
humor...
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Power

As discussed previously, power is the probability of rejecting the null
hypothesis when the null is false.

Power depends on the effect size (how far from the truth the null is), the
sample size, and α, the probability of rejecting when the null hypothesis is
true. Power calculations usually assume that the model (such as the
distribution) is correct, but only the parameters of the model described by
the null hypothesis are incorrect.

Usually, if the null hypothesis is false, the probability of rejecting the null
hypothesis is larger than α (assuming you have a size α test. Note that a
conservative test might have size < α.
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Power

Why is power used?

One of the most common applications of power analysis is determining an
appropriate sample size to make a study likely to find a statistically significant
effect. Knowing what sample size might be needed is useful for planning,
especially the cost of a study, and can be important when applying for grant
funding.

Although statisticians often think of “more is better” in terms of sample size, in
biomedical studies with side effects, there is an ethical component to sample size
calculations. If it is unkonwn whether a treatment will have adverse side effects,
or there are risks for a certain treatment, then having more observations than
necessary for the purpose of the study means that more people are subjected to
unnecessary risk.

For grant purposes and also for cases using expensive treatments or experiments,
sample size calculations are also useful to make sure that a study isn’t wasteful in
terms of spending more money than necessary.
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Power

In some cases, power can be calculated theoretically. In other cases, power
calculations are complicated and must be simulated. Power calculations
can be slow because to estimate a probability you might need
approximately 10,000 simulated hypothesis tests (which require simulated
data sets), to estimate power within 1%. This only gives you the power for
a particular choice of α, n, and the effect size.

To estimate the power as a function of n or the effect size, a simulation
requires simulating hundreds of thousands of data sets to get a smooth
power curve.
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Power

A case where the power curve can be calculated analytically, consider the
following:

Let X1, . . . ,X50 be i.i.d. normal with mean µ and known variance σ2 = 1.
Let the null and alternative hypotheses be

H0 : µ ≤ 1

H1 : µ > 1

If we are testing using α = 0.05, we can think of the power as a function
of µ since n = 50 is fixed.
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Power

To calculate the power, we need the probability of rejecting the null
hypothesis. The test statistic for this problem is

Zobs =
X − µ0
σ/
√
n

=
X − 1

1/
√

50

Note that when µ > 1, Zobs does not have a standard normal distribution,
but does still follow a normal distribution. If µ > 1, the distribution of
Zobs is normal with mean and variance
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Power

E [Zobs ] = E

[
X − 1

1/
√

50

]
= (µ− 1)

√
50

Var(Zobs) = Var(
√

50(X − 1))

= 50 · Var(X )

= 50 · Var

(
1

50

50∑
i=1

Xi

)

=
50

502

50∑
i=1

Var(Xi )

=
50

50
= 1
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Power

Since Zobs ∼ N(
√

50(µ− 1), 1), we can calculate probabilities that Zobs takes
different values. Note that Zobs − E [Zobs ] has a N(0, 1) distribution.
For a one-sided test, reject H0 at the α = .05 level if Zobs ≥ 1.645.

P(Zobs > 1.645) = P
(
Zobs − (µ− 1)

√
50 > 1.645− (µ− 1)

√
50
)

= P(Z > 1.645− (µ− 1)
√

50)

= 1− Φ(1.645− (µ− 1)
√

50)

Thus, the power function is

Power(µ) = 1− Φ(1.645− (µ− 1)
√

50)

If we were doing a two-sided hypothesis test, how should we calculate the power

function?
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Power

The power can now be plotted as a function of µ.

> mu <- seq(1,3,.01)

> power50 <- 1-pnorm(1.645-(mu-1)*sqrt(50))

> power40 <- 1-pnorm(1.645-(mu-1)*sqrt(40))

> power30 <- 1-pnorm(1.645-(mu-1)*sqrt(30))

> power20 <- 1-pnorm(1.645-(mu-1)*sqrt(20))

> power10 <- 1-pnorm(1.645-(mu-1)*sqrt(10))

> plot(mu,power50,type="l",lwd=2)

> plot(mu,power50,type="l",lwd=2,ylim=c(0,1))

> points(mu,power40,type="l",lwd=2)

> points(mu,power30,type="l",lwd=2)

> points(mu,power20,type="l",lwd=2)

> points(mu,power10,type="l",lwd=2)
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Power
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Figure : Power for 1-sided test when n = 10, 20, . . . , 50.
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Power

Alternatively, you can plot the power as a function of the sample sizes for
selected values of µ.

> n <- seq(5,100,1)

> power1 <- 1-pnorm(1.645-(1-1)*sqrt(n))

> power1.2 <- 1-pnorm(1.645-(1.2-1)*sqrt(n))

> power1.1 <- 1-pnorm(1.645-(1.1-1)*sqrt(n))

> power1.3 <- 1-pnorm(1.645-(1.3-1)*sqrt(n))

> power1.4 <- 1-pnorm(1.645-(1.4-1)*sqrt(n))

> power1.5 <- 1-pnorm(1.645-(1.5-1)*sqrt(n))
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Power
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Figure : Power for 1-sided test when µ = 1, 1.1, . . . , 1.5.
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Power

A nice thing about power curves is that it summarizes trends. For this problem, if
the effect size is small (e.g. 1.1), the power increases very slowly with the sample
size, with the power being only 0.259 with n = 100.

Of course, you can also use functions in R to get the power. The function
power.t.test() is especially useful. This will give slightly different results
because it uses the t distribution, but results will be quite similar for larger
sample sizes. Power based on the t-test is much more likely to be useful in
practice. For this problem you can use

> power.t.test(n=100,delta=.1,sd=1,type="one.sample",

alternative="one.sided")

One-sample t test power calculation

n = 100

delta = 0.1

sd = 1

sig.level = 0.05

power = 0.2573029

alternative = one.sided
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Power

In consulting situations, you can often use an online power calculator, at
least for examples like t-tests and tests of proportions. I recommend using
this for working with many biomedical people who might not be familiar
with R or interested in learning R.

An example is here: https://www.stat.ubc.ca/∼rollin/stats/ssize/
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Power

Basing your sample size calculation on previous studies has some risks. In
particular, a small study might have gotten lucky in observing a larger
effect than is really there, and this could make you overestimate your
power.

Also, publication bias could mean that the effect size is overestimated.

Again, there is uncertainty in the estimate of the standard deviation, so if
this is underestimated (which is likely if the significance was accidentally
inflated), then again you might be overestimating your power or
underestimating the sample needed for a given study.

Nevertheless, the standard is to design a sample size based on 80% power.
Estimating the uncertainty in this estimated power is difficult however, and
the result is that many studies that are designed to have 80% power
actually have less power. To me, 80% seems awfully low (a high risk of
failure to observe the effect), but requiring higher power would be costly in
terms of higher sample sizes and/or risks to patients, so it is a difficult
issue.

May 3, 2017 15 / 56



Power

Another issue is clinical significance. If there is an effect, such as a
reduction in pain for different pain treatments, then an effect might be
considered too small to be of clinical significance even if it is measurable
given very large samples. It might be more difficult to argue that some
level of reducing the probability of death is “clinically insignficant”.

In a case where there is minimum effect size for clinical significance, then
in the absence of knowing the effect size, you might calculate the sample
size needed to show that there is a clinically significant difference when the
difference is the minimum necessary to meet clinical signficance. If pain is
measured on a scale of 1–10, maybe a difference of pain of less than 1.0
points is considered clinically insignficant. In this case, if the true mean
difference in pain is 0.5 points, then this might not be considered
important. If the study has acceptable power for detecting a 1.0 difference
in pain but has low power for detecting a 0.5 point difference in pain, then
this might be acceptable.
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Power

Other examples where it might be important to pay attention to practical
versus statistical significance include

I improvements in educational testing (if SAT score improves by < 10,
is this a meaningful improvement?

I patient satisfaction scores (if on a scale of 1–10), how important is a
difference of 0.1?
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Effect size

Power analysis often involves the term “effect size”. Usually, under the null
hypothesis, the effect size (sometimes abbreviated ES) is 0 and is the value of the
difference between the true value of a parameter and the hypothesized value.

The actual effect size can have a couple of definitions. One is that the actual
effect size under the alternative hypothesis is then the difference between the true
parameter and the hypothesized value of the parameter. Another possibility is
that the ES is the difference divided by the standard deviation of the test
statistic. The latter definition was more useful when power had to be looked up
in textbooks that published tables of power analyses using standardized effect
sizes based on a single standard deviation.
For the two-sample t-test, the effect size is often called Cohen’s d :

d =
|x− y|

s

where s is the pooled sample standard deviation. (Remove absolute values for a

one-sided test.)
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Effect size

Cohen considers d = 0.2 to be small, d = 0.5 to be medium, and d = 0.8
to be large. Note that d is quite similar to the coefficient of variation for a
single random variable E [X ]/SD(X ).

Cohen (Jacob Cohen) wrote a book in 1969 called “Statistical Power
Analysis for the Behavioral Sciences” where he defines many of these
ideas. It is quite influential still (second edition was 1988). The book
printed lots of typed tables of power values to be used as references. I
don’t think there is a single plot in the book, but there are over 100 pages
of tables for a 500-page text. This is also the Cohen of Cohen’s kappa.
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Effect size

An effect size can depend on the type of problem. Instead of a difference
in means, the ES might be a relative risk, an odds ratio, or a difference in
proportions.

It is good practice to report effect sizes in addition to p-values. A small
p-value does not necessarily mean that there is a large effect size. Instead
p-values depend on a combination of the effect size (relative to the null
hypothesis), the variability in the sample, and the sample size. Small
p-values can be obtained for small effects with large sample sizes, and
large p-values can occur when the effect size is clinically meaningful but
the sample size and sample variability was too large to conclude
“statistical significance”. This could mean that the observed effect size
would be practically signficant, but might have been observed by chance in
the study.
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Power: sample size determination

Sample sizes for studies aren’t usually completely under the researcher’s
control, but they are analyzed as though they are fixed parameters rather
than random variables. In planning a study, you also have to estimate the
number of people that drop out of the study, or the proportion that will
enroll after you attempt to recruit.

If you recruit people to be in a study for example using flyers around
campus, the hospital, etc., then you might have historical data to predict
what a typical sample size would be based on how long and widely you
advertise. Study designers can therefore often indirectly control the sample
size.
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Power: sample size determination

Random sample sizes might be worth considering, however, For the t-test
example, you might have better power to reject the null hypothesis if your
sample sizes are equal for the two groups than if they are unequal. For
example, suppose you are recruiting for testing whether a drug reduces
headaches, and you recruit both men and women. Suppose you suspect
that the drug is more effective for men than women.

If you recruit people for the study, you might not be in direct control of
how many men versus women volunteer to be in the study. Suppose 55
women volunteer to be in the study and 45 men volunteer. You could
make the sample sizes equal by randomly dropping data from 10 of the
women, but this would be throwing away information. It is better to use
information from all 90 study participants, although you might have less
power with 45 men versus 55 women than with 50 d for each sex.
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Power: sample size determination

On the other hand, if for your study, you are collecting expensive
information, such as doing MRIs for each participant, you might decide to
accept the first n women volunteers and the first n men volunteers. A
power analysis could help you decide whether it was important to have a
balanced design or not.
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Power: effect of unbalanced designs

How could we simulate the effect of unbalanced versus balanced designs?
Assuming we knew that there were a fixed number of participants (say
n = 100), we could compare the effect of a particular unbalanced design
(for example 45 versus 55) versus the balanced design (50 per group). We
could also let the number of men versus women in each iteration of a
simulation be a binomial random variable, so that the degree of imbalance
is random.
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Power: determining effect size

In addition to graphing power as a function of sample size, it is common
to plot power as a function of the effect size for a fixed sample size.
Ultimately, power depends on three variables: α, n, and the effect size
such as µ1 − µ2 for the two-sample t-test example. We usually fix two of
these variables and plot power as a function of the other variable.

The t-test example is easy to modify to plot power as a function of the
effect size for a given sample size (say, n = 20).
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Power: determining effect size
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Power: determining effect size
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Power: determining effect size

1111
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Power: plotting both sample size and effect size
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Power: plotting both sample size and effect size
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Power: plotting both sample size and effect size
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Power: determining effect size

1111
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Power: determining effect size

Note that the data set sim that has all of my simulated data has 840,000
observations. SAS is still reasonably fast, and the log file gives information
about how long it took.

NOTE: SAS Institute Inc., SAS Campus Drive, Cary, NC USA 27513-2414

NOTE: The SAS System used:

real time 22.28 seconds

cpu time 9.43 seconds

We could make the plots smoother by incrementing the effect size by a
smaller value (say .01), although this will generate 50 times as many
observations. When simulations get this big, you start having to plan them
– how long will they take (instead of 30s, will it take 25min?, 25 days?),
how much memory will they use, and so on, even though this is a very
simple simulation.
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Length of simulations

The log file also breaks down how long each procedure took. Much of the
time was actually due to generating the PDF file with ODS. From the log
file:

NOTE: The data set WORK.SIM has 840000 observations and 5 variables.

NOTE: DATA statement used (Total process time):

real time 0.19 seconds

cpu time 0.18 seconds

NOTE: The data set WORK.PVALUES has 42000 observations and 9 variables.

NOTE: The PROCEDURE TTEST printed pages 1-21000.

NOTE: PROCEDURE TTEST used (Total process time):

real time 9.12 seconds

cpu time 8.97 seconds

...

NOTE: PROCEDURE SGPLOT used (Total process time):

real time 12.44 seconds

cpu time 0.19 seconds

May 3, 2017 34 / 56



Length of simulations

When designing simulations, there are usually tradeoffs. For example,
suppose I don’t want my simulation to take any longer than it already has.
If I want smoother curves, I could double the number of effect sizes I used,
but then to keep the simulation the length of time, I might have to use
fewer iterations (say 500 instead of 1000). This would increase the
number of data points at the expense of possibly making the curve more
jittery, or even not monotonically increasing. There will usually be a
tradeoff between the number of iterations and the number of parameters
you can try in your simulation.
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Length of simulations for R

If you want to time R doing simulations, the easiest way is to run R in
batch mode. In Linux or Mac OS X, you can go to a terminal, and at the
shell prompt, type

time R CMD BATCH myprogram.r

and it will give a similar print out of real time versus cpu time for your R
run.
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Power in R

Here’s an example of testing the power of the t-test to distinguish two
exponential popoulations with different means. Here the rate in the first
exponential sample is 1, and the rate in the second exponential varies from
1 to 3. The sample size varies from 10 to 30.
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Power in R
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Power: determining effect size
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Power: determining effect size
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Power:tradeoff between number of parameters and number
of iterations (500 vs 100 iterations)
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Using Power to select methods

As mentioned before, power analyses are useful for determining which
method is preferable when there are multiple methods available to analyze
data.

As an example, to consider the two sample t-test again when we have
exponential data. Suppose we wish test H0 : µ = 2 when λ = 1, so that
the null hypothesis is false. Since the assumptions of the test are false,
researchers might prefer using a nonparametric test.
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Using Power to select methods

As an alternative, you can use a permutation test or other nonparametric
test. Here we might wish to see which method is most powerful. If you
can live with the inflated type 1 error for the t-test (or adjust for it by
using a smaller α-level, then you might prefer it if is more powerful.

A number of nonparametric procedures are implemented in PROC
NPAR1WAY, as well as PROC MULTTEST. In addition, there are macros
floating around the web that can do permutation tests without using these
procedures.
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Using power to select methods

Here we’ll try PROC NPAR1WAY and just one nanparametric method, the
Wilcoxon rank-sum test (also called the Mann-Whitney test). The idea is
to pool all of the data, then rank them. Then calculate the sum of the
ranks for group A versus group B. The two sums should be approximately
equal, with greater differences in the sums of the ranks being evidence
that the mean for one group is larger than the mean for the other group.
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Using power to select methods

Note that there are many other methods we could have selected such as a
median test or a permutation test. This is just to illustrate, and we are not
necessarily finding the most powerful method.
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Power: comparing methods
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Power: comparing methods
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Power: comparing methods
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Power: comparing methods
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Power: comparing methods

For these parameter values (exponentials with means of 1 and 2), the
t-test was more powerful than the Wilcoxon test at all sample sizes. The
Wikipedia article on the Mann-Whitney test says: “It [The Wilcoxon or
Mann-Whitney test] has greater efficiency than the t-test on non-normal
distributions, such as a mixture of normal distributions, and it is nearly as
efficient as the t-test on normal distributions.”

Given our limited simulation, we have some reason to be a little bit
skeptical of this claim. Still, we only tried one combination of parameters.
It is possible that for other parameters or other distributions, the t-test is
less powerful. Also, the t-test has inflated type 1 error, so the comparison
might be a little unfair. We could re-run the experiment using α = .01 for
the t-test and α = .05 for the Wilcoxon to make sure that both had
controlled type 1 error rates.
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Power: comparing methods

Here’s an example from an empirical paper,
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Power: comparing methods
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Speed: comparing methods

For large analyses, speed and/or memory might be an issue for choosing
between methods and/or algorithms. This paper compared using different
methods within SAS based on speed for doing permutation tests.
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Use of macros for simulations

The author of the previous paper provides an appendix with lengthy
macros to use as more efficient substitutes to use as replacements for SAS
procedures such as PROC NPAR1WAY and PROC MULTTEST, which
from his data could crash or not terminate in a reasonable time.

In addition to developing your own macros, a common use of macros is to
use macros written by someone else that have not been incorporated into
the SAS language. You might just copy and paste the macro into your
code, possibly with some modification, and you can use the macro even if
you cannot understand it. Popular macros might eventually get replaced
by new PROCs or new functionality within SAS. This is sort of the SAS
alternative to user-defined packages in R.
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From Macro to PROC

An example of an evolution from macros to PROCS is for bootstrapping.
For several years, to perform bootstrapping, SAS users relied on macros
often written by others to do the bootstrapping. In bootstrapping, you
sample you data (or the rows of your data set) with replacement and get a
new dataset with the same sample size but some of the values repeated
and others omitted. For example if your data is

-3 -2 0 1 2 5 6 9 bootstrap replicated datas set might be

-2 -2 1 5 6 9 9 9

-3 0 1 1 2 5 5 6

etc.
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From Macro to Proc

Basically to generate the bootstrap data set, you generate random n
random numbers from 1 to n, with replacement, and extract those values
from your data. This was done using macros, but now can be done with
PROC SURVEYSELECT. If you search on the web for bootstrapping, you
still might run into one of those old macros.

Newer methods might still be implemented using macros. A webpage from
2012 has a macro for Bootstrap bagging, a method of averaging results
from multiple classification algorithms.
http://statcompute.wordpress.com/2012/07/14/a-sas-macro-for-bootstrap-aggregating-bagging/

There are also macros for searching the web to download movie reviews or
extract data from social media. Try searching on ”SAS macro 2013” for
interesting examples.
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