.itch)
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Estimate Std. Error t value Pr(>|t|)

Placebo - Nodrug == 0 13.80 24.88 0.555 0.9978

Papv - Nodrug == 0 -72.80 24.88 -2.926 0.0697 .

Morp - Nodrug == 0 -43.00 24.88 -1.728 0.6005

Amino - Nodrug == 0 -46.70 24.88 -1.877 0.5039

Pento - Nodrug == 0 -14.50 24.88 -0.583 0.9971

Tripel - Nodrug == 0 -23.80 24.88 -0.957 0.9610

Papv - Placebo == 0 -86.60 24.88 -3.481 0.0165 *

Morp - Placebo == 0 -56.80 24.88 -2.283 0.2712

Amino - Placebo == 0 -60.50 24.88 -2.432 0.2052

Pento - Placebo == 0 -28.30 24.88 -1.137 0.9135

Tripel - Placebo == 0 -37.60 24.88 -1.511 0.7370

Morp - Papv == 0 29.80 24.88 1.198 0.8920

Amino - Papv == 0 26.10 24.88 1.049 0.9398

Pento - Papv == 0 58.30 24.88 2.343 0.2434

Tripel - Papv == 0 49.00 24.88 1.969 0.4454

Amino - Morp == 0 -3.70 24.88 -0.149 1.0000

Pento - Morp == 0 28.50 24.88 1.146 0.9107

Tripel - Morp == 0 19.20 24.88 0.772 0.9867

Pento - Amino == 0 32.20 24.88 1.294 0.8516

Tripel - Amino == 0 22.90 24.88 0.920 0.9676

Tripel - Pento == 0 -9.30 24.88 -0.374 0.9998

---

Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1
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Based on the output, the only comparison that is statistically significant at
the .05 level is papaverine versus placebo, and the second lowest adjusted
p-value is for papaverine versus no drug. This suggests that there is some
(but not overwhelming) evidence that this drug reduced itchiness.
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Basically what the package is doing is similar to a t-test between the columns in
the original data (not the long data set), but using the standard error that was
obtained from the ANOVA instead of just the two columns in the data

> head(x)

Patient Nodrug Placebo Papv Morp Amino Pento Tripel

1 1 174 263 105 199 141 108 141

2 2 224 213 103 143 168 341 184

3 3 260 231 145 113 78 159 125

4 4 255 291 103 225 164 135 227

5 5 165 168 144 176 127 239 194

6 6 237 121 94 144 114 136 155

> diff <- x$Placebo - x$Nodrug

> diff

[1] 89 -11 -29 36 3 -116 -54 2 -26 244

> mean(diff)

[1] 13.8

> mean(diff)/24.88

[1] 0.5546624
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The p-value for the Tukey multiple comparisons is based on the Tukey
range distribution, which is similar to a t-test but results in different
p-values.

You could also do a Bonferroni correction instead.

summary(comp.itch, test = adjusted("bonferroni"))
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Estimate Std. Error t value Pr(>|t|)

Placebo - Nodrug == 0 13.80 24.88 0.555 1.000

Papv - Nodrug == 0 -72.80 24.88 -2.926 0.105

Morp - Nodrug == 0 -43.00 24.88 -1.728 1.000

Amino - Nodrug == 0 -46.70 24.88 -1.877 1.000

Pento - Nodrug == 0 -14.50 24.88 -0.583 1.000

Tripel - Nodrug == 0 -23.80 24.88 -0.957 1.000

Papv - Placebo == 0 -86.60 24.88 -3.481 0.021 *

Morp - Placebo == 0 -56.80 24.88 -2.283 0.554

Amino - Placebo == 0 -60.50 24.88 -2.432 0.386

Pento - Placebo == 0 -28.30 24.88 -1.137 1.000

Tripel - Placebo == 0 -37.60 24.88 -1.511 1.000

Morp - Papv == 0 29.80 24.88 1.198 1.000

Amino - Papv == 0 26.10 24.88 1.049 1.000

Pento - Papv == 0 58.30 24.88 2.343 0.479

Tripel - Papv == 0 49.00 24.88 1.969 1.000

Amino - Morp == 0 -3.70 24.88 -0.149 1.000

Pento - Morp == 0 28.50 24.88 1.146 1.000

Tripel - Morp == 0 19.20 24.88 0.772 1.000

Pento - Amino == 0 32.20 24.88 1.294 1.000

Tripel - Amino == 0 22.90 24.88 0.920 1.000

Tripel - Pento == 0 -9.30 24.88 -0.374 1.000
ADA2 February 5, 2018 38 / 100



You can also plot confidence intervals for the differences between treatments as
follows.

# plot the summary

op <- par(no.readonly = TRUE) # the whole list of settable par’s.

# make wider left margin to fit contrast labels

par(mar = c(5, 10, 4, 2) + 0.1) # order is c(bottom, left, top, right)

# plot bonferroni-corrected difference intervals

plot(summary(comp.itch, test = adjusted("bonferroni"))

, sub="Bonferroni-adjusted Treatment contrasts")

par(op) # reset plotting options
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ANOVA: diagnostics

Part of an ANOVA or regression should ideally be diagnostic tests (although these
are often not mentioned in scientific studies).

The assumptions of ANOVA needed to make p-values correct include that the
response is normally distributed with the same variance and the same mean for
each combination of the predictors.

This also means that the residuals should be normally distributed with mean 0

and a common variance.
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ANOVA: diagnostics

Typically, diagnostics are done visually and nor very formally, especially by
examining residuals. Note that in the itchiness study, there is only one
observation for each combination of predictors, so the normality would be
impossible to assess looking at each combination of predictors separately.
However, the residuals should all come from the same distribution, so
there is still information in the residuals regarding the normality and
constant variance assumptions.
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If the plot() function is given saved model output, it will automatically generate
diagnostic plots. For example

> par(mfrow=c(2,2))

> plot(model1)
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Things to look for in the diagnostic plots are that the residuals versus
fitted values don’t appear to have any pattern such as U shapes or funnel
shapes, and that the QQ plot looks roughly straight. Here we see about
three slight outliers.

The Residuals vs Fitted plot and the QQ plot are the most widely used.
The Scale-Location plot should ideally be flat, and the leverage plot can
find cases with unusual predictor values influencing the analysis, which is
more useful in a regression setting with quantitative predictors.
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Another approach is to plot the residuals using a histogram or boxplot.
We see that the plots show some right-skew and possibly outliers, which is
consistent with the QQ plot.

> boxplot(model1$residuals)

> histogram(model1$residuals,nclass=20)

> shapiro.test(model1$residuals)

Shapiro-Wilk normality test

data: model1$residuals

W = 0.96345, p-value = 0.03895
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ANOVA

A non-parametric alternative to ANOVA in this situation (ANOVA with
one treatment, and one blocking variable, and no replication within
treatment-block combinations), you can use the Friedman Test (named
after economist Milton Friedman), which is similar to the Kruskal-Wallis
test for one-way ANOVA. Here the values within each block are replaced
by the ranks within that block. So patient 1 becomes

Patient Nodrug Placebo Papv Morp Amino Pento Tripel
1 174 263 105 199 141 108 141

More general tests for dealing with ANOVA alternatives based on rank are
called Durbin tests.
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ANOVA

The Friedman test is implemented in R

> friedman.test(Seconds~Treatment | Patient,data=itch.long)

Friedman rank sum test

data: Seconds and Treatment and Patient

Friedman chi-squared = 14.887, df = 6, p-value = 0.02115

This gives a similar result as the original ANOVA. Note that the syntax
(and test) distinguishes blocks from treatments. Here you condition on the
blocks (patients). If you swap Treatment and Patient variables, then you
are testing whether patients differ from each other, controlling for type of
medication. This would also result in a statistically significant test
(p-value = .01).
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ANOVA with two factors and replication

Generally, ANOVA can be run with more than two factors, some of which
might be considered blocking variables (meaning we want to control for
them), or we might be interested in all factors.

Often experiments are done with replication for different combinations of
treatments. This is usually preferable to just having one observation for
each combination (it is more data and allows better estimates of
variability).
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ANOVA with two factors and replication

For example, consider an experiment on beetles with four different
insecticides and three different doses (low, medium, high). There are
twelve combinations, and suppose each combination is replicated four
times, with the survival time of the beetles recorded. This results in 48
observations.

For this data, the doses of high, medium, and low, are really ordinal (we
don’t know if they are equally spaced, for example, but they can be
ranked), but the ANOVA will treat them as qualitative, like having three
different brands without knowing the rankings. Time is measured in
fractions of a 10 minute interval. (So 0.4 means 4 minutes.)
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ANOVA with two factors and replication

dose insecticide t1 t2 t3 t4

1 A 0.31 0.45 0.46 0.43

1 B 0.82 1.10 0.88 0.72

1 C 0.43 0.45 0.63 0.76

1 D 0.45 0.71 0.66 0.62

2 A 0.36 0.29 0.40 0.23

2 B 0.92 0.61 0.49 1.24

2 C 0.44 0.35 0.31 0.40

2 D 0.56 1.02 0.71 0.38

3 A 0.22 0.21 0.18 0.23

3 B 0.30 0.37 0.38 0.29

3 C 0.23 0.25 0.24 0.22

3 D 0.30 0.36 0.31 0.33
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ANOVA with two factors and replication

The original data has the doses listed as 1, 2, and 3. To do an ANOVA,
and to not assume the doses are equally spaced, we should treat them as
factor variables.

> x <- read.table("beetles",header=T)

> x$dose <- factor(x$dose, labels =

c("low", "medium", "high"))

> x

You should be careful here that the program assigns the correct labels to
the observations.

ADA2 February 5, 2018 53 / 100



ANOVA with two factors and replication

> x

dose insecticide t1 t2 t3 t4

1 low A 0.31 0.45 0.46 0.43

2 low B 0.82 1.10 0.88 0.72

3 low C 0.43 0.45 0.63 0.76

4 low D 0.45 0.71 0.66 0.62

5 medium A 0.36 0.29 0.40 0.23

6 medium B 0.92 0.61 0.49 1.24

7 medium C 0.44 0.35 0.31 0.40

8 medium D 0.56 1.02 0.71 0.38

9 high A 0.22 0.21 0.18 0.23

10 high B 0.30 0.37 0.38 0.29

11 high C 0.23 0.25 0.24 0.22

12 high D 0.30 0.36 0.31 0.33
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ANOVA with two factors and replication

As usual, we need to reshape the data into the long format. Here the columns
should be dose, insecticide, and replicate.

library(reshape2)

beetles.long <- melt(x

, id.vars = c("dose", "insecticide")

, variable.name = "number"

, value.name = "hours10"

)

str(beetles.long)

> str(beetles.long)

’data.frame’: 48 obs. of 4 variables:

$ dose : Factor w/ 3 levels "low","medium",..: 1 1 1 1 2 2 2 2 3 3 ...

$ insecticide: Factor w/ 4 levels "A","B","C","D": 1 2 3 4 1 2 3 4 1 2 ...

$ number : Factor w/ 4 levels "t1","t2","t3",..: 1 1 1 1 1 1 1 1 1 1 ...

$ hours10 : num 0.31 0.82 0.43 0.45 0.36 0.92 0.44 0.56 0.22 0.3 ...
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ANOVA with two factors and replication

> beetles.long

> head(beetles.long)

dose insecticide number hours10

1 low A t1 0.31

2 low B t1 0.82

3 low C t1 0.43

4 low D t1 0.45

5 medium A t1 0.36

6 medium B t1 0.92
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ANOVA with two factors and replication

Balanced ANOVA examples like this have an advantage in interpretation, which is
that you can think about the average response for each combination of predictors,
and that the average of say, all low doses is the average of the averages for each
combination of low dose and insecticide.
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ANOVA with two factors and replication

This is easier to interpret than the original data. Looking at the margins,
the survival time was lowest for insecticides A and C. Higher doses also
lead to lower survival times on average (without claiming statistical
signficance here), but the survival times are not equally spaced—the
difference in average survival times between doses 3 versus 2 is larger than
for doses 2 versus 1 (again, not claiming any significance here).

You can do boxplots for looking at the responses for combinations of
predictors.

> boxplot(hours10 ~ dose + insecticide,data=beetles.long)
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It looks like there are problems with the equal variances assumption! We’ll
proceed anyway to illustrate the ideas for two-way ANOVA.

To make the assumptions not so badly violated, one possibility is to
transform the data, such as using log of the survival times. We’ll analyze
the data both ways.
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To analyze the data as a two-factor ANOVA, you can use the same code
as for the randomized block design.

> attach(beetles.long)

> m1 <- lm(hours10 ~ dose + insecticide)

> library(car)

> Anova(m1,type=3)

Response: hours10

Sum Sq Df F value Pr(>F)

(Intercept) 1.63654 1 65.408 4.224e-10 ***

dose 1.03301 2 20.643 5.704e-07 ***

insecticide 0.92121 3 12.273 6.697e-06 ***

Residuals 1.05086 42
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> m2 <- lm(log(hours10) ~ dose + insecticide)

> Anova(m2,type=3)

Anova Table (Type III tests)

Response: log(hours10)

Sum Sq Df F value Pr(>F)

(Intercept) 6.2985 1 112.941 1.768e-13 ***

dose 5.2375 2 46.958 1.948e-11 ***

insecticide 3.5572 3 21.262 1.560e-08 ***

Residuals 2.3423 42

---
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Based on the boxplots, I would be more comfortable with using the
log-transformed survival times, although it doesn’t much change conclusions at
this point. We can also look at diagnostic plots or tests of normality for the
residuals. The log-transformed data is more consistent with normality
assumptions.

> shapiro.test(m1$residuals)

Shapiro-Wilk normality test

data: m1$residuals

W = 0.92242, p-value = 0.003622

> shapiro.test(m2$residuals)

Shapiro-Wilk normality test

data: m2$residuals

W = 0.96408, p-value = 0.1475
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ANOVA with interaction

When there are two factors, it is possible that the effect of one factor depends on
the value of the other factor. For this example, this could mean that the effect of
the dose depends on the insecticide. To check for an interaction, you can use this
code:

> m3 <- lm(hours10 ~ dose + insecticide + dose*insecticde)

> Anova(m3,type=3)

Anova Table (Type III tests)

Response: hours10

Sum Sq Df F value Pr(>F)

(Intercept) 0.68063 1 30.6004 2.937e-06 ***

dose 0.08222 2 1.8482 0.1721570

insecticide 0.45395 3 6.8031 0.0009469 ***

dose:insecticide 0.25014 6 1.8743 0.1122506

Residuals 0.80072 36

---

Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1
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interaction.plot(beetles.long$dose, beetles.long$insecticide,

beetles.long$hours10 , main = "insecticide by dose")

interaction.plot(beetles.long$insecticide, beetles.long$dose,

beetles.long$hours10, main = "dose by insecticide")
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ANOVA with interaction

The idea behind the plots is that we can see whether the effect of the
insecticide depends on the dose, or similarly, whether the effect of the dose
depends on the insecticide. For example, in the left plot on the previous
slide, there is a rank ordering of insecticides based on survival times.

Here lower survival times means a more effective insecticide, and for each
dose, we appear to have that insecticide A has the lowest survival time,
followed by C, then followed by D, and finally B. If there were a strong
interaction between dose and insecticide, you might find that one
insecticide is the most effective at low doses, while another is the the most
effective at higher doses. In this case, the rank ordering of insecticides
doesn’t change much.
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ANOVA with interaction

A statistical test for interaction is testing whether the lines in the
interaction plot are parallel, taking into account variability in the data.
This does not necessarily mean that the lines are straight, but that the
spacing in between the lines doesn’t change significantly from level to level
of the factor on the horizontal axis. An interaction can show up in the
interaction plots either by curves crossing or by being significantly
non-parallel.

Looking back at the table of cell means (slide 57), the idea is the
differences between columns are similar, and the differences between rows
are similar. For example, going from dose 1 to dose 2 (low to medium), the
change in average survival for insecticide A is (0.413-0.320) = 0.093 (i.e.,
.93 minutes or 55 seconds), and the difference for insecticde B is (0.880 -
0.815) = 0.712 (i.e., 39 seconds). Given the variability in the data, the
change going from low to medium doses is similar for insecticides A and B.
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ANOVA with interaction

Often in a two-way ANOVA, you check for an interaction, and if the interaction is
not signficiant, you don’t consider it in a final model. This again is an issue for
model selection, where you decide whether you prefer a model with an interaction
term or with no interaction term. The interaction model can be written as

yijk = µ+ αi + βj + (αβ)ij + εijk

or in terms of means,
µij = µ+ αi + βj + (αβ)ij

Informally,

Response = Grand mean + F1 effect + F2 effect + F1-by-F2 interaction + residual

. The model with no interaction is called an additive model or main effects
model, and is

yijk = µ+ αi + βj + εijk
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ANOVA with interaction

The main effects and interaction effects can be estimated as follows:
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ANOVA with interaction

The ANOVA table (in the balanced case) is as follows:
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ANOVA with interaction

Since there is no significant interaction for the insecticide example, we’ll go ahead
and look at comparing factors for significance, not using any interactions.

> library(multcomp)

> comparisons <- glht(aov(m2), linfct = mcp(dose = "Tukey",

insecticide="Tukey"))

> summary(comparisons)

Linear Hypotheses:

Estimate Std. Error t value Pr(>|t|)

dose: medium - low == 0 -0.18666 0.08349 -2.236 0.1941

dose: high - low == 0 -0.77515 0.08349 -9.284 <0.001 ***

dose: high - medium == 0 -0.58849 0.08349 -7.048 <0.001 ***

insecticide: B - A == 0 0.70465 0.09641 7.309 <0.001 ***

insecticide: C - A == 0 0.19671 0.09641 2.040 0.2786

insecticide: D - A == 0 0.50707 0.09641 5.260 <0.001 ***

insecticide: C - B == 0 -0.50795 0.09641 -5.269 <0.001 ***

insecticide: D - B == 0 -0.19759 0.09641 -2.049 0.2743

insecticide: D - C == 0 0.31036 0.09641 3.219 0.0195 *
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ANOVA with interaction

Plotting the pairwise comparisons.

> op <- par(no.readonly = TRUE) # the whole list of settable par’s.

# make wider left margin to fit contrast labels

> par(mar = c(5, 10, 4, 2) + 0.1) # order is c(bottom, left, top, right)

> plot(summary(comparisons, test = adjusted("bonferroni"))

> par(op)
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ANOVA with interaction
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ANOVA with interaction

Several of the comparisons appear to be significant. Medium and low are not
significantly different from each other, both are significantly different from high
doses. For insecticides, the only pairwise comparisons that are not significant are
A to C and B to D. To illustrate the grouping, it is helpful to present these in
order of their marginal means (from the table on slide 57):

Doses:

1=Low 2=Med 3=High

0.618 0.544 0.276

------------ -----

Insecticides:

B D C A

0.677 0.534 0.393 0.314

-----------

-----------

------------
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ANOVA with interaction

We’ll now try another two-factor ANOVA example in which the interaction
term will be significant. For this example, the voltage of batter is
measured at 3 different temperatures (50, 65, 80 degrees F), and using
three different materials (metal plates) in the battery, just called 1, 2, and
3. Although the temperatures are equally spaced, we’ll still analyze the
data using a two-factor ANOVA.

battery <-

read.table("http://www.math.unm.edu/~james/STAT428/battery.txt",header=T)
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ANOVA with interaction

The data has essentially the same structure as the beetle data, again with
four replications for each combination of factors. To run this as an
ANOVA, we’ll convert the predictor variables to factors.

> battery$material <- factor(battery$material)

> battery$temp <- factor(battery$temp)

> library(reshape2)

> battery.long <- melt(battery, id.vars =

c("material","temp"), variable.name = "battery",

value.name = "volt")
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ANOVA with interaction

> battery

material temp v1 v2 v3 v4

1 1 50 130 155 74 180

2 1 65 34 40 80 75

3 1 80 20 70 82 58

4 2 50 150 188 159 126

5 2 65 136 122 106 115

6 2 80 25 70 58 45

7 3 50 138 110 168 160

8 3 65 174 120 150 139

9 3 80 96 104 82 60
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ANOVA with interaction

> battery.long

material temp battery volt

1 1 50 v1 130

2 1 65 v1 34

3 1 80 v1 20

4 2 50 v1 150

5 2 65 v1 136

6 2 80 v1 25

7 3 50 v1 138

8 3 65 v1 174

9 3 80 v1 96
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ANOVA with interaction

> str(battery.long)

’data.frame’: 36 obs. of 4 variables:

$ material: Factor w/ 3 levels "1","2","3": 1 1 1 2 2 2 3 3 3 1 ...

$ temp : Factor w/ 3 levels "50","65","80": 1 2 3 1 2 3 1 2 3 1 ...

$ battery : Factor w/ 4 levels "v1","v2","v3",..: 1 1 1 1 1 1 1 1 1 2 ...

$ volt : int 130 34 20 150 136 25 138 174 96 155 ...
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ANOVA with interaction

> library(car)

> attach(battery.long)

> m1 <- lm(volt ~ materail + temp + material*temp)

> # equivalently,

> m1 <- lm(volt ~ materail*temp)

> Anova(m1,type=3)

Anova Table (Type III tests)

Response: volt

Sum Sq Df F value Pr(>F)

(Intercept) 72630 1 107.5664 6.456e-11 ***

material 886 2 0.6562 0.5268904

temp 15965 2 11.8223 0.0002052 ***

material:temp 9614 4 3.5595 0.0186112 *

Residuals 18231 27
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ANOVA with interaction

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 134.75 12.99 10.371 6.46e-11 ***

material2 21.00 18.37 1.143 0.263107

material3 9.25 18.37 0.503 0.618747

temp65 -77.50 18.37 -4.218 0.000248 ***

temp80 -77.25 18.37 -4.204 0.000257 ***

material2:temp65 41.50 25.98 1.597 0.121886

material3:temp65 79.25 25.98 3.050 0.005083 **

material2:temp80 -29.00 25.98 -1.116 0.274242

material3:temp80 18.75 25.98 0.722 0.476759
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> par(mfrow=c(2,2))

> interaction.plot(material,temp,volt)

> interaction.plot(temp,material,volt)
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> by(volt,battery.long[,c(1,2)],mean)

material: 1

temp: 50

[1] 134.75

------------------------------------------------------------

material: 2

temp: 50

[1] 155.75

------------------------------------------------------------

material: 3

temp: 50

[1] 144

------------------------------------------------------------

material: 1

temp: 65

[1] 57.25
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From the interaction plots, we see that as the temperature increases, the
voltage tends to decrease for all three materials. However, for material 3,
there is very little change from 50 to 65 degrees, and a big decrease from
65 to 80. For material 1, there is a large change in voltage from 50 to 65
degrees, and very little change from 65 to 80.

This suggests that the effect of temperature depends on the material, and
similarly, the effect of the material depends on the temperature.
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Note that in the original model, the test for the main effect for material
doesn’t appear significant, but because the interaction is significant, you
can’t conclude that the materials are not significantly affecting the voltage.

Note that if the model is made with the interaction term removed, then
both material and temperature are significant. The p-value for material
isn’t significant only when the interaction is in the model.

To give an example of what the model predicts for combinations of
material and temperature, consider predicting the voltage for material 2 at
65 degrees. This would be

134.75 + 21.00 − 77.25 + 41.50 = 120

For material 1, temperature 80, the predicted voltage is

134.75 − 77.25 = 57.5
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ANOVA with interaction
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ANOVA with interaction
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ANOVA with interaction
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Battery example as a regression

Here we’ll redo the battery example, treating temperature as quantitative instead
of as a factor variable.

> x <- read.table("battery.txt",header=T)

> x

material temp v1 v2 v3 v4

1 1 50 130 155 74 180

2 1 65 34 40 80 75

3 1 80 20 70 82 58

4 2 50 150 188 159 126

> str(x)

’data.frame’: 9 obs. of 6 variables:

$ material: int 1 1 1 2 2 2 3 3 3

$ temp : int 50 65 80 50 65 80 50 65 80

$ v1 : int 130 34 20 150 136 25 138 174 96

$ v2 : int 155 40 70 188 122 70 110 120 104

$ v3 : int 74 80 82 159 106 58 168 150 82

$ v4 : int 180 75 58 126 115 45 160 139 60
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Battery example as a regression

> x$material <- factor(x$material)

> library(reshape2)

> x2 <- melt(x,id.vars=c("material","temp"),

variable.name="number",value.name="volt")

> str(x2)

’data.frame’: 36 obs. of 4 variables:

$ material: Factor w/ 3 levels "1","2","3": 1 1 1 2 2 2 3 3 3 1 ...

$ temp : int 50 65 80 50 65 80 50 65 80 50 ...

$ number : Factor w/ 4 levels "v1","v2","v3",..: 1 1 1 1 1 1 1 1 1 2 ...

$ volt : int 130 34 20 150 136 25 138 174 96 155 ...

ADA2 February 5, 2018 93 / 100



Battery example as a regression

> m4 <- lm(volt ~ material*temp)

> Anova(m4,type=3)

Anova Table (Type III tests)

Response: volt

Sum Sq Df F value Pr(>F)

(Intercept) 25825.8 1 30.2581 5.667e-06 ***

material 2093.3 2 1.2263 0.3076614

temp 11935.1 1 13.9835 0.0007772 ***

material:temp 2315.1 2 1.3562 0.2729805

Residuals 25605.5 30
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m5:

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 250.5417 45.5469 5.501 5.67e-06 ***

material2 88.0000 64.4130 1.366 0.182036

material3 1.2917 64.4130 0.020 0.984134

temp -2.5750 0.6886 -3.739 0.000777 ***

material2:temp -0.9667 0.9738 -0.993 0.328825

material3:temp 0.6250 0.9738 0.642 0.525881
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Battery example as a regression

> Anova(m5,type=3)

Anova Table (Type III tests)

Response: volt

Sum Sq Df F value Pr(>F)

(Intercept) 76854 1 88.0826 1.046e-10 ***

material 10684 2 6.1223 0.005606 **

temp 39043 1 44.7471 1.499e-07 ***

Residuals 27921 32
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Battery example as a regression

> summary(m5)

Call:

lm(formula = volt ~ material + temp)

Residuals:

Min 1Q Median 3Q Max

-55.417 -22.708 1.667 16.188 56.500

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 257.944 27.484 9.385 1.05e-10 ***

material2 25.167 12.059 2.087 0.04494 *

material3 41.917 12.059 3.476 0.00149 **

temp -2.689 0.402 -6.689 1.50e-07 ***
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Battery example as a regression

If we compare the models wit no interaction using the ANOVA versus the
regression, we see that they make similar predictions. The models are
different and make slightly different predictions, but the predictions are
fairly similar, and are highly correlated.

> plot(jitter(m2$fitted.values,2),jitter(m5$fitted.values,2),

cex.lab=1.3,cex.axis=1.3)

> lines(c(40,180),c(40,180))
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Battery example as a regression

Another way to compare the ANOVA versus regression models is by looking at
the estimated effects and standard deviations:

m5:

(Intercept) 257.944 27.484 9.385 1.05e-10 ***

material2 25.167 12.059 2.087 0.04494 *

material3 41.917 12.059 3.476 0.00149 **

temp -2.689 0.402 -6.689 1.50e-07 ***

m2:

(Intercept) 122.47 11.17 10.965 3.39e-12 ***

material2 25.17 12.24 2.057 0.04819 *

material3 41.92 12.24 3.426 0.00175 **

temp65 -37.25 12.24 -3.044 0.00472 **

temp80 -80.67 12.24 -6.593 2.30e-07 ***
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