
Model selection

We’ll now begin a more systematic approach to model selection. The idea
in model selection is to pick a reasonable subset of possible predictors from
those available in the data set. Other issues include whether or not to
include interaction or quadratic terms, and whether or not to transform
variables.

In some ways, model selection is as much as an art as a science. There
can be different goals in model selection which could lead to different
models in particular cases, and there can be different opinions about which
model is ”best”. There are some ways of doing automated model selection
in the computer, but you should be aware that these approaches tend to
treat each predictor as being equally important. Scientifically, some
predictors might be more interesting than others, and there might be
reasons for including them in the model whether or not they are
statistically significant.
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Model selection

The goals of prediction versus explanation can also lead to differences in
choosing models. In prediction, you are interested in predicting future
values of the response variable. This might lead to wanting to know which
combination and levels of predictors can maximize a response, for example.

In explanation, you might be less interested in the response itself and more
interested in which variables contribute to the response.
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Model selection

To take a particular example where either prediction or explanation could
be of interest, consider universities modeling student success (measured as
years to graduation, probability of graduating within 5 years, cumulative
GPA, future income after graduating, or some other measure) as predicted
by high school GPA, high school class rank, ACT/SAT score, and some
measure of socioeconomic status. A regression model treating success as
the response and these other variables as predictors is easy enough to
build, but what is the point of the model?

One possible point is to determine future criteria for enrollment. Here they
might be able to predict how much changing the formula for admissions
would affect graduation rates. In this case, the prediction might be more
important than whether a variable passes a particular threshold for
significance.

ADA2 February 21, 2018 3 / 90



Model selection

For the same example, users of the regression might be interested whether
socioeconomic status is an important variable. In this case, the absolute
graduation rates aren’t as significant as whether or not socioeconomic
status helps explain differences graduate rates for different students. In
this case also, if socioeconomic status isn’t statistically significant, you
might still be interested in keeping it in the model in order to compare the
differences between socioeconomic groups adjusting for other variables in
the model. In this case it would just be important to note that the
differences are not statistically significant (although they could be
practically significant).

Eliminating it from the model would essentially mean dropping the initial
research question altogether, which might not make sense. In that case you
might want to compare models with and without the variable of interest.
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Model selection

If scientific questions aren’t an issue, then usually we prefer models with
fewer variables. This is often expressed as the principle of ”Ockham’s
Razor” (or ”Occam”). William of Ockham was a medieval theologian
(died 1347) and philosopher, and the idea is named after him, although
the idea appeared earlier, including in Artistotle, who is quoted (on
Wikipedia) as saying

”We may assume the superiority ceteris paribus [other things being equal]
of the demonstration which derives from fewer postulates or hypotheses.”

Another saying that is similar is ”do not multiple entities beyond
necessity”. In statistics, this tends to get interpreted as ”use as few
parameters as possible”, although one could use the reasoning to prefer
non-parametric methods.
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Model selection

The use of Ockham’s razor is also sometimes called the principle of
parsimony. This has also been used extensively in evolutionary theory by a
method literally called parsimony. The idea there is something like this: if
a feature or trait is difficult to evolve, then it is (often) better to assume
an evolutionary tree for which the trait only evolves once (or as few times
as possible) rather than a tree that requires a trait to have evolved
multiple times. Here Ockham’s razor is interpreted to mean something like
”do not multiply mutations beyond necessity”.

The method doesn’t always work well. For example, winged flight (bats,
birds, insects), echolocation (bats and whales), bioluminescence, and
fingerprints (koalas and humans). Although it would be simpler in some
ways to have an evolutionary tree where these things arose once, there is a
lot of genetic evidence to suggest otherwise in some cases. The moral is
that simpler models are not always better.
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Model selection

The idea that simpler models are better seems to me more a philosophical
idea than statistical. Philosophers of science try to think about what
makes good scientific theories and hypotheses, and usually the list includes
things like

I simplicity (i.e., parsimony)

I predictive ability

I conservativism (or coherence with existing theory)

I verifiability/falsifiability

I fruitfulness (i.e., leads to more theories and hypothesis)

I accuracy–(being true, and able to account for existing evidence)

I precision–(making predictions that are as exact as possible).

I not being ad hoc
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Model selection

Often, philosophers are interested in big scientific theories, such as
Copernicus’s sun-centered solar system versus earth-centered solar system
models, Darwin’s theory of natural selection, Freud’s theories about the
subconscious, Relativity, etc.

In statistics, our goals are usually more modest, and often we are not
looking for models that are literally true. We are usually quite happy with
models that find relationships between variables that are approximately
correct and that find trends in the data rather than exact relationships. A
famous saying from the statistician George Box is

”All models are wrong, but some are useful”

Here usefulness might mean that we can make predictions that help us
plan for the future, or that we can be convinced that certain variables are
more important than others for understanding things like graduation rates.
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Model selection

For model selection in statistics, we’re mostly interested in finding
variables that are most predictive of the response variable, and leaving
those in the model, while eliminating variables that are less useful for
predicting the repsonse variable.

Rather than big, philosophical motivations, this is often motivated by
some practical reasons. Here are some:

I models with lots of predictors (especially interactions) are harder to
interpret

I models with lots of predictors will tend to have larger confidence
intervals for their estimates

I models with too many predictors can be ”overfitted”–they account for
the current data but are unlikley to generalize well to future data sets

I often we have more predictors than observations!
I often predictors are very closely related, and so have redundant

information (collinearity, more on this later)
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Model selection

There are different strategies for dealing with model selection. A nice one
to use if you don’t have too many predictors is called backward
elimination. The idea is to start with all variables that could potentially
be used as predictors (all variables available).

Once you fit the model with all variables, you decide whether to accept the
model or delete one of the variables from the model. Criteria for choosing
the variable to delete include using the variable with the highest p-value (if
it is above a minimum threshold), or choosing the variable that would
have the minimum impact on adjusted R2 if deleted. Once you delete a
variable, you fit the model again with the reduced set of variables, and
repeat the procedure (either accept the model or find another variable to
delete). You repeat the process over and over until you have a model
where all variables meet the threshold where they should be retained.
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Model selection

We’ll use an example which has more predictors than previous data sets we’ve
used. The example is for salaries at a small college in the 1970s and compares
salaries of male (0) versus female (1) professors, and includes variables for their
rank (assistant, associate, full), number of years in current rank, degree
(1=doctorate or 0=other), and yd for years since highest degree completed.

> x <- read.table("salary.dat",header=T)

> head(x)

id sex rank year degree yd salary

1 1 0 3 25 1 35 36350

2 2 0 3 13 1 22 35350

3 3 0 3 10 1 23 28200

4 4 1 3 7 1 27 26775

5 5 0 3 19 0 30 33696

6 6 0 3 16 1 21 28516
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Model selection

Although this data set is old, comparing pay for men versus women is still
quite a timely topic. A recent paper discusses gender pay differences for
Uber drivers:

Discussion on podcast: http://one.npr.org/i/583678276:583678278

Paper: http://www.math.unm.edu/∼james/STAT428/Uber.pdf

This data set had over 1.8 million drivers, and who knows how many
variables. The goal of the researchers was not so much to determine the
incomes of the drivers (dollars per hour, which is the response), but rather
to see if there were differences in pay (was gender a significant predictor of
pay?), and whether gender could be made insignificant by accounting for
other variables (time of service, experience of drivers, speed of drivers, etc.)
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Model selection

Some interesting features of their data are that the raw data would consist of one
row per drive, rather than one row per driver, so that the size of the data set
would be enormous. If the average Uber driver gave 100 rides over the data
collection period (something like 2 years), the data set would have 180 million
rows. Note that Excel has a maximum of 220 = 1, 048, 576 rows for a single
spreadsheet.

Explanatory variables could have included driver GPS coordinates (latitude and

longitude) for place of pickup, GPS coordinates for drop off, number of

passengers, number of miles driven, time of pickup, time of drop off, date, day of

week, CC information of the passenger (and whatever variables they can get from

that), fare paid, plus variables associated with the driver such as age, sex, time

that they started working for Uber, year, make, and model of the car. Researchers

would have also wanted to determine things like type of locations: airport,

business, residential.
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Model selection

The topic of big data deals with very large data sets like these. What if
there is too much to load into R (I think R would struggle with this one).
Uber data will be small compared to say, Amazon.com, or Medicare. What
if the data doesn’t even fit on one computer?
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Many of the variables might not have been relevant for the study
questions, but many data sets are like this. Lots of data is collected, then
questions about the data are asked later. This reverses the usual high
school science fair presentation of the scientific method
http://astro1.panet.utoledo.edu/∼ljc/ScientificMethod.htm
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Model selection

To go back to our smaller data set, we have only 52 observations. The predictors
are sex, rank, year since attaining rank, an indicator for doctorate degree, and
year since highest degree, so there are five predictors. It’s not necessary to convert
binary variables to factors, but this can be done anyway to make sure that one
category is the baseline. Thus, full professor here is made the baseline.

> x$sex <- factor(x$sex,labels=c("Male","Female"))

> x$degree <- factor(x$degree,

labels=c("Other", "Doctorate"))

> faculty$rank <- factor(faculty$rank , levels=c(3,2,1),

label=c("Full","Assoc","Assist"))

> head(x)

id sex rank year degree yd salary

1 1 Male 3 25 Doctorate 35 36350

2 2 Male 3 13 Doctorate 22 35350

3 3 Male 3 10 Doctorate 23 28200

4 4 Female 3 7 Doctorate 27 26775

5 5 Male 3 19 Other 30 33696

6 6 Male 3 16 Doctorate 21 28516
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Note that the distribution of ranks appears to be different for male versus female
professors

> attach(x)

> table(sex,rank)

rank

sex 1 2 3

Male 10 12 16

Female 8 2 4

> chisq.test(table(sex,rank))

Pearson’s Chi-squared test

X-squared = 4.4323, df = 2, p-value = 0.109

Warning message:

In chisq.test(table(sex, rank)) :

Chi-squared approximation may be incorrect
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Also note that male professors had a sligtly lower proportion of doctorates.

> table(sex,degree)

degree

sex Other Doctorate

Male 14 24

Female 4 10

> 24/38

[1] 0.6315789

> 10/14

[1] 0.7142857
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Here is a boxplot of salary against combinations of sex and faculty rank. It
doesn’t adjust for years of experience or years since highest degree.
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Model selection

The full model, allowing for two-way interactions only, is:

> m1 <- lm(salary ~ sex + degree + rank + year +

yd + sex*degree + sex*rank + sex*year + sex*yd +

degree*rank + degree*year + degree*yd + rank*year +

rank*yd + year*yd)

For a model with p predictors, the number of possible two-way interactions
is
(p
2

)
= p(p − 1)/2. For 5 predictors, there are (5)(4)/2 = 10 possible

interactions. For 10 predictors, there would be 45 possible interactions.
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> Anova(m1,type=3)

Anova Table (Type III tests)

Response: salary

Sum Sq Df F value Pr(>F)

(Intercept) 22605087 1 3.6916 0.06392 .

sex 4092995 1 0.6684 0.41984

degree 4137628 1 0.6757 0.41735

rank 5731837 2 0.4680 0.63059

year 2022246 1 0.3302 0.56966

yd 3190911 1 0.5211 0.47578

sex:degree 7164815 1 1.1701 0.28773

sex:rank 932237 2 0.0761 0.92688

sex:year 7194388 1 1.1749 0.28676

sex:yd 2024210 1 0.3306 0.56947

degree:rank 13021265 2 1.0632 0.35759

degree:year 4510249 1 0.7366 0.39735

degree:yd 6407880 1 1.0465 0.31424

rank:year 1571933 2 0.1284 0.88001

rank:yd 9822382 2 0.8020 0.45750

year:yd 50921 1 0.0083 0.92793ADA2 February 21, 2018 21 / 90



Model selection

Here we’ll use backward elimination using p-value as the criterion. The
idea is to first consider removing interactions. Remove the interaction with
the highest p-value greater than α = .05. You can also remove main
effects if they have higher p-values than any interactions and are not
involved in any interactions.

At this first step, the interaction with the highest p-value is year with yd.
An interaction here would have meant that the effect of year in rank would
depend on the number of years since graduating.

> m2 <- lm(salary ~ sex + degree + rank + year +

yd + sex*degree + sex*rank + sex*year + sex*yd +

degree*rank + degree*year + degree*yd + rank*year +

rank*yd)
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> Anova(m2,type=3)

Anova Table (Type III tests)

Response: salary

Sum Sq Df F value Pr(>F)

(Intercept) 26986124 1 4.5480 0.04073 *

sex 4442691 1 0.7487 0.39332

degree 4089226 1 0.6892 0.41260

rank 6079684 2 0.5123 0.60394

year 7029024 1 1.1846 0.28455

yd 3912094 1 0.6593 0.42280

sex:degree 7341235 1 1.2372 0.27429

sex:rank 907205 2 0.0764 0.92657

sex:year 7178186 1 1.2097 0.27959

sex:yd 2152917 1 0.3628 0.55118

degree:rank 13240859 2 1.1157 0.34008

degree:year 4601976 1 0.7756 0.38506

degree:yd 6443383 1 1.0859 0.30519

rank:year 1930802 2 0.1627 0.85054

rank:yd 9944911 2 0.8380 0.44184
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Here the sex by rank interaction had the highest p-value, so we remove it.

> m2 <- lm(salary ~ sex + degree + rank + year +

yd + sex*degree + sex*year + sex*yd +

degree*rank + degree*year + degree*yd + rank*year +

rank*yd)
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> Anova(m3,type=3)

Anova Table (Type III tests)

Response: salary

Sum Sq Df F value Pr(>F)

(Intercept) 37666808 1 6.7127 0.0140 *

sex 12952041 1 2.3082 0.1379

degree 3814698 1 0.6798 0.4154

rank 8196244 2 0.7303 0.4892

year 14777996 1 2.6336 0.1139

yd 4812803 1 0.8577 0.3609

sex:degree 10640012 1 1.8962 0.1775

sex:year 10690026 1 1.9051 0.1765

sex:yd 3614221 1 0.6441 0.4278

degree:rank 16341405 2 1.4561 0.2473

degree:year 4894265 1 0.8722 0.3569

degree:yd 6719487 1 1.1975 0.2815

rank:year 5037089 2 0.4488 0.6421

rank:yd 15110673 2 1.3465 0.2737

Residuals 190783580 34
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Here the rank by year interaction had the highest p-value, so we remove it.

> m3 <- lm(salary ~ sex + degree + rank + year +

yd + sex*degree + sex*year + sex*yd +

degree*rank + degree*year + degree*yd + rank*yd)
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> Anova(m3,type=3)

Anova Table (Type III tests)

Response: salary

Sum Sq Df F value Pr(>F)

(Intercept) 56455344 1 10.3788 0.002705 **

sex 13042634 1 2.3978 0.130255

degree 5336283 1 0.9810 0.328555

rank 8406030 2 0.7727 0.469276

year 12790031 1 2.3513 0.133918

yd 9295736 1 1.7089 0.199411

sex:degree 12831931 1 2.3590 0.133302

sex:year 13646799 1 2.5089 0.121955

sex:yd 2456466 1 0.4516 0.505866

degree:rank 21836322 2 2.0072 0.149124

degree:year 7414066 1 1.3630 0.250690

degree:yd 9232872 1 1.6974 0.200903

rank:yd 41051000 2 3.7734 0.032525 *

Residuals 195820669 36

ADA2 February 21, 2018 27 / 90



Here the sex by yd interaction had the highest p-value, so we remove it.

> m4 <- lm(salary ~ sex + degree + rank + year +

yd + sex*degree + sex*year +

degree*rank + degree*year + degree*yd + rank*yd)
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> Anova(m4,type=3)

Anova Table (Type III tests)

Response: salary

Sum Sq Df F value Pr(>F)

(Intercept) 54336558 1 10.1396 0.002941 **

sex 10838535 1 2.0226 0.163354

degree 5696946 1 1.0631 0.309204

rank 10610665 2 0.9900 0.381199

year 10334602 1 1.9285 0.173225

yd 13494052 1 2.5181 0.121057

sex:degree 10394382 1 1.9397 0.172017

sex:year 22789419 1 4.2527 0.046263 *

degree:rank 21157939 2 1.9741 0.153243

degree:year 8497324 1 1.5857 0.215833

degree:yd 9463400 1 1.7659 0.192023

rank:yd 42516602 2 3.9670 0.027486 *

Residuals 198277134 37
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Here rank had the highest p-value, but it is involved in some interactions, so we
don’t consider removing it. Degree has the second highest, but again is involved
in interactions. The third highest is degree by year, with a p-value of 0.21, so we
remove it.

> m5<- lm(salary ~ sex + degree + rank + year +

yd + sex*degree + sex*year +

degree*rank + degree*yd + rank*yd)
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Next we’ll remove degree by yd.

> Anova(m5,type=3)

Anova Table (Type III tests)

Response: salary

Sum Sq Df F value Pr(>F)

(Intercept) 77962216 1 14.3275 0.0005312 ***

sex 3548444 1 0.6521 0.4243835

degree 1652083 1 0.3036 0.5848523

rank 5984927 2 0.5499 0.5815072

year 81988541 1 15.0675 0.0004005 ***

yd 6103883 1 1.1217 0.2962298

sex:degree 3189136 1 0.5861 0.4486666

sex:year 14489584 1 2.6628 0.1109792

degree:rank 13515717 2 1.2419 0.3002849

degree:yd 1695058 1 0.3115 0.5800292

rank:yd 34725539 2 3.1908 0.0523619 .

Residuals 206774458 38
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Next we’ll remove sex by degree

> Anova(m6,type=3)

Anova Table (Type III tests)

Response: salary

Sum Sq Df F value Pr(>F)

(Intercept) 252985654 1 47.3280 3.138e-08 ***

sex 2656144 1 0.4969 0.4850519

degree 26167 1 0.0049 0.9445786

rank 4326190 2 0.4047 0.6699681

year 80806360 1 15.1171 0.0003821 ***

yd 5098991 1 0.9539 0.3347463

sex:degree 2505272 1 0.4687 0.4976433

sex:year 12832093 1 2.4006 0.1293665

degree:rank 15741805 2 1.4725 0.2418287

rank:yd 38135455 2 3.5671 0.0377828 *

Residuals 208469515 39
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Next we’ll remove degree by rank

> Anova(m7,type=3)

Anova Table (Type III tests)

Response: salary

Sum Sq Df F value Pr(>F)

(Intercept) 252298089 1 47.8347 2.453e-08 ***

sex 486921 1 0.0923 0.7628253

degree 179478 1 0.0340 0.8545786

rank 6294899 2 0.5967 0.5554288

year 92097669 1 17.4614 0.0001546 ***

yd 4252203 1 0.8062 0.3746187

sex:year 11377954 1 2.1572 0.1497226

degree:rank 14519997 2 1.3765 0.2641686

rank:yd 38113373 2 3.6131 0.0361035 *

Residuals 210974787 40
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At this point, degree is not involved in any interactions, so we can consider
removing it. It has a higher p-value than the two remaining interaction terms, so
we remove degree as a main effect.

> Anova(m8,type=3)

Anova Table (Type III tests)

Response: salary

Sum Sq Df F value Pr(>F)

(Intercept) 482851531 1 89.9345 5.335e-12 ***

sex 936435 1 0.1744 0.6783426

degree 8902098 1 1.6581 0.2049131

rank 91805630 2 8.5497 0.0007673 ***

year 101743686 1 18.9505 8.422e-05 ***

yd 640363 1 0.1193 0.7315491

sex:year 14134386 1 2.6326 0.1121718

rank:yd 24905278 2 2.3194 0.1108009

Residuals 225494784 42
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Now we remove sex by year.

> Anova(m9,type=3)

Anova Table (Type III tests)

Response: salary

Sum Sq Df F value Pr(>F)

(Intercept) 657912109 1 120.6937 4.606e-14 ***

sex 1311737 1 0.2406 0.6262400

rank 91215249 2 8.3667 0.0008529 ***

year 92989960 1 17.0590 0.0001638 ***

yd 6925991 1 1.2706 0.2659107

sex:year 11545391 1 2.1180 0.1528391

rank:yd 27221003 2 2.4968 0.0942138 .

Residuals 234396882 43
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If doing automated selection, we would next remove sex. However, that was the
research question. What to do depends on your research goals. Are you looking
for the parsimonious model? or are you looking for the most parsimonious model
that includes sex as a predictor? You can also fit several models (both most
parsimonious and most parsimonious with sex). You think about removing the
rank by yd interaction and then seeing whether sex should still be obtained.

> Anova(m10,type=3)

Anova Table (Type III tests)

Response: salary

Sum Sq Df F value Pr(>F)

(Intercept) 682341395 1 122.0734 2.822e-14 ***

sex 5552916 1 0.9934 0.3243537

rank 122529231 2 10.9605 0.0001372 ***

year 106510254 1 19.0551 7.587e-05 ***

yd 4472402 1 0.8001 0.3759217

rank:yd 23603682 2 2.1114 0.1331705

Residuals 245942272 44
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> Anova(m11,type=3)

Anova Table (Type III tests)

Response: salary

Sum Sq Df F value Pr(>F)

(Intercept) 2518702345 1 429.8351 < 2.2e-16 ***

sex 5132365 1 0.8759 0.3542

rank 479020588 2 40.8742 6.270e-11 ***

year 134188974 1 22.9003 1.799e-05 ***

yd 5142131 1 0.8775 0.3538

Residuals 269545954 46

ADA2 February 21, 2018 37 / 90



> Anova(m11,type=3)

Anova Table (Type III tests)

Response: salary

Sum Sq Df F value Pr(>F)

(Intercept) 2518702345 1 429.8351 < 2.2e-16 ***

sex 5132365 1 0.8759 0.3542

rank 479020588 2 40.8742 6.270e-11 ***

year 134188974 1 22.9003 1.799e-05 ***

yd 5142131 1 0.8775 0.3538

Residuals 269545954 46
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> Anova(m12,type=3)

Anova Table (Type III tests)

Response: salary

Sum Sq Df F value Pr(>F)

(Intercept) 3585257969 1 613.4490 < 2.2e-16 ***

sex 2304648 1 0.3943 0.5331

rank 634005385 2 54.2402 6.165e-13 ***

year 157183229 1 26.8945 4.473e-06 ***

Residuals 274688086 47
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We might also look at what happens if we only use sex as a predictor.

> Anova(m13,type=3)

Sum Sq Df F value Pr(>F)

(Intercept) 2.3177e+10 1 693.260 <2e-16 ***

sex 1.1411e+08 1 3.413 0.0706 .

Residuals 1.6716e+09 50

> t.test(salary ~ sex,var.equal=TRUE)

Two Sample t-test

data: salary by sex

t = 1.8474, df = 50, p-value = 0.0706

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-291.257 6970.550

sample estimates:

mean in group Male mean in group Female

24696.79 21357.14
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If you don’t assume equal variances in the t.test:

> t.test(salary ~ sex)

Welch Two Sample t-test

data: salary by sex

t = 1.7744, df = 21.591, p-value = 0.09009
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Although the t-test isn’t significant at the .05 level, by having a p-value less than
.10, you can say that there is some evidence (although not strong) of a difference
in salaries. The evidence is much weaker when rank and year are taken into
account. To see the effect of sex, use summary(m13)

> summary(m12)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 25390.65 1025.14 24.768 < 2e-16 ***

sexFemale 524.15 834.69 0.628 0.533

rankAssoc -5109.93 887.12 -5.760 6.20e-07 ***

rankAssist -9483.84 912.79 -10.390 9.19e-14 ***

year 390.94 75.38 5.186 4.47e-06 ***

---

Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1

Residual standard error: 2418 on 47 degrees of freedom

Multiple R-squared: 0.8462,Adjusted R-squared: 0.8331

F-statistic: 64.64 on 4 and 47 DF, p-value: < 2.2e-16
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Note that in the model, the baseline salary is for male full professors. The model
therefore predicts that being an assistant professor reduces salary by an average of
$9483.84, that being an associate professor reduces the salary by $5109.93
(compare to a full professor), and that being female increases the salary by
$524.15. On average, female professors made $3339.68 dollars less (you can see
this from the t-test output). However, based on the model, this is accounted for
female professors tending to be younger (in academic age–years since highest
degree) and having lower rank. For example, 42% of male professors were full
professors, while 28.5% of full professors were female, and full professors tend to
get paid more than other ranks.

Based on the results, can you conclude that there is no discrimination against
female professors in terms of salary?
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No. There could be a number of explanations for the patterns in the data.
It could be that male professors at this university tend to be older and
therefore have had to more time to be promoted in terms of academic
rank. On the other hand, it could be that male professors are promoted
more easily, and this leads to them having higher ranks. Adjusting for
academic rank might therefore might sweep some things under the rug
that are due to a form of discrimination.

Another variable not accounted for in the data is the department that the
professors are from. STEM fields and business, for example, tend to pay
better than humanities subjects at US universities. Where I worked in New
Zealand, every professor at the same academic rank and grade within rank
got the same pay, regardless of department, so this would not have been
an issue there. However, it was still probably easier to get promoted more
quickly in STEM fields than non-STEM fields.
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What is tricky in statistics, particularly in observational studies, is knowing
whether you have accounted for the relevant variables. To give another
example outside of the regression/ANOVA setting, consider the voting
records for the Civil Rights Act of 1964. Sometimes republicans claim to
have had a better voting record (i.e., higher proportion voting in favor of
the act) for the Civil Rights Act than did democrats. Is this true? Here are
the raw numbers for the House of Representatives (data from Wikipedia):

Party Yes No

Democrat 152 (61%) 96 (39%)
Republican 138 (80.2%) 34 (19.8%)
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Overall, a higher proportion of republicans voted for the Civil Rights Act
than did democrats. However, there were different voting patterns in
Southern versus other states.

Party Yes No

Democrat, Southern 7 (7%) 94 (93%)
Democrat, Other 145 (94%) 9 (6%)

Republican, Southern 0 (0%) 10 (100%)
Republican, Other 138 (85%) 24 (15%)

This might seem paradoxical: republicans were more likely to favor the Act
than democrats overall, but Southern republicans were less likely to than
Southern democrats, and non-Southern republicans were less likely to than
non-Southern democrats. This is an example of something called
Simpson’s paradox, where the relationships between two variables seem
to be reversed when a third variable is taken into account.
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Getting back to model selection, we illustrated the idea of backward
elimination as one technique for model selection. Other standard
techniques are forward selection and stepwise addition.

In backward elimination, a full model is constructed, and then predictor
variables (or interactions) are eliminated one by one until a final model is
obtained.

In forward selection, we start with an intercept-only model, then add
variables one at a time, adding more significant variables first, and only
adding a new variable if it significantly improve the model.
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The stepwise method tries to use advantages of both forward and
backward methods. In the forward method, once a variable is included, it
can never be removed, even though it might turn out to be redundant
once other variables are in the model. Thus, at each step, you can either
add a new variable or delete a variable, depending on what most improves
the model. Eventually you reach a point where the model cannot be
improved by either adding or removing variables.

A final method is called best subsets regression. You consider all
possible subsets of predictors, and pick the model that is best according to
some criterion. This method is feasible for small to moderate numbers of
predictors. The number of subsets, only considering main effects (not
considering interactions), is 2p, where p is the number of predictors. For
five predictors, you would therefore consider 25 = 32 models. For 10
predictors, you would have to consider 210 > 1000 models, and for 20
predictors, there are over 1 million possible models.
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In addition to the method (backward, forward, stepwise, best subsets), you
have to pick a criterion by which to compare models and determine
whether one model is significantly better than another. In the backward
elimination example done earlier, we used p-values as a criterion. However,
other criteria are possible, such as adjusted R2, Mallow’s Cp, AIC (Akaike
Information criterion) and BIC (Bayesianinformationcriterion). These
choices are essentially independent of the method (backward, forward,
stepwise, best subsets). With so many ways to do model selection, the
“best” model chosen can depend on these choices, and there often isn’t a
clear answer to what model is best.

There are other more recent methods as well for doing model selection as
well, including the lasso (least absolute shrinkage and selection operator),
and cross-validation.
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To discuss some of these alternative criteria for model selection, Mallow’s Cp is

SSEp

σ̂2
FULL

− N + 2p

where SSEp is the sum of squared error on the model with p predictors, σ̂2
FULL is

the mean square error for the full model, N is the sample size, and p is the
number of predictors. A model is better if it has lower Cp, so you can think of the
2p term as penalizing having more parameters.

The AIC and BIC criteria are similar in that they penalize extra parameters, and
smaller AIC/BIC values indicate preferred models. Here

AIC = −2 log L + 2p

BIC = −2 log L + p log n

where log L is the log-likelihood, related to the probability of observing data

similar to what is observed under the model. BIC tends to have a stronger

penalty for more parameters (especially for larger sample sizes) than AIC, so

tends to prefer fewer predictors.
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Note that in forward and backward methods, two consecutively considered
models are related by setting one of the parameters equal to 0 or nonzero.
In this case, the models are nested, meaning that one model has
predictors that are subsets of the other. Testing whether the coefficient is
equal to 0 is therefore equivalent to testing whether the fuller model is
significantly better than the reduced model.

For best subsets regression, we have to compare models that aren’t
necessarily nested within each other. Criteria such as AIC and BIC can be
used to compare models that are based on different predictors and don’t
have to be nested.
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We’ll illustrate these approaches using the salary data. The function
step() carry’s out automated model selection using AIC by default. I’ll
include one possible interaction for the forward selection to possibly test,
although interactions won’t be significant.

> m.empty <- lm(salary ~ 1)

> m.forward <- step(m.empty,salary ~ sex + rank+ year +

degree + yd + rank*year, direction="forward")

ADA2 February 21, 2018 52 / 90



> m.forward <- step(m.empty,salary ~ sex + rank + degree + year + yd + rank*year,direction="forward",alpha=.9)

Start: AIC=904.3

salary ~ 1

Df Sum of Sq RSS AIC

+ rank 2 1346783800 438946058 835.33

+ year 1 876680907 909048951 871.19

+ yd 1 813271618 972458240 874.69

+ sex 1 114106220 1671623638 902.86

<none> 1785729858 904.30

+ degree 1 8681649 1777048209 906.04

Step: AIC=835.33

salary ~ rank

Df Sum of Sq RSS AIC

+ year 1 161953324 276992734 813.39

+ yd 1 23162091 415783967 834.51

<none> 438946058 835.33

+ degree 1 10970082 427975976 836.01

+ sex 1 7074743 431871315 836.48
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Step: AIC=813.39

salary ~ rank + year

Df Sum of Sq RSS AIC

<none> 276992734 813.39

+ rank:year 2 15215454 261777280 814.45

+ yd 1 2314414 274678320 814.95

+ sex 1 2304648 274688086 814.95

+ degree 1 1127718 275865016 815.18
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The best model based on forward selection and AIC as the criterion is salary =
rank + year. The model is

> m.forward

Call:

lm(formula = salary ~ rank + year)

Coefficients:

(Intercept) rank2 rank3 year

16203.3 4262.3 9454.5 375.7
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Now we’ll look at what happens with backward model selection. Here we’ll start
with the full model and all interaction terms.

m.backward <- step(m2,salary ~ sex + rank + degree + year

+ yd + sex*rank + sex*degree + sex*year + sex*yd +

rank*degree + rank*year + rank*yd + degree*year +

degree*yd + year*yd,direction="backward")
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Start: AIC=822

salary ~ sex + degree + rank + year + yd + sex * degree + sex *

year + sex * yd + degree * rank + degree * year + degree *

yd + rank * year + rank * yd

Df Sum of Sq RSS AIC

- rank:year 2 5037089 195820669 819.36

- sex:yd 1 3614221 194397801 820.98

- degree:year 1 4894265 195677844 821.32

- degree:yd 1 6719487 197503067 821.80

- rank:yd 2 15110673 205894253 821.96

<none> 190783580 822.00

- degree:rank 2 16341405 207124985 822.27

- sex:degree 1 10640012 201423592 822.82

- sex:year 1 10690026 201473606 822.84

ADA2 February 21, 2018 57 / 90



Step: AIC=819.36

salary ~ sex + degree + rank + year + yd + sex:degree + sex:year +

sex:yd + degree:rank + degree:year + degree:yd + rank:yd

Df Sum of Sq RSS AIC

- sex:yd 1 2456466 198277134 818.00

- degree:year 1 7414066 203234734 819.29

<none> 195820669 819.36

- degree:yd 1 9232872 205053541 819.75

- sex:degree 1 12831931 208652600 820.66

- degree:rank 2 21836322 217656990 820.85

- sex:year 1 13646799 209467467 820.86

- rank:yd 2 41051000 236871669 825.25
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The algorithm stops here because no way of eliminating an interaction reduces the
AIC. The algorithm is “greedy” in the sense that it only looks one step ahead. It
will only continue if eliminating one term will reduce AIC. If you need to eliminate
two terms to reduce AIC, the algorithm will not see this and will get stuck. We
know from forward selection that there are smaller models with lower AIC.

Step: AIC=818

salary ~ sex + degree + rank + year + yd + sex:degree +

sex:year + degree:rank + degree:year + degree:yd + rank:yd

Df Sum of Sq RSS AIC

<none> 198277134 818.00

- degree:year 1 8497324 206774458 818.19

- degree:yd 1 9463400 207740534 818.43

- sex:degree 1 10394382 208671516 818.66

- degree:rank 2 21157939 219435073 819.28

- sex:year 1 22789419 221066553 821.66

- rank:yd 2 42516602 240793736 824.11
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The BIC criterion penalizes larger models more, so we can check what
happens in this case. here you need a parameter in the step() function
that gives the log of the sample size. Here log(52) = 3.951244. Thus
AIC = −2 log L + 2p, BIC ≈ −2 log L + 3.95p for this sample size.

> m.backward2 <- step(m2,salary ~ sex + rank + degree

+ year + yd + sex*rank + sex*degree + sex*year + sex*yd

+ rank*degree + rank*year + rank*yd + degree*year +

degree*yd + year*yd,direction="backward",k=log(52))
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Start: AIC=857.12

salary ~ sex + degree + rank + year + yd + sex * degree + sex *

year + sex * yd + degree * rank + degree * year + degree *

yd + rank * year + rank * yd

Df Sum of Sq RSS AIC

- rank:year 2 5037089 195820669 850.58

- rank:yd 2 15110673 205894253 853.18

- degree:rank 2 16341405 207124985 853.49

- sex:yd 1 3614221 194397801 854.15

- degree:year 1 4894265 195677844 854.49

- degree:yd 1 6719487 197503067 854.97

- sex:degree 1 10640012 201423592 855.99

- sex:year 1 10690026 201473606 856.01

<none> 190783580 857.12
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Step: AIC=850.58

salary ~ sex + degree + rank + year + yd + sex:degree + sex:year +

sex:yd + degree:rank + degree:year + degree:yd + rank:yd

Df Sum of Sq RSS AIC

- sex:yd 1 2456466 198277134 847.27

- degree:rank 2 21836322 217656990 848.17

- degree:year 1 7414066 203234734 848.56

- degree:yd 1 9232872 205053541 849.02

- sex:degree 1 12831931 208652600 849.93

- sex:year 1 13646799 209467467 850.13

<none> 195820669 850.58

- rank:yd 2 41051000 236871669 852.57
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Step: AIC=847.27

salary ~ sex + degree + rank + year + yd + sex:degree + sex:year +

degree:rank + degree:year + degree:yd + rank:yd

Df Sum of Sq RSS AIC

- degree:rank 2 21157939 219435073 844.64

- degree:year 1 8497324 206774458 845.50

- degree:yd 1 9463400 207740534 845.75

- sex:degree 1 10394382 208671516 845.98

<none> 198277134 847.27

- sex:year 1 22789419 221066553 848.98

- rank:yd 2 42516602 240793736 849.47
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Step: AIC=844.64

salary ~ sex + degree + rank + year + yd + sex:degree + sex:year +

degree:year + degree:yd + rank:yd

Df Sum of Sq RSS AIC

- degree:yd 1 361929 219797002 840.78

- degree:year 1 855102 220290175 840.89

- sex:degree 1 1616150 221051223 841.07

- rank:yd 2 24391011 243826084 842.22

- sex:year 1 10569795 230004869 843.14

<none> 219435073 844.64
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Step: AIC=840.78

salary ~ sex + degree + rank + year + yd + sex:degree + sex:year +

degree:year + rank:yd

Df Sum of Sq RSS AIC

- sex:degree 1 3112507 222909509 837.56

- degree:year 1 4414318 224211320 837.86

- rank:yd 2 24695126 244492128 838.41

- sex:year 1 16645026 236442028 840.62

<none> 219797002 840.78

Step: AIC=837.56

salary ~ sex + degree + rank + year + yd + sex:year + degree:year +

rank:yd

Df Sum of Sq RSS AIC

- degree:year 1 2585275 225494784 834.21

- rank:yd 2 25367664 248277174 835.26

- sex:year 1 14770974 237680484 836.94

<none> 222909509 837.56
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Step: AIC=834.21

salary ~ sex + degree + rank + year + yd + sex:year + rank:yd

Df Sum of Sq RSS AIC

- rank:yd 2 24905278 250400062 831.75

- degree 1 8902098 234396882 832.27

- sex:year 1 14134386 239629170 833.42

<none> 225494784 834.21

Step: AIC=831.75

salary ~ sex + degree + rank + year + yd + sex:year

Df Sum of Sq RSS AIC

- sex:year 1 8458303 258858365 829.53

- degree 1 11217823 261617885 830.08

- yd 1 16309342 266709404 831.08

<none> 250400062 831.75

- rank 2 406263292 656663354 873.98
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Step: AIC=829.53

salary ~ sex + degree + rank + year + yd

Df Sum of Sq RSS AIC

- sex 1 9134971 267993336 827.38

- degree 1 10687589 269545954 827.68

- yd 1 14868158 273726523 828.48

<none> 258858365 829.53

- year 1 144867403 403725768 848.69

- rank 2 399790682 658649047 870.19

Step: AIC=827.38

salary ~ degree + rank + year + yd

Df Sum of Sq RSS AIC

- degree 1 6684984 274678320 824.71

- yd 1 7871680 275865016 824.93

<none> 267993336 827.38

- year 1 147642871 415636208 846.25

- rank 2 404108665 672102002 867.29
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Step: AIC=824.71

salary ~ rank + year + yd

Df Sum of Sq RSS AIC

- yd 1 2314414 276992734 821.19

<none> 274678320 824.71

- year 1 141105647 415783967 842.32

- rank 2 478539101 753217421 869.26

Step: AIC=821.19

salary ~ rank + year

Df Sum of Sq RSS AIC

<none> 276992734 821.19

- year 1 161953324 438946058 841.18

- rank 2 632056217 909048951 875.09
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We see that backward seelction with BIC lead to the same model as
forward selection with AIC. Using forward selection with BIC also leads to
the same model (no interactions and only rank and year as predictors).
The same is true with forward selection where all interactions are allowed.
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> m.both <- step(m.empty,salary ~ sex + rank + degree

+ year + yd + sex*rank + sex*degree + sex*year +

sex*yd + rank*degree + rank*year + rank*yd +

degree*year + degree*yd +

year*yd,direction="both",k=log(52))
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Start: AIC=906.25

salary ~ 1

Df Sum of Sq RSS AIC

+ rank 2 1346783800 438946058 841.18

+ year 1 876680907 909048951 875.09

+ yd 1 813271618 972458240 878.60

<none> 1785729858 906.25

+ sex 1 114106220 1671623638 906.76

+ degree 1 8681649 1777048209 909.95
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Step: AIC=841.18

salary ~ rank

Df Sum of Sq RSS AIC

+ year 1 161953324 276992734 821.19

<none> 438946058 841.18

+ yd 1 23162091 415783967 842.32

+ degree 1 10970082 427975976 843.82

+ sex 1 7074743 431871315 844.29

- rank 2 1346783800 1785729858 906.25
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Step: AIC=821.19

salary ~ rank + year

Df Sum of Sq RSS AIC

<none> 276992734 821.19

+ yd 1 2314414 274678320 824.71

+ sex 1 2304648 274688086 824.71

+ degree 1 1127718 275865016 824.93

+ rank:year 2 15215454 261777280 826.16

- year 1 161953324 438946058 841.18

- rank 2 632056217 909048951 875.09
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You can also summarize the sequence of model selection models by using
extracting the sequence:

> m.backward2$anova

Step Df Deviance Resid. Df Resid. Dev AIC

1 NA NA 34 190783580 857.1235

2 - rank:year 2 5037089.1 36 195820669 850.5761

3 - sex:yd 1 2456465.5 37 198277134 847.2731

4 - degree:rank 2 21157939.1 39 219435073 844.6430

5 - degree:yd 1 361928.9 40 219797002 840.7774

6 - sex:degree 1 3112507.1 41 222909509 837.5574

7 - degree:year 1 2585274.6 42 225494784 834.2058

8 - rank:yd 2 24905278.5 44 250400062 831.7509

9 - sex:year 1 8458302.6 45 258858365 829.5272

10 - sex 1 9134971.4 46 267993336 827.3794

11 - degree 1 6684983.5 47 274678320 824.7093

12 - yd 1 2314414.0 48 276992734 821.1944
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To do best subset regression, we can use the leaps library. The following
will give the two best models with up to 4 predictor variables.

> install.packages("leaps")

> library(leaps)

> m.subset <- regsubsets(salary ~ sex + rank

+ year + degree + yd,data=x,nvmax=6,nbest=3)
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> summary(m.subset)

Subset selection object

Call: regsubsets.formula(salary ~ sex + rank + year + degree,

+yd, data = x, nvmax = 6, nbest = 2)

6 Variables (and intercept)

Forced in Forced out

sex FALSE FALSE

rank2 FALSE FALSE

...

2 subsets of each size up to 6

Selection Algorithm: exhaustive

sex rank2 rank3 year degree yd

1 ( 1 ) " " " " "*" " " " " " "

1 ( 2 ) " " " " " " "*" " " " "

2 ( 1 ) " " " " "*" "*" " " " "

2 ( 2 ) " " "*" "*" " " " " " "

3 ( 1 ) " " "*" "*" "*" " " " "

3 ( 2 ) " " " " "*" "*" " " "*"

4 ( 1 ) " " "*" "*" "*" " " "*"

4 ( 2 ) "*" "*" "*" "*" " " " "
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Because the function reports the best models of each number of predictors, the
penalty term for the number of predictors doesn’t matter–the best two models
with three variables will be the same three models whether using AIC or BIC, for
example. However, you can also get statistics for the models out of the function
as follows. The minimum BIC is -81.1 which corresponds to the fifth model,
which has rank2, rank3, and year. BIC here seems to be computed differently
from the step() function.

> m.subset.summary <- summary(m.subset)

> names(m.subset.summary)

[1] "which" "rsq" "rss" "adjr2" "cp" "bic"

"outmat" "obj"

> m.subset.summary$bic

[1] -43.13556 -27.20706 -64.47238 -61.11298 -81.10177 -63.72225

-77.58684 -77.58499
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Note that the different criteria will rank these 8 models (the two best with 1–4
predictors) nearly the same. BIC versus Cp and adjusted R2 only differ by
swapping the 4th and 5th best models. R2, as opposed to adjusted R2, will tend
to favor larger models.

> rank(m.subset.summary$bic)

[1] 7 8 4 6 1 5 2 3

> rank(m.subset.summary$cp)

[1] 7 8 5 6 1 4 2 3

> rank(1-m.subset.summary$adjr2)

[1] 7 8 5 6 1 4 2 3

> rank(1-m.subset.summary$rsq)

[1] 7 8 5 6 3 4 1 2
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You can also easily get regression coefficients for the different models. Here I get
the coefficients for the first 5 listed models. Model 5 has the best BIC.

> coef(m.subset,1:5)

(Intercept) rank3

20134.344 9524.606

(Intercept) year

18166.1475 752.7978

(Intercept) rank3 year

17607.0603 7158.1499 459.5061

(Intercept) rank2 rank3

17768.667 5407.262 11890.283

(Intercept) rank2 rank3 year

16203.2682 4262.2847 9454.5232 375.6956
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To understand the output, the package is turning the factor variable rank into
0/1 variables called dummy variables. When a factor variable has only two levels,
you can treat this as an indicator variable. For example, the degree variable can
only take two values. In the regression setting, this is equivalent to letting degree
be a numeric value of either 0 or 1. The coefficient associated with degree gets
multiplied by 0 for those without a doctorate and multiplied by 1 for those with a
doctorate.

For a categorical variable with three levels (such as rank), regression creates

dummy variables (with only 0/1) values as well. For a factor with k levels, the

idea is to create k − 1 0/1 variables. Each of these variables is an indicator (i.e.

0/1) variable indicating whether or not that observation belongs to the particular

category. In particular, we can represent rank being category 1, 2, or 3, by having

a 0/1 variable for rank 2, and a 0/1 variable for rank 3.
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We’ll give an example of how to represent the data with dummy variables:

id sex rank year degree yd salary

19 0 2 10 0 15 22906

20 0 3 6 0 21 24450

21 0 1 16 0 23 19175

22 0 2 8 0 31 20525

----

id sex rank2 rank3 year degree yd salary

19 0 1 0 10 0 15 22906

20 0 0 1 6 0 21 24450

21 0 0 0 16 0 23 19175

22 0 1 0 8 0 31 20525
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Now we’ll show using the regression coefficients to predict salary for the model
with rank, year, and rank*year interaction

id sex rank2 rank3 year degree yd salary

19 0 1 0 10 0 15 22906

20 0 0 1 6 0 21 24450

21 0 0 0 16 0 23 19175

22 0 1 0 8 0 31 20525

> mm2

Call:

lm(formula = salary ~ rank + year + rank * year)

Coefficients:

Coefficients:

(Intercept) rank2 rank3 year rank2:year rank3:year

16416.6 5354.2 8176.4 324.5 -129.7 151.2
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Now we’ll show using the regression coefficients to predict salary for the model
with rank, year, and rank*year interaction. We can think of the model as

y = β0 + β1rank2 + β2rank3 + β3year + β4rank2*year + β5rank3*year

ŷ19 = β̂0 + β̂1 + β̂3year + β̂4year

ŷ20 = β̂0 + β̂2 + β̂3year + β̂5year

ŷ21 = β̂0 + β̂3year

ŷ22 = β̂0 + β̂1 + β̂3year + β̂4year

Note that comparing say, associate and full professors, they have both different
intercepts and different effects for year. The intercept for associate professors is
(β0 + β1), and the slope for the year is (β3 + β4), whereas the intercept and slope
for full professors are (β0 + β2) and (β3 + β5). For assistant professors, the
intercept and slope are β0 and β3, respectively.
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Coefficients:

(Intercept) rank2 rank3 year rank2:year rank3:year

16416.6 5354.2 8176.4 324.5 -129.7 151.2

To interpret the coefficients, salary is predicted to increase by $324.5 for each
year in the rank for assistant professors. For associate professors (rank 2), their
salary is predicted to increase by $324.5− $129.7 = $194.8 for each year in their
current rank. While for full professors, their salary is predicted to increase by
$324 + $151.2 = $475.7 for each year in their current rank.

In the model, because there is an interaction, the effect of being an associate

versus a full professor by itself doesn’t tell you directly the change in salary

because it depends on the number of years in the rank.
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Another package that does model selection is ”MuMIn”. To install, note that I is
capitalized. This package uses AICc instead of AIC. AICc is used for small
samples and involves a ”correction” to AIC. Theoretically, these are based on
approximations to information loss (from information theory), where AIC is a
first-order approximation and AICc is a second-order approximation.
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In general, the correction factor can depend on the model. For multiple linear
regression, the correction is

AICc = AIC +
2p2 + 2p

n − p − 1

when comparing two models with the same number of parameters, AIC and AICc
will rank the models the same. They can possibly rank models differently when
comparing models with different numbers of parameters. For example, with
n = 52 and p = 5 versus p = 4, we get

> n <- 52

> p <- 5

> (2*p^2+2*p)/(n-p-1)

[1] 1.304348

> p <- 4

> (2*p^2+2*p)/(n-p-1)

[1] 0.8510638

Consequently, the penalty for 5 versus 4 parameters is larger for AICc than for

AIC. This makes it less likely that you would select a model with a smaller

number of parameters using AICc than AIC.
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Here m2 has the full model with all two-way interactions for the salary data.
There are 480 models fitted!

> install.packages("MuMIn")

> library(MuMin)

> options(na.action=na.fail)

> models<-dredge(m2)

> models

Global model call: lm(formula = salary ~ sex + degree + rank + year + yd + sex *

degree + sex * year + sex * yd + degree * rank + degree *

year + degree * yd + rank * year + rank * yd)

---

Model selection table

19 16200 + 375.700 5 -476.480 964.3

27 16320 + -34.3200 400.500 6 -476.261 966.4

23 15910 + 390.900 6 -476.262 966.4

1043 16420 + 324.500 7 -475.011 966.6

...

> dim(models)

[1] 480 19
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The information saved in models above is hard to interpret. The left column is
simply the id for the model that was fitted. The following helps

> summary(model.avg(get.models(models, subset=TRUE)))

df logLik AICc delta weight

2/5 5 -476.48 964.26 0.00 0.17

2/4/5 6 -476.26 966.39 2.13 0.06

2/3/5 6 -476.26 966.39 2.13 0.06

2/5/11 7 -475.01 966.57 2.30 0.05

...

> mm1 <- lm(salary ~ rank + year)

> AICc(mm1)

[1] 964.2634

> mm2 <- lm(salary ~ rank + year + rank*year)

> AICc(mm2)

[1] 966.5666

To list the variables, the function numbers them, in what appears to be

alphabetical order. Effects 2 and 5 correspond to rank and year, while 11

corresponds to rank*year.
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Notice that the difference in AICc values is 2.13 between the best model and
second best. How big is this? Let AICc1 be the AICc for the best model and L1
be the likelihood for the best model. Here, I’ll use the formula for AIC rather than
AICc to get the idea of how big a difference of 2.0 is for AIC.

AIC1− AIC2 = 2

⇒ (−2 log L1 + 2p1)− (−2 log L2 + 2p2) = 2

⇒ (2 log L2− 2 log L1) + 2(p1− p2) = 2

⇒ (2 log L2− 2 log L1) + 2 = 2

⇒ (2 log L2− 2 log L1) = 4

⇒ 2 log

(
L2

L1

)
= 4

⇒ L2

L1
= e2 ≈ 7.39

⇒ L2 ≈ 7.39L1

This means that model 1 is preferred even though model L2 has higher likelihood

by a factor of about 7.
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Theoretically, for nested models like these, the statistic 2 log
(
L2
L1

)
has an

approximate (large-sample) χ2 distribution where the degrees of freedom is the
difference in the number of parameters. This is called likelihood-ratio testing.
The critical value for 1 degree of freedom is 3.84, so roughly a difference in AIC
of 2 units (where the smaller model has an AIC of 2 units better than the larger
model with one extra parameter is ”statistically signficant”. Usually statisticians
don’t mix significance testing with AIC-based model selection, however. Still, it is
useful to think that a difference of 2 for AIC is somewhat substantial. Some
authors use differences of 10 in AIC instead.

The difference in AIC is actually less than 2.0 for these models. From the
likelihood ratio point of view, the difference being small suggests that the two
models are not significantly different, in which case the simpler model should be
preferred.

> AIC(mm1)

[1] 962.959

> AIC(mm2)

[1] 964.0212
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