
Unbalanced ANOVA

The previous examples we looked at had balanced designs–equal numbers
of observations for each combination of factors. It is more typical to have
unbalanced ANOVA, where there are different numbers of observations in
the different factors. This could be because data are observational, and the
numbers of observations were not in the researcher’s control, or because of
missing data (for example if a battery had been defective for reasons
unrelated to the experiment, so had to be dropped from the study).
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Unbalanced ANOVA

The experiment consists of measuring insulin levels in rats a certain length
of time after a fixed dose of insulin was injected into their jugular or portal
veins. This is a two-factor study with two vein types (jugular, portal) and
three time levels (0, 30, and 60 minutes). An unusual feature of this
experiment is that the rats used in the six vein and time combinations are
distinct (so we don’t use the rats as blocking variables).

We’ll use a two-factor interaction model. (Again, we’ll treat time as a
factor although we could treat it as quantitative.) The sample sizes are
between 3 and 12. The data is already in the long format, so doesn’t need
to be reshaped.
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Unbalanced ANOVA

> rat <- read.table("rats.txt",header=T)

> rat$time <- factor(rat$time)

> rat

vein time insulin

1 j 0 18

2 j 0 36

3 j 0 12

4 j 0 24

5 j 0 43

6 j 30 61

7 j 30 116

8 j 30 63
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Unbalanced ANOVA

The sample sizes can found quickly using the table() command. The
dim() command gives the dimensions of the data frame (number of rows
and columns). The number of rows is the total sample size.

> table(vein,time)

time

vein 0 30 60

j 5 6 3

p 12 10 12

> dim(rat)

[1] 48 3
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Unbalanced ANOVA

Based on the boxplot, the variability in insulin appears to increase with the
amount of time, so we might consider a transformation.

> attach(rat)

> boxplot(insulin ~ vein*time,

cex.lab=1.3,cex.axis=1.3)
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Boxplots
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Unbalanced ANOVA

Here are the boxplots with log-transformed data, whcih looks a little
better and gets rid of the outlier.

> boxplot(insulin ~ vein*time,

cex.lab=1.3,cex.axis=1.3)

ADA2 February 12, 2018 7 / 89



Boxplots
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Unbalanced ANOVA

For unbalanced ANOVA, type I versus type III sums of squares have a
different meaning. Type I sums of squares are sequential, meaning that
measure variation contributed by the given variable given previous
variables in the model. This means that type I sums of squares are
sensitive to the input order of the variables. Typically we use type III sums
of squares instead.
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Unbalanced ANOVA

Although some of the formulas under the hood are different for balanced versus
unbalanced ANOVA, a lot of the R commands are the same. For this example, we
can fit models using either the log response or original response:

> m1 <- lm(insulin ~ vein*time)

> library(car)

AWarning message:

package ?car? was built under R version 3.4.3

> Anova(m1,type=3)

Anova Table (Type III tests)

Response: insulin

Sum Sq Df F value Pr(>F)

(Intercept) 8868 1 2.7977 0.10150

vein 16897 1 5.3308 0.02571 *

time 3505 1 1.1057 0.29876

vein:time 23 1 0.0072 0.93278

Residuals 139468 44
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Unbalanced ANOVA

> Anova(m2,type=3)

Anova Table (Type III tests)

Response: log(insulin)

Sum Sq Df F value Pr(>F)

(Intercept) 71.502 1 233.6279 < 2.2e-16 ***

vein 4.517 1 14.7595 0.0003884 ***

time 1.117 1 3.6505 0.0625818 .

vein:time 0.144 1 0.4698 0.4966530

Residuals 13.466 44
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Unbalanced ANOVA

> m3 <- lm(log(insulin) ~ vein + time)

> Anova(m3,type=3)

Anova Table (Type III tests)

Response: log(insulin)

Sum Sq Df F value Pr(>F)

(Intercept) 133.519 1 441.4671 < 2.2e-16 ***

vein 7.917 1 26.1752 6.242e-06 ***

time 2.174 1 7.1866 0.01023 *

Residuals 13.610 45
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M1:

M3: 
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ANCOVA

ANCOVA (Analysis of covariance) is a linear model that allows you to
compare two (or more) groups while adjusting for one or more quantitative
covariates. Similarly, you might be interested in comparing the relationship
between two quantitative variables while accounting for group differences.

Failing to account for one of the variables that isn’t of interesting can lead
to (unintentially) misleading relationships.
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ANCOVA

As a made up example, suppose you have a sample of books of different
lengths, some of which are hardcover, some softcover. Maybe these are
books you buy at the beginning of a semester.

title category length price

Applied Linear Statistical Models soft 1396 54.64
It soft 1000 12.95
War & Peace soft 1300 14.95
Wizard of Oz (5 volumes) hard 1200 7.98
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ANCOVA

As another example, suppose you recruit 20 patients for a study and wish
to determine whether treatment A or treatment B is more effective.
Although patients are assigned randomly to treatments, you might notice
that due to the small sample size, patients receiving treatment A tend to
be younger than those receiving treatment B. In this case, although
randomization should have helped, you might wish to additionally take into
account ages of patients in determining the effects of the two treatments.

As another example, suppose you want to test whether Toyota minivans
are more expensive than Honda minivans in Albuquerque’s used car
market. Here you don’t have a controlled experiment, and you might have
limited data (for example, looking on craigslist). It is unlikely that the
mileages or model years of the cars being compared will be exactly the
same, so you would want to take that into account in your model.
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ANCOVA

In these examples, you are more interested in comparing group means (the
usually ANOVA setting). However, the model is the same if you are more
interested in the relationship between a quantitative predictor and the
(quantitative) response, and need to adjust for qualitative factors in the
data. For example, if you want to see the effect of mileage on car price,
you might want to adjust for the fact that different brands (e.g, Honda
versus Toyota) might have different selling prices even when all other
variables are equal.
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ANCOVA

As an extreme example, suppose you are interested in the relationship of
book length to book price. You might think that longer books tend to be
more expensive. This might be true within categories (longer novels might
be more expensive than shorter novels, longer hardback textbooks tend to
be more expensive than shorter hardback textbooks). But if you ignore the
category, it might be hard to compare. Are shorter hardcover textbooks
less expensive than long novels?

Ignoring category differences can lead to some misleading relationships.
For example if you just have long novels and short textbooks in your
sample, you might conclude that length is negatively related to price.
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ANCOVA

The simplest approach to ANCOVA is to adjust the intercept for each
group. The model is

response = Grand mean + group + covariate

or
yij = µ+ αi + βxij + εij

where µi = µ+ αi is the intercept for group i .
The effect of the model is that there is a separate regression line for each
group, but the regression lines are assumed to be parallel. The effect of
belonging to a particular group is to shift the regression line up or down.
Typically, the main interest is in testing whether αi = 0 for each i ,
meaning that there
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ANCOVA

As an example, we’ll use the cars data and compare prices of cars with
salvage versus clean titles. Does the title status matter for the price of the
car? As a reminder, here is the data:

> x <- read.table("cars2.txt",header=T)
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year price miles title

1 1995 1200 150000 clean

2 2004 4500 184000 salvage

3 1995 3200 NaN clean

4 1998 1850 152000 salvage

5 1998 3400 136000 clean

6 2004 8500 85500 clean

7 2007 12400 89000 clean

8 2002 5450 137000 clean

9 2007 18500 64000 clean

10 1996 15000 134000 clean

11 2008 13999 143934 clean

12 1997 2500 NaN salvage

13 2007 8500 129000 clean

14 2003 NaN NaN salvage

15 1986 4500 190291 clean

16 1983 4300 NaN rebuilt

17 1976 4500 131000 clean

18 1967 10500 NaN clean

19 2010 NaN 66471 Na

20 2008 8995 13500 clean ADA2 February 12, 2018 21 / 89



To clean up the data, since we are interested in title status of clean versus
salvage, we’ll remove the two observations with title status either missing
or “rebuilt”. We can just remove the bad rows from the dataset.

> x2 <- x[-c(16,19),]
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To start, we’ll consider price the response and take into account only the model
year. This is partly motivated by the miles variable having a lot of missing values.

> mymodel <- lm(x2$price ~ x2$title + x2$year)

> summary(mymodel)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -256639.9 203310.9 -1.262 0.2275

x2$titlesalvage -5897.6 2993.6 -1.970 0.0689 .

x2$year 132.8 101.8 1.304 0.2133
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Based on the model, there is slight, but not strong evidence that salvage titles
have lower prices than. The direction of the effect comes from the sign of the
coefficient, which is negative. The coefficient here is −5897.6, meaning that
having the salvage title reduces the price an estimated $5897.60, which seems like
quite a lot. The range of prices for these used cars is $2500 to $18500, so this
seems like a pretty large difference in prices. For the amount of variability in the
data, however and the small sample size, it is not statistically significant at the
.05 level. Note that there are only three nonmissing cases with a salvage title, so
there is not much data to estimate its effect.

If you just do a t-test on prices of salvage titles versus clean titles, then you are

exaggerating the effect of the salvage title by not taking into account that these

are older cars. On the other hand, the effect of the year is not significant, so you

could think of fitting the model with year in it. To some extent, which model you

prefer depends on your interest. If you are primarily interested in estimating the

effect of the salvage title, I would leave year in the model to not exaggerating the

effect. If you are primarily interested in the factors that effect the price, the title

status appears more important than the year.
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Based on the output, we can draw two regression lines: one for salvage
titles, and one for clean:

price = −256639.9 − 5897.6 + 132.8(year) for salvage

price = −256639.9 + 132.8(year) for clean

> summary(mymodel)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -256639.9 203310.9 -1.262 0.2275

x2$titlesalvage -5897.6 2993.6 -1.970 0.0689 .

x2$year 132.8 101.8 1.304 0.2133
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> plot(x2$year[x2$title=="clean"],x2$price[x2$title=="clean"],

pch=15,cex=2,xlab="year",ylab="price",cex.lab=1.3,cex.axis=1.3)

> points(x2$year[x2$title=="salvage"],

x2$price[x2$title=="salvage"],pch=16,cex=2,col="grey")

> legend(1970,15000,legend=c("clean","salvage"),pch=c(15,16),

col=c("black","grey"),cex=1.7)

> xaxis <- 1970:2015

> price1 <- -256639.9 + 132.8*xaxis

> price2 <- -256639.9 -5897.6 + 132.8*xaxis

> points(xaxis,price1,type="l",lwd=2)

> points(xaxis,price2,type="l",lwd=2,col="grey")
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ANCOVA
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Dotted line is simple linear regression ignoring
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ANCOVA

As another example, we consider a data set used by Fisher (1947) on body
weights and heart weights of cats given digitalis (a type of drug). The
question of interest was whether female cats versus male cats had different
heart weights adjusting for the fact that males are larger.

> x <- read.table("digitalis.txt",header=T)

> a1 <- lm(x$heart ~ x$body + x$sex)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.3663 1.3684 1.729 0.0906 .

x$body 2.7948 0.5759 4.853 1.5e-05 ***

x$sexm 0.7767 0.4641 1.674 0.1011

ADA2 February 12, 2018 29 / 89



ANCOVA

Note that the output here means that heart sizes weren’t significantly
different for male versus female cats once body size was accounted for. In
other words, differences in heart size are accounted for by differences in
body size.

ADA2 February 12, 2018 30 / 89



ADA2 February 12, 2018 31 / 89



Note that just doing a t-test ignoring the sex of the cats would lead to a
highly significant result (just doing a t-test on heart weights for female
versus male cats). This is not wrong–it is addressing a different question.
The t-test is just asking whether heart weights are different, not whether
heart weights are different adjusting for body weight.
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ANCOVA

An interaction model for ANCOVA means that different groups can have
different slopes as well as different intercepts. The model can be written
this way

yij = µ+ αi + βixij + εij

An example is the iris dataset (also from Fisher) which compares petal
lengths and widths, and sepal lengths and widths for three species of iris:
setosa, versicolor, and virginica.
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source: https://image.slidesharecdn.com/irisdataanalysiswithr-140801203600-phpapp02/95/iris-

data-analysis-example-in-r-3-638.jpg?cb=1406925587
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ANCOVA

> data(iris)

> head(iris)

> head(iris)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa

2 4.9 3.0 1.4 0.2 setosa

3 4.7 3.2 1.3 0.2 setosa

4 4.6 3.1 1.5 0.2 setosa

5 5.0 3.6 1.4 0.2 setosa

6 5.4 3.9 1.7 0.4 setosa
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ANCOVA

> plot(iris$Petal.Width,iris$Petal.Length,type="n"

,xlab="Petal Width",ylab="Petal Length",cex.lab=1.3,cex.axis=1.3)

> mypch = c(rep(1,50),rep(2,50),rep(3,50))

> mycol = c(rep("black",50),rep("red",50),

rep("orange",50))

> points(iris$Petal.Width,iris$Petal.Length,

col=mycol,pch=mypch,cex=2)

> legend(0,7,legend=c("virginica","versicolor","setosa"),

pch=c(1,2,3),col=c("orange","red","black"),cex=2)
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ANCOVA

> m1 <- lm(iris$Petal.Length ~ iris$Petal.Width*iris$Species)

> Anova(m1,type=3)

Response: iris$Petal.Length

Sum Sq Df F value Pr(>F)

(Intercept) 13.4329 1 102.8050 < 2.2e-16 ***

iris$Petal.Width 0.1625 1 1.2438 0.2665889

iris$Species 6.7474 2 25.8196 2.614e-10 ***

iris$Petal.Width:iris$Species 2.0178 2 7.7213 0.0006525 ***

Residuals 18.8156 144

ADA2 February 12, 2018 38 / 89



ANCOVA

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.3276 0.1309 10.139 < 2e-16

iris$Petal.Width 0.5465 0.4900 1.115 0.2666

iris$Speciesversicolor 0.4537 0.3737 1.214 0.2267

iris$Speciesvirginica 2.9131 0.4060 7.175 3.53e-11

iris$Petal.Width:iris$Speciesversicolor 1.3228 0.5552 2.382 0.0185

iris$Petal.Width:iris$Speciesvirginica 0.1008 0.5248 0.192 0.8480

(Intercept) ***

iris$Petal.Width

iris$Speciesversicolor

iris$Speciesvirginica ***

iris$Petal.Width:iris$Speciesversicolor *

iris$Petal.Width:iris$Speciesvirginica
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ANCOVA

> m1

Call:

lm(formula = iris$Petal.Length ~ iris$Petal.Width * iris$Species)

Coefficients:

(Intercept)

1.3276

iris$Petal.Width

0.5465

iris$Speciesversicolor

0.4537

iris$Speciesvirginica

2.9131

iris$Petal.Width:iris$Speciesversicolor

1.3228

iris$Petal.Width:iris$Speciesvirginica

0.1008
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ANCOVA

To get the regression lines, we have one per species, each with a different
slope. Setosa is the baseline, so for this species we have

Petal length = 1.3276 + 0.5465 × Petal width

For versicolor

Petal length = 1.3276 + 0.4537 + (0.5465 + 1.3228) × Petal width

= 1.7813 + 1.8693 × Petal width

For virginica,

Petal length = 1.3276 + 2.9131 + (0.5465 + 0.1008) × Petal width

= 4.2407 + 0.6473 × Petal width
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ANCOVA

To check model assumptions, you can again look at residual plots and
plots of residuals. I tried a few transformations of the petal lengths:
logarithmic and square root. Based on residual plots, the original data
results in funnel-shaped residuals against fitted values. A logarithmic
transformation of the response tends to overcorrect, leading to a funnel in
the opposite direction, while a square-root transformation makes the
residual plots look more reasonable.
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ANCOVA

I won’t go into the details here, but there isn’t much difference in the models
using the different transformations–for all of them the interaction is highly
significant. Since there isn’t much difference, you might just use the original data
without a transformation since that is easier to interpret.

You could also compare fitted values from the different models. Here m2 uses
untransformed data, m3 uses log-transformed response, and m4 uses the square
root transformation. To compare fitted values, you would have to transform
predicted values back to the original scale

> plot(m2$fitted.values,exp(m3$fitted.values))

> plot(m2$fitted.values,m4$fitted.values^2)
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Polynomial regression

Instead of transforming responses, another possibility is to either transform
predictor variables or add polynomial functions of predictor variables. This
is especially done when the relationship between response and predictors
appears to be curvilinear, such as when the response is either maximized or
minimized by intermediate values of a response variable. In this case the
response might be considered a polynomial (e.g., quadratic, cubic, etc.)
function of the predictor(s).
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Polynomial regression

If there is only one predictor variable, the model can be written as

yi = β0 + β1xi + β2x
2
i + β3x

3
i + · · · + βpx

p
i + ε

Often, only p = 2 or p = 3 is used. Here are some examples in R:

x <- seq(-3,3,0.01);

y21 <- x^2-5;

y22 <- -(x+1)^2+3;

y31 <- (x+1)^2*(x-3);

y32 <- -(x-.2)^2*(x+.5)-10;

plot( x, y21, type="l", main="Quadratics", ylab="y")

points(x, y22, type="l", lt=2)

plot( x, y31, type="l", main="Cubics", ylab="y")

points(x, y32, type="l", lt=2)
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Polynomial regression

Note that a polynomial relationship might be useful even if the maximum
and minimum points are not within the range of the predictor (for example
on the left hand graph if only x > 0 is observed), simply because it allows
a nonlinear relationship. Also note that linear regression is a special case
of polynomial regression. For example, in the model

yi = β0 + β1xi + β2x
2
i + εi

if β2 = 0, then the model reduces to simple linear regression. Testing the
null hypothesis H0 : β2 = 0 in this case could be used to decide whether
the relationship is linear versus quadratic.
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Polynomial regression

The equation
y = β0 + β1x + β2x

2

is the equation of a parabola. Another way of expressing this (using
completing the square)

y = β0 + β2

(
β1
β2

x + x2
)

y = β0 + β2

(
x +

β1
2β2

)2

− β21
2β2

y = β0 −
β21
2β2

+ β2

(
x +

β1
2β2

)2

This means that the parabola is centered at − β1
2β2

. If βk is estimated by
bk , then the estimated regression curve is centered at −b1/(2b2).

ADA2 February 12, 2018 51 / 89



Polynomial regression

Polynomial regression can be fit by using new predictor variables based on
powers of the original predictor x. Here is a toy example using powers up
to x4 with only 5 observations:

> x <- rnorm(5)

> y <- x+runif(5)

> x2 <- x^2

> x3 <- x^3

> x4 <- x^4

> a <- lm(y ~ x + x2 + x3 + x4)

> summary(a)

> x

[1] 0.6292986 0.6346305 -0.2228644 -1.1363222 -0.8370428

> y

[1] -0.05138843 2.54694578 0.91717318 -1.25256085 -0.66412987
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Polynomial regression
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Polynomial regression
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Polynomial regression
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Polynomial regression
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> a

Call:

lm(formula = y ~ x + x2 + x3 + x4)

Coefficients:

(Intercept) x x2 x3 x4

-0.3325 8.9617 -2.9693 -47.6713 -35.8821

> plot(x,y,ylim=c(-60,20))

> xaxis <- seq(-2,2,.01)

> yhat <- -0.3325 *8.9617*xaxis-2.9693*xaxis^2-

47.6713*xaxis^3-35.8821*xaxis^4

> points(xaxis,yhat,type="l")
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Polynomial regression

One thing to notice about this is that with n observations, a polynomial
regression with p = n − 1 predictors can exactly fit the data. This is not
really a good thing. By doing this it tends to make some extreme
predictions for potential data values that weren’t observed. Normally
having higher powers makes it more desirable to have larger sample sizes
to avoid overfitting. The idea of overfitting is that the model fits the
particular observations but is unlikely to generalize to a new data set
collected from the same population.

Although extrapolation beyond the range of the data can be dangerous in
linear regression, the situation is even worse in polynomial regression since
it can lead to such extreme predictions.

Another issue in polynomial regression is that measurement scale (e.g.,
Celsius versus Fahrenheit), now can affect the results (p-vlaues, predicted
values, etc.).
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Polynomial regression

Another problem with using n observations to fit n parameters (n − 1 coefficients
plus the intercept) is that it doesn’t allow any extra information to estimate
uncertainty. As a result, the standard errors and p-values cannot be given.

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -28.190 NA NA NA

x -145.540 NA NA NA

x2 -1.357 NA NA NA

x3 343.781 NA NA NA

x4 220.553 NA NA NA

Residual standard error: NaN on 0 degrees of freedom

Multiple R-squared: 1,Adjusted R-squared: NaN

F-statistic: NaN on 4 and 0 DF, p-value: NA
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Polynomial regression

Amazingly, by having just one less parameter, you can suddenly get standard
errors and p-values for all parameters. Note that none of the p-values indicates
singificance even though the curve essentially goes through three of the five data
points. With a small ratio of sample size to parameters, it is difficult to find
significance.

> a2 <- lm(y ~ x + x2 + x3)

> summary(a2)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.2830 2.5999 0.493 0.708

x 1.4618 4.7427 0.308 0.810

x2 -1.7765 7.4583 -0.238 0.851

x3 -0.9551 8.7390 -0.109 0.931
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Polynomial regression: cubic fit
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Polynomial regression: cubic fit
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Polynomial regression: cubic fit

We also see that interpolation seems more reasonable in the cubic model
compared to the quartic, but that extrapolation (beyond the range of the
data) will lead to some very extreme predictions.
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Polynomial regression: cubic fit

Although a simple linear regression is also not significant, the p-values have gone
down and the standard errors are much smaller.

> a3 <- lm(y ~ x)

> summary(a3)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.5536 0.5283 1.048 0.372

x 1.3643 0.7009 1.946 0.147

Residual standard error: 1.145 on 3 degrees of freedom

Multiple R-squared: 0.5581,Adjusted R-squared: 0.4108

F-statistic: 3.788 on 1 and 3 DF, p-value: 0.1468
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It is also possible to have two or more predictors, each of which could be
fit with quadratic, cubic or higher order terms. With more predictors, you
could easily end up with huge numbers of parameters to estimate, which
will require more data. Usually we want as few parameters as possible, and
for polynomial regression, we usually want to just use quadratic or maybe
cubic powers if possible.

With two predictors, each of which could be quadratic, we can have the
model

yi = β0 + β1x1i + β2x2i + β3x
2
1i + β4x

2
2i + β4x1ix2i + εi

This model includes an interaction, which is still quadratic since the total
power of x1x2 is 2.
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As an example, the data below give the Mooney viscosity at 100 degrees
Celsius (y ) as a function of the filler level (x1) and the naphthenic oil (x2)
level for an experiment involving filled and plasticized elastomer
compounds.
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Polynomial regression: cubic fit
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The graphic plots two variables—such as Mooney viscocity against oil, and
instead of using a plotting character for each point, replaces it with the value of
the third variable. This is a clever way to get three dimensional information into
an apparently two-dimensional graph, and mostly works if you have a small
number of values in the third variable.

The plots can be generated using ggplot2() using

library(ggplot2)

p <- ggplot(mooney, aes(x = oil, y = mooney, label = filler))

p <- p + geom_text()

p <- p + scale_y_continuous(limits = c(0,

max(mooney$mooney, na.rm=TRUE)))

p <- p + labs(title="Mooney data, mooney by oil with

filler labels")

print(p)

## Warning: Removed 1 rows containing missing values (geom text).

library(ggplot2)

p <- ggplot(mooney, aes(x = filler, y = mooney, label = oil))

p <- p + geom_text()
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Plots like these can also be made in base graphics by plotting an empty plot and
then using the text() command, which is usually used to annotate graphs:

> attach(x)

> plot(oil,mooney,type="n",cex.lab=1.3,cex.axis=1.3)

> text(oil,mooney,as.character(filler))
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Polynomial regression: cubic fit
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From the plots, the relationship between viscosity and both variables appears to
be curvilinear. This suggests adding quadratic terms for both variables.

> oil2 <- oil^2

> filler2 <- filler^2

> oil.m <- lm(mooney ~ oil+filler+oil2+filler2+oil*filler)

> summary(oil.m)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 27.144582 2.616779 10.373 9.02e-09 ***

oil -1.271442 0.213533 -5.954 1.57e-05 ***

filler 0.436984 0.152658 2.862 0.0108 *

oil2 0.033611 0.004663 7.208 1.46e-06 ***

filler2 0.027323 0.002410 11.339 2.38e-09 ***

oil:filler -0.038659 0.003187 -12.131 8.52e-10 ***

---

Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1

Multiple R-squared: 0.9917,Adjusted R-squared: 0.9892

F-statistic: 405.2 on 5 and 17 DF, p-value: < 2.2e-16
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From the output, the regression equation is

Mooney = 27.144 − 1.271 × oil + 0.437 × filler

+ 0.034 × oil2 + 0.027 × filler2 − 0.0387 × oil × filler
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To see how the interaction works, let’s predict some values. Instead of
copying out the regression equation—which also would tend to lead to
some roundoff error—we’ll use some built in R functions. In particular, the
function predict let’s you input some fake data, and get predicted values
from the model. To set up the fake data, you have to put it into a data
frame with the same variable names as the predictor variables in the model.

ADA2 February 12, 2018 73 / 89



> newoil <- c(0,10,20,30,40)

> newfiller <- c(0,0,0,0,0,60,60,60,60,60)

> newoil <- c(newoil,newoil)

> newoil2 <- newoil^2

> newfiller2 <- newfiller^2

> mydata <- data.frame(cbind(newoil,newfiller,

newoil2,newfiller2))

> names(mydata) <- c("oil","filler","oil2","filler2")

> a <- predict(oil.m,mydata)

> a

1 2 3 4 5 6 7 8

27.14458 17.79121 15.15996 19.25082 30.06379 151.72512 119.17636 93.34972

9 10

74.24519 61.86277
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> plot(mydata$oil[1:5],a[1:5],pch=16,cex=1.5,cex.lab=1.3,cex.axis=1.3,ylim=c(0,160),xlab="oil",ylab="viscosity")

> points(mydata$oil[1:5],a[1:5],type="l")

> points(mydata$oil[1:5],a[6:10],type="l",col="red")

> points(mydata$oil[1:5],a[6:10],pch=16,cex=1.5,

col="red")

> legend(22,160,legend=c("filler=60","filler=0"),

col=c("red","black"),pch=c(16,15),cex=1.3)
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If you forget to match the variable names, here is the error you get (I often forget
to match the names):

> mydata <- data.frame(cbind(newoil,newfiller,newoil2,newfiller2))

> a <- predict(oil.m,mydata)

Warning message:

’newdata’ had 10 rows but variables found have 24 rows
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To comment on the output, all second-order terms, including interactions, are
highly significant. Also, the R2 values are extremely high, suggesting that not
much else (for example cubic terms) would explain more of the response. The
direction of the effects is hard to interpret because the signs change. For
example, the effect of oil decreases viscosity in the first order term, but increases
for the second order term, and the interaction is also negative, suggesting that as
oil level increases, increasing the filler will decrease viscosity more, and vice versa
(as filler increases, increasing oil decreases viscosity more.

The plot helps illustrate the idea of the interaction. The relationship between

viscosity and oil is quadratic for both levels of filler (I only plotted the two

extreme values for the filler), but this quadratic relationship depends on the level

of the filler. Similarly, one could make a plot of viscosity versus filler, and find

that the quadratic relationship depends on the oil value.
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The residual plots look ok. There are potentially a couple of influential
observations (points 6 and 20), but this does not seem bad.

Another possibility is to use the log of the Mooney viscosity. In this case, the log
viscosity still seems to be quadratically related to oil, but linearly related to filler.
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> oil.m2 <- lm(log(mooney) ~ oil + filler + oil2 +

filler2 + oil*filler)

> summary(oil.m2)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.236e+00 3.557e-02 90.970 < 2e-16 ***

oil -3.921e-02 2.903e-03 -13.507 1.61e-10 ***

filler 2.860e-02 2.075e-03 13.781 1.18e-10 ***

oil2 4.227e-04 6.339e-05 6.668 3.96e-06 ***

filler2 4.657e-05 3.276e-05 1.421 0.173

oil:filler -4.231e-05 4.332e-05 -0.977 0.342

Multiple R-squared: 0.9954,Adjusted R-squared: 0.9941
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Here the interaction term isn’t significant so we can remove it and refit the
model. The quadratic term for filler is also not signifcant (after the
interaction is removed), so we can remove that too.

> oil.m3 <- lm(log(mooney) ~ oil + filler + oil2 + filler2 )

> oil.m3

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.251e+00 3.202e-02 101.537 < 2e-16 ***

oil -4.033e-02 2.664e-03 -15.136 1.11e-11 ***

filler 2.838e-02 2.061e-03 13.773 5.32e-11 ***

oil2 4.146e-04 6.277e-05 6.605 3.34e-06 ***

filler2 3.997e-05 3.201e-05 1.248 0.228
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Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.230e+00 2.734e-02 118.139 < 2e-16 ***

oil -4.024e-02 2.702e-03 -14.890 6.26e-12 ***

filler 3.086e-02 5.716e-04 53.986 < 2e-16 ***

oil2 4.097e-04 6.356e-05 6.446 3.53e-06 ***

---

Multiple R-squared: 0.9947,Adjusted R-squared: 0.9939
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Both the full quadratic model and the model with log-transformed
responses fit the data very well in terms of R2 and adjusted R2. There are
pros and cons for the two models. Pros for the log-viscosity model are that
there are fewer parameters and that it doesn’t have an interaction term,
making it easier to interpret.

A pro for the quadratic model is that uses the original measurement scale,
which again makes it easier to interpret in another sense, especially if you
are using it to make predictions.
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To get confidence intervals for effects (for regression coefficients), you can
use the confint() function. You can either get intervals just for specific
variables in the model, or for a list of them.

> confint(oil.m,"oil")

2.5 % 97.5 %

oil -1.721958 -0.8209274

> confint(oil.m,c("oil","filler"))

2.5 % 97.5 %

oil -1.7219576 -0.8209274

filler 0.1149033 0.7590651
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How to get all coefficients automatically?

> names(oil.m)

[1] "coefficients" "residuals" "effects" "rank"

[5] "fitted.values" "assign" "qr" "df.residual"

[9] "na.action" "xlevels" "call" "terms"

[13] "model"

> names(oil.m$effects)

[1] "(Intercept)" "oil" "filler" "oil2" "filler2"

[6] "oil:filler" "" "" "" ""

[11] "" "" "" "" ""

[16] "" "" "" "" ""

[21] "" "" ""
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How to get all coefficients automatically?

> confint(oil.m,names(oil.m$effects)[1:6])

> confint(oil.m,names(oil.m$effects)[1:6])

2.5 % 97.5 %

(Intercept) 21.62366037 32.66550266

oil -1.72195764 -0.82092736

filler 0.11490332 0.75906511

oil2 0.02377265 0.04344848

filler2 0.02223872 0.03240655

oil:filler -0.04538226 -0.03193570

> confint(oil.m,names(oil.m$effects)[1:6],level=.90)

5 % 95 %

(Intercept) 22.59241512 31.69674790

oil -1.64290585 -0.89997915

filler 0.17141878 0.70254965

oil2 0.02549891 0.04172222

filler2 0.02313079 0.03151448

oil:filler -0.04420253 -0.03311544
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To see the effect of removing parameters on confidence intervals, we’ll
compare the widths of the CIs for models with log-response and all
quadratic terms, interaction removed, and interaction and filler-squared
removed, just on the oil parameter. Here m4 has the smallest number of
parameters, and m2 has the most. The CI gets slightly wider as we
increase the number of parameters.

> confint(oil.m4,"oil")[2] - confint(oil.m4,"oil")[1]

[1] 0.01131161

> confint(oil.m3,"oil")[2] - confint(oil.m3,"oil")[1]

[1] 0.0111952

> confint(oil.m2,"oil")[2] - confint(oil.m2,"oil")[1]

[1] 0.01224919
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