
Logistic regression

In simple linear regression, we have the model

E [Y ] = β0 + β1x

For logistic regression with one predictor, the model is

logit(p(x)) = β0 + β1x

That is, the probability is a function of x , but rather than being a linear
function of x , instead it is the log-odds that is a linear function of x .
Equivalently, you can write

p(x) =
exp(β0 + β1x)

1 + exp(β0 + β1x)
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Logistic regression

More generally, x would be a vector of covariates, such as age, sex, height,
weight, etc. and we have

log

(
p

1− p

)
= β0 + β1x1 + β2x2 + · · ·+ βpxp

We can also think of p(x) as

p(x) = P(Y = 1|x)
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The logistic family of distributions

The logistic family of distributions has density (for any real x):

f (x |µ, σ) =
e−

x−µ
σ

s
(

1 + e−
x−µ
σ

)2
and cdf

F (x) =
1

1 + e−
x−µ
σ

=
e

x−µ
σ

1 + e−
x−µ
σ
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The logistic family of distributions

If we plug in µ = 0 and σ = 1, we get

f (x) =
e−x

(1 + e−x)2

F (x) =
1

1 + e−x
=

ex

1 + ex

Part of the motivation for logistic regression is we imagine that there is
some threshold t, and if T ≤ t, then the event occurs, so Y = 1. Thus,
P(Y = 1) = P(T ≤ t) where T has this logistic distribution, so the CDF
of T is used to model this probability.
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The logistic distribution

The logistic distribution looks very different from the normal distribution
but has similar (but not identical) shape and cdf when plotted. For µ = 0
and σ = 1, the logistic distribution has mean 0 but variance π3/3 so we
will compare the logistic distribution with mean 0 and σ = 1 to a
N(0, π2/3).

The two distributions have the same first, second, and third moment, but
have different fourth moments, with the logistic distribution being slightly
more peaked. The two densities disagree more in the tails also, with the
logistic distribution having larger tails (probabilities of extreme events are
larger).
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The logistic distribution

In R, you can get the density, cdf, etc. for the logistic distribution using

> dlogis()

> plogis()

> rlogis()

> qlogis()

As an example

> plogis(-8)

[1] 0.0003353501

> pnorm(-8,0,pi/sqrt(3))

[1] 5.153488e-06
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Logistic versus normal
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Figure: Pdfs of logistic versus normal distributions with the same mean and
variance

ADA2 March 2, 2018 7 / 110



Logistic versus normal
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Figure: Cdfs of logistic versus normal distributions with the same mean and
variance
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Logistic versus normal
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Figure: Ratio of normal to logistic densities with the same mean and variance
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Logistic versus normal
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Figure: Ratio of normal to logistic densities with the same mean and variance
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Logistic versus normal

from somewhere on the web....

Figure: from somewhere on the web....
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Example from
http://stats.idre.ucla.edu/r/dae/logit-regression/

> mydata <- read.csv("http://www.ats.ucla.edu/stat/data/binary.csv")

> head(mydata)

admit gre gpa rank

1 0 380 3.61 3

2 1 660 3.67 3

3 1 800 4.00 1

4 1 640 3.19 4

5 0 520 2.93 4

6 1 760 3.00 2

> length(mydata$admit)

[1] 400

> attach(mydata)

> plot(gpa,gre)

> cor(gpa,gre)

[1] 0.3842659
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Example
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Figure: GRE score versus GPA
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Example

Note that rank is a measure of prestige of the university with rank=1
being the most prestigious. Why are the correlations with the rank variable
negative?

> colMeans(mydata)

admit gre gpa rank

0.3175 587.7000 3.3899 2.4850

> cor(mydata)

admit gre gpa rank

admit 1.0000000 0.1844343 0.17821225 -0.24251318

gre 0.1844343 1.0000000 0.38426588 -0.12344707

gpa 0.1782123 0.3842659 1.00000000 -0.05746077

rank -0.2425132 -0.1234471 -0.05746077 1.00000000
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Example

> mydata$rank <- factor(mydata$rank)

> mylogit <- glm(admit ~ gre + gpa + rank, data = mydata,

family = "binomial")

>

> summary(mylogit)
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Example

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.989979 1.139951 -3.500 0.000465 ***

gre 0.002264 0.001094 2.070 0.038465 *

gpa 0.804038 0.331819 2.423 0.015388 *

rank2 -0.675443 0.316490 -2.134 0.032829 *

rank3 -1.340204 0.345306 -3.881 0.000104 ***

rank4 -1.551464 0.417832 -3.713 0.000205 ***
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Example

All predictors are significant, with gpa being a slightly stronger predictor
than GRE score. You can use the model to make actual predictions.

To interpret the results, the log-odds of being accepted increases by .002
for every unit increase in GPA. Of course a unit increase in GPA (from 3.0
to 4.0) is huge. You can also do an example calculation. The idea is that
the log-odds of being admitted to grad school is

p =
exp(−3.99 + .002gre + .804gpa− .675rank2− 1.34rank3− 1.55rank4)

1 + exp(−3.99 + .002gre + .804gpa− .675rank2− 1.34rank3− 1.55rank4)

Note that the default is that the school has rank1.
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Example

The very first observation is

> head(mydata)

admit gre gpa rank

1 0 380 3.61 3

For this individual, the predicted probability of admission is

p =
e−3.99+.002(380)+.804(3.61)−1.34

1 + e−3.99+.002(380)+.804(3.61)−1.34
= 0.1726

and the person did not get admitted (If you only use as many decimals as I
did here, you’ll get 0.159 due to round off error). You can get the
predicted probabilities for this individual by mylogit$fitted.values[1]
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Example

> names(mylogit)

[1] "coefficients" "residuals" "fitted.values"

[4] "effects" "R" "rank"

[7] "qr" "family" "linear.predictors"

[10] "deviance" "aic" "null.deviance"

[13] "iter" "weights" "prior.weights"

[16] "df.residual" "df.null" "y"

[19] "converged" "boundary" "model"

[22] "call" "formula" "terms"

[25] "data" "offset" "control"

[28] "method" "contrasts" "xlevels"

>
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Example

To do model selection, you can use AIC, or the deviance, which is a name
for-2 times the log-likelihood. The output gives you the AIC value and the
deviances for the null model (i.e., coefficients equal to 0) and the full
model. You can fit other models to see the effect of having a smaller
number of terms in the model.
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Example

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.989979 1.139951 -3.500 0.000465 ***

gre 0.002264 0.001094 2.070 0.038465 *

gpa 0.804038 0.331819 2.423 0.015388 *

rank2 -0.675443 0.316490 -2.134 0.032829 *

rank3 -1.340204 0.345306 -3.881 0.000104 ***

rank4 -1.551464 0.417832 -3.713 0.000205 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 499.98 on 399 degrees of freedom

Residual deviance: 458.52 on 394 degrees of freedom

AIC: 470.52

Number of Fisher Scoring iterations: 4
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Example

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.901344 0.606038 -4.787 1.69e-06 ***

gre 0.003582 0.000986 3.633 0.00028 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 499.98 on 399 degrees of freedom

Residual deviance: 486.06 on 398 degrees of freedom

AIC: 490.06
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Example

A nice thing about logistic regression with one parameter is that we can we can
visualize the S-shaped curve giving the probabilities. Here

p(x) =
e2.901344+.003582x

1 + e2.901344+.003582x

You can plot this directly or use the fitted model

> mylogit2 <- glm(admit ~ gre, data = mydata,

family = "binomial")

> newdata1 <- with(mydata, data.frame(gre = seq(200,2000,10)))

> newdata1$rankP <-

predict(mylogit, newdata = newdata1, type = "response")

> newdata1[1:5]

> head(newdata1)

gre rankP

1 200 0.1011145

2 210 0.1044172

3 220 0.1078149

4 230 0.1113094

5 240 0.1149025

6 250 0.1185962
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Figure: GRE score versus GPA
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Predictive ability

How well does the logistic regression predict graduate school admissions?
One idea is to classify each individual as probably admitted (p > .5) versus
probably not admitted (p < .5). Then compare to what actually happened.
Using our first fitted model, we can use mylogit$fitted.values to
make the predictions.

> prediction[1:10]

[1] 0 0 1 0 0 0 0 0 0 1

> admit[1:10]

[1] 0 1 1 1 0 1 1 0 1 0
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Predictive ability

We can also make a 2x2 table of what happened

prediction
admitted yes no

yes 30 97
no 19 254

Thus, 284 cases were correctly classified and 116 were incorrectly classified.
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Predictive ability

The corresponding table for the GRE only model is

prediction
admitted yes no

yes 0 127
no 0 273

Thus, 273 cases were correctly classified, which doesn’t appear much
worse, but in this model, no one is predicted to be admitted! The highest
probabilities of admission under this model were 0.49, and there were 79
cases where the predicted probability was above 0.4.
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Cross-validation

Instead of using AIC to choose models, a very different framework is to
use cross-validation. The idea is to choose a model that has the best
predictive accuracy.

Of course, we never really know how well a model will perform on
completely new data. The number of correct “predictions” that we saw in
the 2x2 tables gives us a start, but it is somewhat cheating because the
data was used to create the model. We don’t know how the model would
perform on brand new data.

In order to understand how the model would perform on new data, an idea
is to “train” the model on a portion of the data, leaving some of the data
out. Then the model is created on the training data, and it’s predictive
accuracy is measured on the new data. The new data possibly contains
combinations of predictors that didn’t exist in the original data.
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Cross-validation

The idea is to partition the data into k groups (folds) and fit the data using all
data except that in that group. Here is an example doing it by hand.

> mydata <- read.csv("http://www.math.unm.edu/~james/STAT428/admit.csv")

> records <- 1:length(mydata$gre)

> shuffled <- sample(records)

> mydata2 <- mydata[shuffled,]

> training1 <- mydata2[-shuffled[1:80],] # all data except first 80

# observationsin shuffled data

> training1$rank <- factor(training1$rank)

> mylogit1 <- glm(admit ~ gre + gpa + rank, data = training1,

family = "binomial")

>

> summary(mylogit1)
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Cross-validation

The second partition can be created as follows:

> training2 <- mydata2[-shuffled[81:160],] # all data except second 40

# observationsin shuffled data

> training2$rank <- factor(training2$rank)

> mylogit2 <- glm(admit ~ gre + gpa + rank, data = mydata2,

family = "binomial")

>

> summary(mylogit2)
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Cross-validation

Let’s look at how stable the estimates are:

Estimate 1 2 3 4 5

Intercept -4.102649 -3.405201 -3.752722 -4.070994 -4.574446
gre 0.002056 0.002048 0.001713 0.002699 0.002818
gpa 0.880271 0.718973 0.806905 0.720799 0.877650

rank2 -0.800371 -0.720470 -0.569607 -0.507341 -0.786461
rank3 -1.580688 -1.445074 -1.289875 -1.169436 -1.217038
rank4 -1.475393 -2.020265 -1.280611 -1.630306 -1.444659
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Cross-validation

Looking at the results, the estimates appear to be a little sensitive to the
data partition. I didn’t save the p-values, but sometimes everything was
significant, sometimes gre score became insignificant, and in one partition,
gpa was insignficant (p-value = 0.07), while gre was more significant
(p=.006). In several cases, the gre p-value was around 0.1 and the gpa
p-value was around 0.05.

We can look at how different the logistic regression curves are for specific
values. Here I let the gre score vary from 200 to 800, fix the gpa at the
mean gpa, and fix the rank of the school at 2.
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Cross-validation

> newdata1 <- with(training1, data.frame(gre = seq(200,800,10),

gpa=mean(gpa),rank=factor(2)))

> newdata1$rankP <-predict(mylogit2, newdata = newdata1,

type = "response")

> newdata2 <- with(training2, data.frame(gre = seq(200,800,10),

gpa=mean(gpa),rank=factor(2)))

> newdata2$rankP <-predict(mylogit2, newdata = newdata5,

type = "response")

...

> newdata5 <- with(training5, data.frame(gre = seq(200,800,10),

gpa=mean(gpa),rank=factor(2)))

> newdata1$rankP <-predict(mylogit5, newdata = newdata5,

type = "response")
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Cross-validation
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To see how the models based on training data perform on new data, we
set up new data sets to be predicted.

> mydata2$rank <- factor(mydata2$rank)

> newdata1 <- with(training1, data.frame(gre = mydata2$gre[1:80],

gpa=mydata2$gpa[1:80],rank=mydata2$rank[1:80]))

> newdata1$rankP <-predict(mylogit1, newdata = newdata1,

type = "response")

> newdata2 <- with(training2, data.frame(gre = mydata2$gre[81:160],

gpa=mydata2$gpa[81:160],rank=mydata2$rank[81:160]))

> newdata2$rankP <-predict(mylogit2, newdata = newdata1,

type = "response")

...

> newdata5 <- with(training5, data.frame(gre = gre[321:4000],

gpa=gpa[321:400],rank=rank[321:400]))

> newdata5$rankP <-predict(mylogit5, newdata = newdata5,

type = "response")
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Cross-validation

> newdata1

> head(newdata1)

gre gpa rank rankP

1 560 2.42 2 0.1649788

2 500 3.95 4 0.2547982

3 520 3.74 4 0.2284775

4 400 3.51 3 0.1453738

5 700 3.45 3 0.2301440

6 700 4.00 1 0.7021044

> as.numeric(newdata1$rankP>.5)

[1] 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0

[39] 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

[77] 0 0 0 0

> mydata2$admit[1:80]

[1] 0 0 1 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 1 0 1 0 0 0 1 0 0 1 1 1 0

[39] 0 0 1 0 0 0 0 0 1 0 1 1 1 0 1 0 0 1 0 1 1 0 1 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0

[77] 1 0 0 0
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Cross-validation

> sum((newdata1$rankP>.5 & mydata2$admit[1:80]==0))

[1] 2

> sum((newdata1$rankP<=.5 & mydata2$admit[1:80]==1))

[1] 20

> sum((newdata2$rankP>.5 & mydata2$admit[81:160]==0))

[1] 9

> sum((newdata2$rankP<=.5 & mydata2$admit[81:160]==1))

[1] 16

> sum((newdata3$rankP>.5 & mydata2$admit[161:240]==0))

[1] 5

> sum((newdata3$rankP<=.5 & mydata2$admit[161:240]==1))

[1] 19

> sum((newdata4$rankP>.5 & mydata2$admit[241:320]==0))

[1] 3

> sum((newdata4$rankP<=.5 & mydata2$admit[241:320]==1))

[1] 18

> sum((newdata5$rankP>.5 & mydata2$admit[321:400]==0))

[1] 2

> sum((newdata5$rankP<=.5 & mydata2$admit[321:400]==1))

[1] 22
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Cross-validation

The error rates were
training set false positive false negative overall

1 2/80 = 2.5% 20/80 = 25% 22/80 = 27.5%
2 9/80 = 11.5% 16/80 = 20% 25/80 = 31.25%
3 20% 6.25% 26.25%
4 3.75% 22.5% 26.25%
5 2.5% 27.5% 30.00%

average 5.25% 23.75% 29%
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Cross-validation

Repeating the same analysis for the GRE only model:

> mylogit1 <- glm(admit ~ gre, data = training1,family="binomial")

> mylogit2 <- glm(admit ~ gre, data = training2,family="binomial")

> mylogit3 <- glm(admit ~ gre, data = training3,family="binomial")

> mylogit4 <- glm(admit ~ gre, data = training4,family="binomial")

> mylogit5 <- glm(admit ~ gre, data = training5,family="binomial")

> newdata1$rankP <-predict(mylogit1, newdata = newdata1,type="response")

> newdata1$rankP <-predict(mylogit2, newdata = newdata2,type="response")

> newdata1$rankP <-predict(mylogit3, newdata = newdata3,type="response")

> newdata1$rankP <-predict(mylogit4, newdata = newdata4,type="response")

> newdata1$rankP <-predict(mylogit5, newdata = newdata5,type="response")
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Cross-validation

This time I’ll just report the overall error rate based on summing false positives
and false negatives. If you cared more about false positives than false negatives
(or vice versa), you could use just one type of error to do your model selection, or
you could weight the types of errors (for example, count false negatives twice as
much as false positives).

> sum((newdata1$rankP >.5) != mydata2$admit[1:80])

[1] 30

> sum((newdata2$rankP >.5) != mydata2$admit[81:160])

[1] 25

> sum((newdata3$rankP >.5) != mydata2$admit[161:240])

[1] 24

> sum((newdata4$rankP >.5) != mydata2$admit[241:320])

[1] 21

> sum((newdata5$rankP >.5) != mydata2$admit[321:400])

[1] 24

> (30/80 + 25/80 + 24/80 + 21/80 + 24/80)/5

[1] 0.31 # 31% error rate
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Cross-validation and overfitting data

Classification is one possible application for logistic regression. With model
selection, we are also interested in which variables are the most important
predictors.

Part of the idea of the cross-validation approach is that if you overtrain
your data (you have a model that is fitting the specific data but doesn’t
generalize well), then even if the model works well on 100% of the data, it
might work badly on a new observation. If we overtrain on 80% of the
data, the model might perform poorly on the remaining 20% of the data.

Consequently, the cross-validation approach can penalize for having too
many parameters.
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Cross-validation and overfitting data

> x <- 1:9

> y <- 1 + .5*x + rnorm(9,2)

> y

[1] 4.356914 4.290020 4.398406 5.375558 4.717148 6.661243

7.315793 7.580763 7.873130

> x2 <- x^2

> x3 <- x^3

> a <- lm(y~x)

> b <- lm(y~x + x2 + x3)

ADA2 March 2, 2018 43 / 110



Cross-validation and overfitting data

> summary(a)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.25287 0.39760 8.181 7.9e-05 ***

x 0.51763 0.07066 7.326 0.000159 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.5473 on 7 degrees of freedom

Multiple R-squared: 0.8846,Adjusted R-squared: 0.8681

F-statistic: 53.67 on 1 and 7 DF, p-value: 0.0001592
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Cross-validation and overfitting data

> summary(b)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.19949 1.04083 4.996 0.00412 **

x -1.07776 0.85347 -1.263 0.26235

x2 0.32982 0.19321 1.707 0.14852

x3 -0.01962 0.01275 -1.539 0.18451

Residual standard error: 0.4814 on 5 degrees of freedom

Multiple R-squared: 0.9362,Adjusted R-squared: 0.898

F-statistic: 24.47 on 3 and 5 DF, p-value: 0.002043

---
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Cross-validation and overfitting data

> x1 <- seq(1,9,.1)

> y1 <- 3.25287*rep(1,length(x1)) + 0.51763*x1

> y2 <- 5.19949 -1.07776*x1 + 0.32982*(x1^2)

-0.01962*(x1^3)

> plot(x,y,cex.axis=1.3,cex.lab=1.3)

> points(x1,y1,type=’’l’’,lwd=2)

> points(x1,y2,type=’’l’’,lwd=2,lty=2,col=’’red’’)
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Cross-validation
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Cross-validation

Finally, let’s try cross-validation. We’ll randomly partition the data into 3
sets and fit the model using 2/3 of the model. Then we’ll look at the sum
of squared errors in predicting the three new observations not in the
training data.

> shuffled <- sample(1:9)

> mydata <- as.data.frame(cbind(y,x,x2,x3))

> training1 <- mydata[-shuffled[1:3],]

> training2 <- mydata[-shuffled[4:6],]

> training3 <- mydata[-shuffled[7:9],]

> a1 <- lm(y ~ x,data=training1)

> a2 <- lm(y ~ x,data=training2)

> a3 <- lm(y ~ x,data=training3)

> b1 <- lm(y ~ x+x2+x3,data=training1)

> b2 <- lm(y ~ x+x2+x3,data=training2)

> b3 <- lm(y ~ x+x2+x3,data=training3)
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Cross-validation

> newdata1 <- with(training1,data.frame(x=shuffled[1:3]))

> newdata1$newy <- predict(a1,newdata=newdata1,type="response")

> newdata1$newy

[1] 8.125363 6.528667 5.996435

> y[shuffled[1:3]]

[1] 7.873130 6.661243 4.717148

> sum1 <- sum((newdata1$newy-y[shuffled[1:3]])^2)

> sum1

[1] 1.717773

> sum1+sum2+sum3

[1] 18.67009
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Cross-validation

Now repeat using models b1–b3.

> newdata1a <- as.data.frame(cbind(x[shuffled[1:3]],x2[shuffled[1:3]],x3[shuffled[1:3]]))

> newdata1a

V1 V2 V3

1 9 81 729

2 6 36 216

3 5 25 125

> names(newdata1a) <- c("x","x2","x3")

> newdata1a$newy <- predict(b1,newdata=newdata1a,type="response")

> newdata1a$newy

[1] 7.187767 6.806176 6.037326

> y[shuffled[1:3]]

[1] 7.873130 6.661243 4.717148

> sum1 <- sum((newdata1a$newy-y[shuffled[1:3]])^2)

> sum1

[1] 1.356087

> sum1+sum2+sum3

[1] 17.42845
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Cross-validation

Hmm, ok, cross-validation actually preferred the cubic model in this case
in spite of the high p-values for this case. This is because the sum of
squared discrepancies between the predicted y -values (for unobserved
data) and observed y -values was slightly lower for the cubic model.
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Cross-validation, curves estimated from three training sets
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Polytomous regression

Here the idea is that there are several discrete possible outcomes instead
of just two. One way this can come about is if you have two outcome
variables that each dichotomous, thus there are four combinations. More
generally, you could have 3 outcomes, or any integer number of outcomes.

An example data set has two binary outcomes: presence or absence of
breathlessness and presence or absence of wheeze among British coal
miners:
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Polytomous regression

Breathlessness present absent
age wheeze no wheeze wheeze no wheeze total

20–24 9 7 95 1841 1952
25–29 23 9 105 1654 1791
30–34 54 19 177 1863 2113
35–39 121 48 257 2357 2783
40–44 169 54 273 1778 2274
45–49 269 88 324 1712 2393
50–54 404 117 245 1324 2090
55–59 406 152 225 967 1750
60–64 372 106 132 526 1136

ADA2 March 2, 2018 54 / 110



Polytomous regression

We can think of each row as giving a 2x2 table for combinations of wheeze
and breathlessness. For example, for 20–24 year olds, the table is

Breathlessness
wheeze present absent total

present 9 95 104
absent 7 1841 1848

total 16 1936 1952

We can also think of the data as just multinomial with 4 categories.
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Polytomous regression

Instead of having a single log-odds parameter, λ, you can think of there
being several types of log-odds depending on the combinations of
conditions. For example, there is the log-odds for breathlessness among
miners without wheeze, the log-odds for wheeze among miners without
breathlessness, and the log-odds ratio for both wheeze and breathlessness
(this isn’t a unique way to choose the parameters, just one way):

λB = log

(
P(Y = (1, 0)|age = x)

P(Y = (0, 0)|age = x)

)
λW = log

(
P(Y = (0, 1)|age = x)

P(Y = (0, 0)|age = x)

)
λWB = log

(
P(Y = (1, 1)|age = x)/P(Y = (1, 0)|age = x)

P(Y = (0, 1)|age = x)/P(Y = (0, 0)|age = x)

)
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Polytomous regression

You can obtain probabilities of the four categories,
Y = (0, 0), (0, 1), (1, 0), (1, 1), from the following where ψ(x) is a
normalizing constant

P(Y = (0, 0)|x) = e−ψ(x)

P(Y = (1, 0)|x) = e−ψ(x)+λB(x)

P(Y = (0, 1)|x) = e−ψ(x)+λW (x)

P(Y = (1, 1)|x) = e−ψ(x)+λB(x)+λW (x)+λBW (x)
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Polytomous regression

The model can be written as

λB(x) = βB,0 + βB,1x

λW (x) = βW ,0 + βW ,1x

λWB(x) = βWB,0 + βWB,1x
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Polytomous regression

For the British coal miner example,

parameter estimate p-value
λB 0.505 0.000
λW 0.203 0.000
λBW -0.127 0.000

Here age is is coded from −4 to +4 depending on the age category.
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Polytomous regression in R

Another example but with three levels. In this case, we predict high school
students choices of general, vocation, and academic (i.e., college prep)
courses of study. Covariates include, socioeconomic status, type of high
school (public or private), and ACT score, as well as others.
Generally, there are m − 1 log-odds to be modeled. Using m as the
reference category, you estimate

λj = log

(
P(Y = j |x)

P(Y = m|x)

)
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Polymous regression in R

If you exponentiate, then you get a relative risk of being in category j
versus category m. If you want the relative risk of being in category j
versus category i for an arbitrary (i , j) pair, then you can use the output to
calcluate

log

(
P(Y = j |x)

P(Y = i |x)

)
= log

(
P(Y = j |x)

P(Y = m|x)

)
− log

(
P(Y = i |x)

P(Y = m|x)

)
Using properties of logs, the terms involving category m cancel out.

ADA2 March 2, 2018 61 / 110



Polytomous regression in R

We won’t go too deeply into the theory for parameter estimation, but it is based
on the idea you have multinomial counts, and the multinomial family of
distributions is an exponential family. Let Yi be the category, 1, . . . ,m,
observations in category i , i = 1, . . . ,m − 1. Then you have,

P(data) =
n!

n1! · · · · · nm!
pn11 . . . p

nm−1

m−1 p
n−

∑m−1
i=1 ni

m

= pnm
n!

n1! · · · · · nm!
pn11 . . . p

nm−1

m−1 p
−

∑m−1
i=1 ni

m

= pnm
n!

n1! · · · · · nm!
exp log

(
m−1∏
i=1

(pi/pm)ni

)

= pnm
n!

n1! · · · · · nm!
exp

(
m−1∑
i=1

ni log(pi/pm)

)

This is the exponential family form, so the natural parameters are log(pi/pm),

i = 1, . . . ,m − 1.
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Polytomous regression in R

Also because pm = 1−
∑m−1

i=1 pi , there are really m− 1 parameters. In the
case of two possible outcomes, m − 1 = 1, and this reduces to

pnm
n!

n1! · · · · · nm!
exp

(
m−1∑
i=1

ni log(pi/pm)

)

= (1− p)n
(
n

k

)
exp

(
k log

(
p

1− p

))
where k is the number of successes. Here p = p(x), so there is a separate
binomial expression for each combination of covariates. If each subject has
a unique vector of covariates, then each individual is really a Bernoulli trial
with a unique probability. It is possible to estimate the parameters because
we are assuming that there are only two parameters (for a single covariate)
in β0 + β1x even though each x is unique.

If there are p covariates, the number of parameters is p + 1 for logistic
regression. For polytomous regression, we have (p + 1)(m − 1) parameters
to be estimated. ADA2 March 2, 2018 63 / 110



Polytomous regression in R

From the exponential family form, you can also see that the sufficient
statistics for this problem are the counts in each category. Since the count
in the last category is n −

∑m−1
i=1 ni , you only need the counts

T (x) = (n1, . . . , nm−1)

to form the sufficient statistic.
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Polytomous regression in R

library(foreign); library(nnet); library(ggplot2)

library(reshape2)

ml <- read.dta("http://www.ats.ucla.edu/stat/data/hsbdemo.dta")

head(ml)

id female ses schtyp prog read write math sci socst honors

1 45 female low public voc 34 35 41 29 26 not enrolled

2 108 male middle public gen 34 33 41 36 36 not enrolled

3 15 male high public voc 39 39 44 26 42 not enrolled

4 67 male low public voc 37 37 42 33 32 not enrolled

5 153 male middle public voc 39 31 40 39 51 not enrolled

6 51 female high public gen 42 36 42 31 39 not enrolled

> with(ml, table(ses, prog))

prog

ses general academic vocation

low 16 19 12

middle 20 44 31

high 9 42 7
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Polytomous regression in R

Here’s an example of getting the mean writing score subset by type of high
school program

> mean(ml$write[ml$prog=="vocation"])

[1] 46.76

> mean(ml$write[ml$prog=="academic"])

[1] 56.25714

> mean(ml$write[ml$prog=="general"])

[1] 51.33333

This is a pain if there are many categories. Some code found online to do
this in one step is

with(ml, do.call(rbind, tapply(write, prog, function(x)

c(M = mean(x), SD = sd(x)))))

Is there a better way? In SAS, you do this type of thing using the BY
statement within a proc, so you analyze your data for each level of some
variable specified by BY.
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Polytomous regression in R

There are multiple packages that can do multinomial regression including mlogit

and nnet. Here is code using the nnet library (which has the function
multinom(). This example only uses two predictors.

ml$prog2 <- relevel(ml$prog, ref = "academic")

test <- multinom(prog2 ~ ses + write, data = ml)

# weights: 15 (8 variable)

initial value 219.722458

iter 10 value 179.982880

final value 179.981726

converged

summary(test)

Coefficients:

(Intercept) sesmiddle seshigh write

general 2.852198 -0.5332810 -1.1628226 -0.0579287

vocation 5.218260 0.2913859 -0.9826649 -0.1136037

Std. Errors:

(Intercept) sesmiddle seshigh write

general 1.166441 0.4437323 0.5142196 0.02141097

vocation 1.163552 0.4763739 0.5955665 0.02221996

Residual Deviance: 359.9635

AIC: 375.9635
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Polytomous regression in R

The function multinom doesn’t calculate a p-value, but it can be calculated by
taking the coefficients divided by their standard erros as z-scores and using the
standard normal cdf:

z <- summary(test)$coefficients/summary(test)$standard.errors

z

(Intercept) sesmiddle seshigh write

general 2.445214 -1.2018081 -2.261334 -2.705562

vocation 4.484769 0.6116747 -1.649967 -5.112689

> class(z)

[1] "matrix"

> p <- (1 - pnorm(abs(z), 0, 1)) * 2

> p

(Intercept) sesmiddle seshigh write

general 0.0144766100 0.2294379 0.02373856 6.818902e-03

vocation 0.0000072993 0.5407530 0.09894976 3.176045e-07
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Polytomous regression in R

To interpret the model, you can exponentiate coefficients to get relative risks for
the different categories compared to the reference group, which in this case was
the academic (i.e., college prep) course in the high school.

> exp(coef(test))

(Intercept) sesmiddle seshigh write

general 17.32582 0.5866769 0.3126026 0.9437172

vocation 184.61262 1.3382809 0.3743123 0.8926116
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Polytomous regression in R

For a discrete variable, such as SES being middle (middle class), the
relative risk (i.e. relative probability) of being in a general program versus
academic program is 0.58, meaning that they are more likely to be in an
academic program, for high SES, the relative risk is 0.31, so both SES
levels are more likely to be in an academic (college prep) high school
program, but the probability is higher for the higher SES. To compare the
relative risk of being in a general program versus vocational program, you
can use

log

(
P(Y = j |x)

P(Y = i |x)

)
= log

(
P(Y = j |x)

P(Y = m|x)

)
− log

(
P(Y = i |x)

P(Y = m|x)

)
⇒ P(Y = j |x)

P(Y = i |x)
=

P(Y = j |x)

P(Y = m|x)
×
[
P(Y = i |x)

P(Y = m|x)

]−1
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Polytomous regression in R

This was written this way so that you can use the output. So for middle
SES, the relative risk of being in a general program versus vocational is

> 0.5866769*1.3382809^(-1)

[1] 0.438381

And for high SES, the relative risk of being in a general program versus
vocational is

> 0.3126026*0.3743123^(-1)

[1] 0.8351385

ADA2 March 2, 2018 71 / 110



Polytomous regression in R

For a continuous variable such as the ACT score for the write variable the
output gives the relative risk as being 0.94 for general education compared
to academic. That means that the relative probability of being in a general
education program decreases by a factor of 0.94 for each unit increase in
the ACT score.

Flipping it around, each unit increase in ACT inreases the relative
probability of having been in an acadmic program by 1/0.94 ≈ 1.06, so a
student with an ACT score of one unit higher (in writing) is 6% more
likely to have been in an academic program than a student in the general
high school curriculum.
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Polytomous regression in R

Can we recover estimated probabilities for three categories? Think of this
as a system of equations. For three categories, we have

p1
p3

= a

p2
p3

= b

p1 + p2 + p3 = 1
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Polytomous regression in R

This system has solution

p1 =
a

1 + a + b

p2 =
b

1 + a + b

p3 =
1

1 + a + b

The values of a and b are estimated from the software, so you can
estimate, for example

p̂1 =
â

1 + â + b̂
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Polytomous regression in R

The probabilities are also stored in the output.

> head(test$fitted.values)

academic general vocation

1 0.1482764 0.3382454 0.5134781

2 0.1202017 0.1806283 0.6991700

3 0.4186747 0.2368082 0.3445171

4 0.1726885 0.3508384 0.4764731

5 0.1001231 0.1689374 0.7309395

6 0.3533566 0.2377976 0.4088458

Again you can do classification.
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Polytomous regression in R

> obs <- 1*(ml$prog=="academic")+2*(ml$prog=="general")

+3*(ml$prog=="vocation")

> obs

[1] 3 2 3 3 3 2 3 3 3 3 3 1 3 3 3 2 2 3 1 3 2 3 3 3 1 1 2 2 1 1 2 3 1 1 3 3 3

[38] 1 2 1 2 1 1 3 1 3 3 2 3 1 1 3 2 1 1 2 1 2 3 2 3 1 1 3 3 3 2 1 1 2 1 1 1 2

...

> pred <- 1:200

> for(i in 1:200) {

+ pred[i] <- which(test$fitted.values[i,]==

max(test$fitted.values[i,]))

+ }

> as.numeric(obs==pred)

[1] 1 0 0 1 1 0 1 1 1 1 0 0 1 1 1 1 1 1 0 0 0 1 0 0 0 1 1 0 0 1 0 1 0 0 1 1 1

[38] 1 0 0 0 1 1 0 0 0 1 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 1 0 0 1 0 1 1 0 1 1 1 0

...

> sum(as.numeric(obs==pred))

[1] 122 # out of 200, so 61% are classified correctly

ADA2 March 2, 2018 76 / 110



Polytomous regression in R

Suppose we re-analyze the data, dropping observations where the school program
is vocation. This makes the response binary, so we can use a usual logistic
regression. Regression coefficients are similar, but not exactly the same.

> ml2 <- ml[ml$prog != "vocation",]

> test2 <- glm(prog2 ~ ses + write,family="binomial",data=ml2)

> summary(test2)

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.91105 1.17669 2.474 0.01336 *

sesmiddle -0.54746 0.44609 -1.227 0.21973

seshigh -1.19507 0.51590 -2.316 0.02053 *

write -0.05877 0.02149 -2.735 0.00624 **

> summary(test)

Coefficients:

(Intercept) sesmiddle seshigh write

general 2.852198 -0.5332810 -1.1628226 -0.0579287
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Polytomous regression in R

We could also do the binary logistic regression using multinom(). Reassuringly,
we get the same results:

> test2 <- multinom(ml2$prog2 ~ ml2$ses + ml2$write)

# weights: 5 (4 variable)

initial value 103.972077

final value 83.831168

converged

Warning message:

In multinom(ml2$prog2 ~ ml2$ses + ml2$write) : group vocation is empty

> summary(test2)

Call:

multinom(formula = ml2$prog2 ~ ml2$ses + ml2$write)

Coefficients:

Values Std. Err.

(Intercept) 2.91105714 1.17669406

ml2$sesmiddle -0.54746274 0.44608690

ml2$seshigh -1.19507277 0.51590397

ml2$write -0.05877308 0.02149064

Residual Deviance: 167.6623

AIC: 175.6623
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Polytomous regression in R

How to plot the results? To possibilities are to plot the relative risk of
being in cateogory i versus category j (or category i versus the category
m, the reference). Alternatively you could plot the probability of the three
categories as a function of one of the covariates.

In the latter case, the three probability curves are constrained to sum to
one for each level of the predictor.
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Polytomous regression in R

> newdata1 <- as.data.frame(

cbind(ses=rep("middle",41),write=30:70))

> newdata1$write <- as.numeric(30:70)

> newdata1$rankP <- predict(test,newdata=newdata1,

type="probs")

> head(newdata1)

ses write rankP.academic rankP.general rankP.vocation

1 middle 1 0.004326675 0.041503912 0.954169412

2 middle 2 0.004833209 0.043753434 0.951413357

3 middle 3 0.005398021 0.046116157 0.948485822

4 middle 4 0.006027618 0.048596622 0.945375760

5 middle 5 0.006729186 0.051199393 0.942071421

6 middle 6 0.007510665 0.053929020 0.938560316
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Polytomous regression in R: SES=low
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Polytomous regression in R: SES=middle
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Polytomous regression in R: SES=high
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Polytomous regression in R: another view
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Polytomous regression: code for previous slide

library(nnet)

postscript(file="all.eps",horiz=F,height=7,width=7)

par(mfrow=c(3,1))

plot(30:70,newdata3$rankP[,1],ylim=c(0,1),cex.axis=1.3,cex.lab=1.3,ylab=

"Pr(Academic)",xlab="Writing score",type="l",col="orange",lwd=2)

points(30:70,newdata2$rankP[,1],type="l",col="black",lwd=2)

points(30:70,newdata1$rankP[,1],type="l",col="red",lwd=2)

legend(30,1,legend=c("High","Middle","Low"),lty=c(1,1,1),lwd=c(2,2,2),col=

c("black","red","orange"),cex=1.5,bty="n")

plot(30:70,newdata3$rankP[,2],ylim=c(0,1),cex.axis=1.3,cex.lab=1.3,ylab=

"Pr(General)",xlab="Writing score",type="l",col="orange",lwd=2)

points(30:70,newdata2$rankP[,2],type="l",col="black",lwd=2)

points(30:70,newdata1$rankP[,2],type="l",col="red",lwd=2)

plot(30:70,newdata3$rankP[,3],ylim=c(0,1),cex.axis=1.3,cex.lab=1.3,ylab=

"Pr(Vocational)",xlab="Writing score",type="l",col="orange",lwd=2,main

="Vocational")

points(30:70,newdata2$rankP[,3],type="l",col="black",lwd=2)

points(30:70,newdata1$rankP[,3],type="l",col="red",lwd=2)

dev.off()
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Polytomous regression in R: default limits on y-axis
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Study design for logistic and multinomial regression

Ron Christensen makes a distinction between prospective and
retrospective study designs for logistic regression. The idea for a
prospective design is that subjects are recruited not on the basis of the
outcome variable, then they are followed, and after a time period, whether
or not the outcome occurs (e.g., presence or absence of disease) is
recorded.

For a retrospective study, subjects are recruited so that a certain number
of observations will have the event of interest. This is what occurs in
case-control data. The idea in this study design is that if you are
interested in something rare (e.g., a certain type of cancer), then randomly
sampling the population will result in very few cases, making it very
difficult to estimate the probability of the event.
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Study design for logistic and multinomial regression

Typically in a case control design, you might deliberately sample n
individuals with the condition (cases) and n individuals without the
condition (controls), for a total sample size of N = 2n. Usually this is the
goal and due to people dropping out of the study, faulty records,incorrectly
identified cases, etc., the sample sizes are only approximately equal. In
other designs, you might have twice as many controls as cases.

In the prospective study, you can think of every individual with the same
covariates as being sampled from the same Binomial or Multinomial
population. In this case the sample is Binomial(nx , p) or
Multinomial(nx , p1, . . . , pk). In the case-control design, the sampling is
instead done so that the cases are Binomial(nx , p1) and the controls are
Binomial(nx , p2), where p2 = 1− p1. The contribution to the likelihood for
individuals with covariates x will then be a product of the two binomials.
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Study deisgn for logistic/multinomial regression

A consequence of all of this is that you are not primarily interested in the
predicting that someone is a case versus control—you are more interested
in the relative importance of the predictors. If the cases are similar to the
controls, then their predictors are expected to be similar as well. If their
predictors are useful for distinguishing the cases from the controls, then
the level of the predictor is associated with the disease status.

As a result, an application of logistic regression in this setting is
genome-wide association studies. Instead of a raw association between a
SNP and disease status, you can adjust for covariates such as age, sex,
population, and environmental variables in determining whether there is a
significant association.
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Case control interpretation for logistic regression

We can interpret the case control setting as having random explanatory
variables X and a non-random response Y (0 or 1), which is switched
from the usual regression idea, where the response is random and
explanatory variables are non-random.

Agresti argues that a case-control logistic regression can be understood as
modeling

logit(P(Y = 1|Z = 1,X )) = β∗0 + β1x

where Z is an indicator for whether or not a person is sampled. Here

β∗0 = β0 + log(ρ1/ρ0)

where
ρi = P(Z = 1|y = i)
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Case control interpretation for logistic regression

In other words, the regression coefficients have the usual interpretation
except the intercept, which shouldn’t be interpreted the normal way.
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Study deisgn for logistic multinomial regression

For the case-control example, since the overall risk (averaged over the
covariates) of being a case is 50% by design, we cannot really estimate the
probability of being a case. This is often handled by using conditional
logistic regression, the idea being that you are conditioning on someone
being selected for the study bases on their status as a case or a control.

One issue is that rather than estimating the odds or log-odds, in
conditional logistic regression, you can only estimate odds ratios instead.
The conditional logistic regression approach can be handled with the
clogit() function in the survival package in R.
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Study design for the high school program example

For the example of logistic regression that we looked at, was that a
prospective or retrospective study (using Christensen’s terminology)?

ADA2 March 2, 2018 93 / 110



Study design for the high school program example

For the example of logistic regression that we looked at, was that a
prospective or retrospective study (using Christensen’s terminology)?

It seems rather odd to call it prospective because they started their high
school program before taking the college entrance exams. But it doesn’t
fit into the retrospective category because students were not selected on
the basis of their high school program. All of the variables really existed
sort of simultaneously. Maybe SES occurs before and during high school
program, as does sex, etc. It was sort of arbitrary to single out high school
program as the response.

For that dataset, we might have used writing score as a response and
asked whether SES and high school program had a significant affect on
the test score.
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High school example as a multiple regression

> a <- lm(ml$write ~ ml$ses + ml$prog)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 50.058 1.589 31.506 < 2e-16 ***

ml$sesmiddle 1.384 1.546 0.895 0.37194

ml$seshigh 3.300 1.737 1.900 0.05890 .

ml$progacademic 4.299 1.567 2.744 0.00664 **

ml$progvocation -4.618 1.782 -2.592 0.01027 *
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Conditional logistic regression for matched case-control
pairs

Another design with cases and controls are matched pairs. In this study
design, controls are matched to cases on as many covariates as possible
such as age and sex.
In this case, let i index the pair, and t = 1, 2 index the individual within
the pair. Then the model for one covariate is

logit(P(Yit = 1)) = αi + βxit

Here xit is some sort of risk factor or covariate, and Yit is the case control
status with the constraint that Yi1 = 1− Yi2 and Yit = 0 or 1.
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Conditional logistic regression for matched case-control
pairs

If there are multiple predictors, then the model is

logit((P(Yit = 1)) = β0i + β1x1it + β2x2it + · · ·+ βpxpit

This is called conditional logistic regression (having to do with the
likelihood using conditional probabilities) and is implemented by clogit()

in the survival package in R.
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Poisson regression

An extension to having a finite number of discrete outcomes is to have an
outcome that is a count. This is often modeled using Poisson regression,
where the outcome Y is a nonnegative integer, the distribution of which is
Poisson(λ), where λ is a function of the predictors.

Examples where Poisson regression might be used include

I Number of hospitalizations for patients in an insurance plan

I Number of asthma attacks for asthma patients

I Number of animals found in a set of animal traps (used to measure
species abundance in a certain environment/habitat)

I Number of eggs laid by a bird within a certain period of time

I Number of flooding events for cities
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Poisson regression

Poisson regression is a natural next step past polytomous regression in
that instead of having a finite number of categories, you number the
categories and think of them as counts. The model is

log λ = α + βx

Where λ is the expected count for a predictor x .
Here we interpret this as

λ = exp(α + βx) = eα(eβ)x

Thus increasing x by 1 multiplies the expected count λ be eβ.
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Poisson regression

The high school data set can be used for an example of Poisson regression
using the number of awards for the students as a response variable.

> ml$awards

[1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

[38] 2 0 0 0 0 2 0 0 1 0 1 0 0 0 0 0 2 1 0 0 2 3 0 1 0 1 2 0 0 2 0 1 1 1 2 0 1

[75] 2 1 1 1 0 0 0 1 1 0 0 0 1 0 2 0 1 1 0 1 3 2 1 1 0 0 1 1 2 0 0 2 1 1 2 2 3

[112] 1 1 1 2 2 3 1 2 3 2 2 5 3 2 2 2 2 5 2 2 0 0 2 3 2 1 4 0 1 1 2 2 2 3 3 3 5

[149] 2 2 2 3 5 3 3 3 1 3 5 3 7 5 2 2 2 2 5 3 5 2 2 3 5 7 5 5 7 5 3 1 4 2 5 2 7

[186] 7 2 7 3 1 5 3 2 2 4 5 4 7 5 3

> table(ml$awards)

0 1 2 3 4 5 7

72 35 44 22 4 16 7
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Poisson regression

Note that the number of awards without adjusting for covariates is not a
good fit to the Poisson because it is overdispersed (i.e., the variance is
larger than the mean):

> mean(ml$awards)

[1] 1.67

> var(ml$awards)

[1] 3.307638

This is not necessarily a problem. The Poisson assumption is only that the
response is Poisson for each level of the predictors, not marginally over all
possible predictors.
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Poisson regression

Tables allow you to very the number of awards as a function of SES or
high school program.

> with(ml,table(ses,awards))

awards

ses 0 1 2 3 4 5 7

low 24 6 8 4 0 5 0

middle 35 19 25 9 1 4 2

high 13 10 11 9 3 7 5

> with(ml,table(prog,awards))

awards

prog 0 1 2 3 4 5 7

general 19 9 10 3 0 3 1

academic 20 20 28 16 3 13 5

vocation 33 6 6 3 1 0 1
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Poisson regression

mp <- glm(awards ~ prog + ses + write, family="poisson", data=ml)

summary(mp)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -9.249106 0.716516 -12.908 <2e-16 ***

sesmiddle 0.073543 0.157571 0.467 0.641

seshigh 0.024463 0.157772 0.155 0.877

progacademic 0.002788 0.146738 0.019 0.985

progvocation -0.036918 0.209709 -0.176 0.860

write 0.167395 0.011614 14.413 <2e-16 ***
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Poisson regression

A better model just has the writing variable in it appears to be:

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -9.18857 0.67797 -13.55 <2e-16 ***

write 0.16701 0.01098 15.21 <2e-16 ***

AIC: 383.47
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Poisson regression

But there is something funny in the data

> with(ml,table(write,awards))

awards

write 0 1 2 3 4 5 7

31 4 0 0 0 0 0 0

33 4 0 0 0 0 0 0

...

49 11 0 0 0 0 0 0

50 0 2 0 0 0 0 0

52 0 15 0 0 0 0 0

53 0 1 0 0 0 0 0

54 0 17 0 0 0 0 0

55 0 0 3 0 0 0 0

57 0 0 12 0 0 0 0

59 0 0 25 0 0 0 0

60 0 0 4 0 0 0 0

61 0 0 0 4 0 0 0

62 0 0 0 18 0 0 0

63 0 0 0 0 4 0 0

65 0 0 0 0 0 16 0

67 0 0 0 0 0 0 7
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Poisson regression

Math seems a little more reasonable:
> with(ml,table(math,awards))

awards

math 0 1 2 3 4 5 7

33 1 0 0 0 0 0 0

35 1 0 0 0 0 0 0

37 1 0 0 0 0 0 0

38 2 0 0 0 0 0 0

39 5 1 0 0 0 0 0

40 8 1 1 0 0 0 0

41 3 3 0 1 0 0 0

42 4 0 3 0 0 0 0

43 5 2 0 0 0 0 0

44 3 0 1 0 0 0 0

45 5 1 1 1 0 0 0

46 6 2 0 0 0 0 0

47 2 1 0 0 0 0 0

48 1 0 2 0 0 2 0

49 6 1 2 1 0 0 0

50 1 3 3 0 0 0 0

51 2 2 2 1 0 1 0

52 4 0 2 0 0 0 0

53 1 2 3 1 0 0 0

54 3 3 3 1 0 0 0

55 0 3 1 0 0 1 0

56 1 0 3 3 0 0 0

57 4 3 3 1 1 0 1
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Poisson regression

Another view.
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Poisson regression

> mp <- glm(awards ~ prog+ses+math, family="poisson", data=ml)

> summary(mp)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.901471 0.380936 -7.617 2.6e-14 ***

progacademic 0.013975 0.156217 0.089 0.9287

progvocation -0.362036 0.208919 -1.733 0.0831 .

sesmiddle -0.049149 0.158114 -0.311 0.7559

seshigh 0.242528 0.159438 1.521 0.1282

math 0.061068 0.006689 9.130 < 2e-16 ***

AIC: 625.76

The model with prog, ses and math has better AIC than any other model
with subsets of these variables.
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Poisson regression

An example of visualizing the results is to compare the fitted values to the
math scores as a function of say, the SES status, where the program is
fixed.
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Figure: Program is fixed at “academic”.
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Poisson regression

A common problem in Poisson regression models is that the variance does
not equal the mean, even for levels of the predictors. There are a number
of ways to deal with this including

I negative binomial regression

I zero-inflated Poisson models
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