
Tips on word frequencies

I found a slightly another approach to getting words from a plain text
document using the scan() function.

Here is an example:

jamess-mbp:STAT476 superjames$ cat fox.txt

The quick brown fox jumped over the lazy dog.

Memory believes before knowing remembers.

I want to convert to lower case and remove all periods.
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Tips on word frequencies

To get a vector of words

> x <- scan("fox.txt",what="char")

Read 14 items

> x

[1] "The" "quick" "brown" "fox" "jumped"

[6] "over" "the" "lazy" "dog." "Memory"

[11] "believes" "before" "knowing" "remembers."

> x <- tolower(x)

> x <- gsub(".","",x,fixed=TRUE)

> x

[1] "the" "quick" "brown" "fox" "jumped" "over"

[7] "the" "lazy" "dog" "memory" "believes" "before"

[13] "knowing" "remembers"
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Tips on word frequencies

> y <- scan("romeoandjuliet.txt",what="char")

Read 23995 items

> length(unique(y))

[1] 6166

> y <- tolower(y)

> length(unique(y))

[1] 5705

> y2 <- chartr(",’.;!:[]?"," ",y)

> length(unique(y2))

[1] 4658

> y3 <- gsub(" ","",y2)

> length(unique(y3))

[1] 3714
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Tips on word frequencies

> words[1:20]

y3

and the i to a of my is that in romeo you thou

682 624 540 498 419 364 337 321 319 301 301 262 257

me not with it this for be

247 237 232 210 208 204 192

> words <- sort(table(y3)/length(y3),decreasing=TRUE)

> words[1:20]

y3

and the i to a of

0.028422588 0.026005418 0.022504688 0.020754324 0.017461971 0.015169827

my is that in romeo you

0.014044593 0.013377787 0.013294436 0.012544280 0.012544280 0.010918941

thou me not with it this

0.010710565 0.010293811 0.009877058 0.009668681 0.008751823 0.008668473

for be

0.008501771 0.008001667
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Classification analysis (Chapter 9)

Now we go back to chapter 9, which deals with classification of
observations to groups. You might have several groups already defined and
want to classify a new observation. If you have a PCA, then you could
determine the linear combinations of variables corresponding to PC1 and
PC2 that was determined from an original set of data. Then you could use
those linear combinations on a new data point (even if it didn’t contribute
to the calculation of the PCs) and see where it fits on plot of PC2 versus
PC1.

If clusters have been defined from the original data, you might want to
find which cluster the new observation is closest to.
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Classification analysis

For a biological example, there might several known species, each of which is
considered a cluster. A new organism is sampled from the field, and the question
is: to which species does it belong? Sometimes species identification can be
difficult. For example, there are 16,000 species of mushrooms (compared to
about 5,000 species of mammals). Several thousand new species are discovered
and described every year, and a difficult question is whether a new specimen is a
new species or just a variety of a previously described species.

Other examples of classification might be a bank deciding whether a mortgage

application should be considered high risk, medium risk, or low risk. There are

numerous variables that could be used for classification: amount of the mortgage,

downpayment, number of borrowers, income(s) of the borrower(s), credit rating,

whether the house is for residence or rental, etc. A bank will have a large

database of previous experience on these variables that can be used to make a

model, and the interest is in classifying a new observation (a new customer).
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Classification analysis

Some other examples of classification include:

1. classifying a tumor as benign or malignant based on a medical image

2. making a diagnosis (medical or psychiatric) on the basis of a set of
symptoms (this is more open-ended than benign versus malignant)

3. classifying a fossil bone as belonging to a male or female, adult or
juvenille

4. classifying student applicants as likely to complete college or drop out

5. finding the best fit for an applicant for a college major, or for a job
within the military

6. determining disputed authorship (Hamilton versus Madison for the
Federalist Papers or Shakespeare’s plays

7. identifying speech patterns for automated voice recognition systems
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Classification analysis

A first step is to classify observations into one of two categories. If we
have two previous populations (or historical data), then we can determine
their historical averages. For example, if we want to classify high school
students applying to college as likely to succeed or not, we can use
historical data for those who succeeded (say, graduated from college within
a given number of years) and measure variables such as high school rank,
high school GPA, and SAT/ACT scores.

One approach to this problem is to use the discriminant function. Recall
from chapter 5 that the discriminant function is the vector a where

z = a′y = (y1 − y2)′S−1pl y

z i = a′yi = (y1 − y2)′S−1pl yi

here yi is the multivariate average vector for population i , Spl is the
pooled covariance matrix, and y is the new observation.
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Classification analysis

Fisher’s approach is to classify observation y as coming from population 1
if z is closer to z1 and coming from population2 if z is closer to z2. The
vector a represents the linear combination of the variables that best
seperates the two groups before y is considered.

Because z is a linear combination of the y variables, it is somewhat similar
to a principal component, and we can think of it as a rotated axis.
Principal components is different in that the principal components
procedure doesn’t take into account group labels. PCA finds the axis of
greatest variation in the pooled data, which might be different from the
axis that best separates two groups.
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Classification
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Classification
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Classification

The way the linear combination a is constructed, z1 − z2 > 0. This might
seem a bit odd, but we have that a = (y1 − y2)S−1pl , and

z1 − z2 = a′y1 − a′y

= a′(y1 − y2)

= (y1 − y2)′S−1pl (y1 − y2) > 0

which is a quadratic form and is positive because S−1pl is positive definite.
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Classification

As a result, z is closer to z1 if

z >
1

2
(z1 + z2),

the midpoint between z1 and z2. In terms of y (instead of z) we can write
that y is classified as belonging to group 1 if

a′y = (y1 − y2)′S−1pl y >
1

2
(y1 − y2)′S−1pl (y1 + y2)

If the inequality goes the other way, then y is classified as belonging to
group 2, and if there is equality (which happens with probability 0 if there
are any continuous variables involved), then the classification is arbitrary,
or you could flip a coin, or have a default group that you prefer (default to
denying or accepting mortgages).
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Classification

The method described above was used by Fisher in the 1930s and doesn’t
assume that the data is multivariate normal. However, if the data is
multivariate normal and the two groups satisfy Σ1 = Σ2, then this
classifier can be considered asymptotically optimal in the sense that the
probability of misclassification is minimized by this procedure.

The method can also be used in conjunction with prior probabilities for the
two groups if the densities for the groups is also known (so, usually if you
are willing to assume multivariate normality). In this case, if group 1 has
density f1(y) and prior probability p1, and group 2 has density f2(y) and
prior probability p2, then you classify y as coming from group 1 if

p1f1(y) > p2f2(y)

(the book writes f1(y) as f (y|G1) for the density of y given that you come
from group 1.
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Classification

Assuming multivariate normality with equal covariance matrices (but
unequal mean vectors) for groups 1 and 2, the classification rule is
equivalent to preferring group 1 if

a′y = (y1 − y2)′S−1pl y >
1

2
(y1 − y2)′S−1pl (y1 + y2) + ln

(
p1
p2

)
An example of using these prior probabilities is if you know that 70% of
entering freshmen eventually graduate with probability 0.7, so that you use
p1 = 0.7 and p2 = 0.3. Using prior probabilities might be more important
for cases where one group is much more likely than another.

Note that if p1 = p2, then the normal-based classfication rule reduces to
Fisher’s linear discriminant function. Although Fisher’s rule doesn’t
assume multivariate normality, it performs especially well with multivariate
normality and p1 ≈ p2.
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Classification

In addition to classifying new observations, you can use discriminant
functions to see how well you can classify your own data. Your
misclassification rate in this case is biased in the sense that you will
probably do better at classifying data used to create the model than new
data, but nevertheless, a linear classifier often won’t be able to perfectly
classify data.

We’ll do an example where we try to classify chile pods as coming from
either Cochiti or Alcalde based on length and width alone (ignoring
thickness of the wall).
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Classification
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Classification

This was the code I used to generate the plot:

> x <- read.table("chile.txt",header=T)

> #first make an empty plot with the right dimensions

> plot(x$Length,x$Width,type="n",cex.axis=1.3,

cex.lab=1.3,xlab="Length",ylab="Width")

> points(x$Length[12:22],x$Width[12:22],

col="orange",pch=15,cex=1.5)

> points(x$Length[23:33],x$Width[23:33],

col="blue",pch=16,cex=1.5)

> legend(7,4,legend=c("Chimayo","Cochiti"),

pch=c(15,16),col=c("orange","blue"),cex=1.5)
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Classification

You can see that if we just used Length or Width alone, then we’d have to
misclassify several of the chile pods. So a question is whether we can use a
combination of Length and Width to do a better job of classification? Of
course, this is a small sample, so whatever rule we came up with might not
generalize well to larger samples, but this will give the idea of the
approach.
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Classification

First we’ll determine the discriminant function. To find a we set

a = (y1 − y2)′S−1pl

> y <- x[c(1:11,34:44),2:3]

> y1bar <- colMeans(y[1:11,])

> y2bar <- colMeans(y[12:22,])

> y1bar

Length Width

9.25 3.20

> y2bar

Length Width

8.95 2.60
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Classification

Here are the pooled covariance matrix and its inverse

> n1 <- 11

> n2 <- 11

> S1 <- cov(y[1:11,])

> S2 <- cov(y[12:22,])

> Sp <- (n1*S1 + n2*S2)/(n1+n2)

> Spinv <- solve(Sp)

> Spinv

Length Width

Length 0.5804841 -0.9984327

Width -0.9984327 9.7173042

> Sp

Length Width

Length 2.0925 0.215

Width 0.2150 0.125
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Classification

The vector a and classification rule criterion are

> a <- (y1bar-y2bar) %*% Spinv

> a

Length Width

[1,] -0.4249144 5.530853

> .5*(y1bar-y2bar) %*% Spinv %*% (y1bar+y2bar)

[,1]

[1,] 12.17275

Thus the discriminant function is

−0.425Length + 5.53Width

and the classification says to assign a chile pod to Alcade if

−0.425Length + 5.53Width >
1

2
(y1 − y2)′S−1pl (y1 + y2) = 12.1725
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Classification

To see how our classifcation rule will classify the original 22 data points,
we compute Ya where a is 2× 1 and Y is 22× 2. I did this in R as

> combo <- as.matrix(y) %*% t(a)

> classifier <- cbind(combo,(combo > 12.1725),

c(rep(1,11),rep(0,11)))
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Classification

> classifier # linear combo, classification, truth

1 12.130957 0 1

2 16.383584 1 1

3 14.896384 1 1

4 17.236896 1 1

5 14.471469 1 1

6 12.555872 1 1

7 13.830615 1 1

8 12.980786 1 1

9 12.343414 1 1

10 10.852731 0 1

11 13.768271 1 1

34 10.640274 0 0

35 12.555872 1 0

36 9.790445 0 0

37 10.427817 0 0

38 12.130957 0 0

39 9.577988 0 0

40 7.237476 0 0

41 9.790445 0 0

42 13.405700 1 0

43 10.215360 0 0

44 10.577233 0 0
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Classification

From these results, we see that four observations were missclassified, two
from Alcalde would be classified as Cochiti, observations 1 and 10, and
two from Cochiti would be classified as being from Alcalde, observations
35 and 42 (corresponding to the 2nd and 9th chiles from Cochiti). This
was disappointing as the classification rule: “If width is greater than 2.7,
assign it to Alcalde” would get an equal error rate.

However, this illustrates an automated procedure that can generalize to
more dimensions.
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Back to classification

In addition to classification into two groups, we often want to classify into
several groups, for example classifying an employee into an appropriate
training program or diagnosing a patient based on symptoms.

You can get a mean vector for each of k groups: overliney1, . . . , yk . The
simplest approach is that a new observation y can be assigned to the
group i for which the distance

di (y) = d(y, yi )

is minimized.
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Classification with more than two groups

More generally, however, you might want to account for the variation in
the different groups. In this case, we find the group i that minimizes

D2
i (y) = (y − y)′S−1pl (y − y)

Note that minimizing a squared distance is equivalent to minimizing a
distance even though a squared distance is not generally a distance.
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Classification with more than two groups

If we expand D2
i , we get

D2
i = (y − yi )

′(S−1pl y − S−1pl yi )
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Classification with more than two groups

If we expand D2
i , we get

D2
i = (y − yi )

′(S−1pl y − S−1pl yi )

= y′(S−1pl y − S−1pl yi )− y′i (S−1pl y − S−1pl yi )
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Classification with more than two groups

If we expand D2
i , we get

D2
i = (y − yi )

′(S−1pl y − S−1pl yi )

= y′(S−1pl y − S−1pl yi )− y′i (S−1pl y − S−1pl yi )

= y′S−1pl y − y′S−1pl yi − y′iS
−1
pl y + y′iS

−1
pl yi
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Classification with more than two groups

If we expand D2
i , we get

D2
i = (y − yi )

′(S−1pl y − S−1pl yi )

= y′(S−1pl y − S−1pl yi )− y′i (S−1pl y − S−1pl yi )

= y′S−1pl y − y′S−1pl yi − y′iS
−1
pl y + y′iS

−1
pl yi

= y′S−1pl y − 2y′iS
−1
pl y + y′iS

−1
pl yi
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Classification with more than two groups

If we expand D2
i , we get

D2
i = (y − yi )

′(S−1pl y − S−1pl yi )

= y′(S−1pl y − S−1pl yi )− y′i (S−1pl y − S−1pl yi )

= y′S−1pl y − y′S−1pl yi − y′iS
−1
pl y + y′iS

−1
pl yi

= y′S−1pl y − 2y′iS
−1
pl y + y′iS

−1
pl yi

The first term, doesn’t depend on i , so it can be ignored. The second term
is a linear combination of the y terms, which is why this is called a linear
classification. The third term doesn’t depend on y is therefore constant
with respect to y. Therefore, minimizing D2

i is equivalent to minimizing

−2y′S−1pl yi
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Classification with more than two groups

To make the classification rule more similar to the two-group case, you can
multiply by −1

2 and maximize

Li (y) = y′S−1pl yi −
1

2
y′iS
−1
pl yi

(Maximizing −1
2 f (x) is equivalent to minimizing f (x).) We can also write

Li (y) as

Li (y) = c′iy + ci0 = ci1y1 + ci2y2 + · · · , cipyp + ci0

where

c′i = yiS
−1
pl , ci0 = −1

2
yiS
−1
pl yi
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Classification with more than two groups

If there are prior probabilities p1, . . . , pg , on groups, one would assign an
observation to the group that minimizes

pi fi (y)

If group i is Np(µi ,Σ) (i.e., all covariances are the same), then using prior
probabilities is equivalent to minimizing

Li (y) = ln pi + y′S−1pl yi −
1

2
y′iS
−1
pl yi
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Classification with more than two groups

The previous approach is sensitive to the assumption that the variances are
equal — otherwise the new observation y might appear too close to spread
out groups. An alternative is to use the individual covariance matrices
instead of the pooled covariance matrix. In this case, you pick the group i
that minimizes

D2
i (y) = (y − y)′S−1i (y − y)

The only difference here is that Spl was replaced with Si . In this case D2
i

is quadratic in y rather than linear, so it is called a quadratic classification
rule.

It is computationally a bit less efficient than a linear classification rule (as
you might expect) because it requires computing i inverses of p × p
matrices rather than pooling the covariances first and then computing the
inverse of only one p × p matrix.

April 11, 2018 35 / 69



Classification with more than two groups

If prior probabilities are used, the rule is to minimize

Qi (y) = ln pi +
1

2
ln |Si |+ y′S−1i yi −

1

2
y′iS
−1
pl yi

For the quadratic classification to work, the group sample sizes, ni , must
all be larger than p for each Si to have an inverse. For linear classification,
we just need n > p for the inverse to exist.

April 11, 2018 36 / 69



Misclassification rates

How well a classifcation scheme does is measured by misclassification
rates. If the data is used to create a classifier, and then the same data is
used to test the classifier, this is called resubstitution. The resulting error
rate is the number of misclassified observations, and is called the
apparent error rate. This is an optimistic assessment of the error rate
because the classifier has been “trained” on the data being tested, and
might not perform as well on data that wasn’t part of its training set.
Cross-validation methods can also be used to get less biased error rates.

Some of the language used to describe classifiers comes from Artificial
Intelligence and Machine Learning, where we think of a function doing the
classification as having learned from experience (the data used to generate
the classifier). If you’ve learned something well, you can apply it to new
situations, not just the examples already presented, and this is often called
generalization.
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Misclassification

For now, we consider all errors to be equally important. In some cases, you
might care about some errors more than others. For classifying tumors as
benign or malignant, there are two types of errors: false positives, in which
a benign tumor is classified as malignant; and (2) false negatives, in which
a malignant tumor is classified as benign. The fasle negatives in this case
might be more serious than false negatives if it means that a malignant
tumor is not appropriately treated.

For now, we consider classification with two groups and consider both
kinds of errors equally.
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Misclassification

Let n1 be the number of observations in group G1, and let n2 be the
number of observations in group G2. Then let

n11 be the number of observations from group 1 classified as group 1

n12 be the number of observations from group 1 classified as group 2

n21 be the number of observations from group 2 classified as group 1

n22 be the number of observations from group 2 classified as group 2

The total number of misclassifications is n12 + n21, and the number of
correct classifications is n11 + n22. The apparent error rate is

n12 + n21
n1 + n2
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Misclassification

The results can be summarized in a classification table, which is also
someimtes called a confusion matrix:
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Misclassification

For the chile data, we had two chiles from Alcalde classified as being from
Cochiti and two from Cochiti calssified as being from Alcalde. There were
11 chiles in each group, so the misclassification rate is
(2 + 2)/(11 + 11) = 2/11 = 18%.

Now we’ll try the quadratic classification on the chile data to see how that
performs
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Misclassification

> D2.1 <- 1:22

> for(i in 1:22) {

+ D2.1[i] <- as.matrix(y[i,]-ybar1) %*% S1inv %*% t(as.matrix(y[i,]-ybar1))

+ }

> D2.2 <- 1:22

> for(i in 1:22) {

+ D2.2[i] <- as.matrix(y[i,]-ybar2) %*% S2inv %*% t(as.matrix(y[i,]-ybar2))

+ }

> D2.1-D2.2

[1] -2.2287341 -9.6294436 -9.9478823 -22.2589087 -12.6802911 -1.4539157

[7] -6.1732641 -1.8530645 -1.6945790 -0.7523556 -4.0103896 0.8662518

[13] -1.4539157 4.4057631 2.1913674 -2.2287341 4.5569114 8.3531440

[19] 4.4057631 -3.4261807 3.2229911 2.9008475

> (D2.1-D2.2 < 0)

[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

TRUE TRUE TRUE FALSE

[13] TRUE FALSE FALSE TRUE FALSE FALSE FALSE

TRUE FALSE FALSE
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Miclassification

For the quadratic function, we classify the chile as being from group 1
(Alcalde) if D2

1 < D2
2 ⇒ D2

1 − D2
2 < 0 for each observation. The quadratic

rule correctly classifies all the Alcalde chiles but incorrectly classifies three
of the Cochiti chiles. The quadratic function therefore had an apparent
error rate of (0 + 3)/(11 + 11) = 3/22 = 13.6%. This is one better than
the linear rule, but with such a small sample, it is difficult to say that this
is “significantly” better.
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Misclassification

To summarize the results in a table, we can write

Predicted group
———————

Actual group number of observations Alcalde Cochiti

Alcalde 11 11 0
Cochiti 11 3 8
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Plotting the quadratic rule

#create ranges for length and width of chiles

> y1 <- seq(6,12,.05)

> length(y1)

[1] 121

> y2 <- (y1-6)/6 *3 + 1.5

> mymatrix <- matrix(nrow=121,ncol=121)

> for(i in 1:121) {

+ for(j in 1:121) {

+ D2.1 <- as.matrix(t(c(y1[i],y2[j])-ybar1)) %*% S1inv %*%

as.matrix(c(y1[i],y2[j])-ybar1)

+ D2.2 <- as.matrix(t(c(y1[i],y2[j])-ybar2)) %*% S2inv %*%

as.matrix(c(y1[i],y2[j])-ybar2)

+ if(D2.1 < D2.2) mymatrix[i,j] = 1

+ else mymatrix[i,j] = 0

+ }

+ }
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Plotting the quadratic rule

> plot(c(6,12),c(1.5,4.5),type="n",xlab="Length",ylab="Width",cex.lab=1.3,cex.axis=1.3)

> for(i in 1:121) {

+ for(j in 1:121) {

+ points(y1[i],y2[j],pch=15,cex=2,col=paste(mymatrix[i,j]))

+ }}

> points(x[1:11,2],x[1:11,3],pch=16,col="orange",cex=2)

> points(x[34:44,2],x[34:44,3],pch=15,col="red",cex=2)

> legend(10,2,legend=c("Alcalde","Cochiti"),col=c("orange","red"),cex=1.5,pch=c(16,15))
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Plotting the quadratic rule
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Plotting the linear rule
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Getting less biased error rates

The resubstitution methods leads to overly optimistic apparent error rates.
To get a better idea of how a classification rule generalizes to new data,
an idea is to randomly split up your data into two portions, a training and
a validation. There are different ways of doing this. By reducing the
sample size in the training set, the classification rule is made from less
data, so might not be as good as a classifier based on all the data, but it
still might give a better sense of how well the classifier would work on new
data, and could be used, for example, to help choose between a linear and
quadratic classifer, or to help choose between Euclidean versus other
distance functions.

In splitting up the data, you are evaluating the performance of a classifier
that is not quite the classifier that would want to use a final product —
eventually you would want to use the classifier built on the entire data set.
Another issue is that reducing the sample size might be unreasonable for
small samples. Particularly for the quadratic classifier, you could end up
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Partitioning samples

A simple example of partitioning the data is to randomly pick 50% of the
data to be the training set and the remaining 50% to be the validation set.
The results will depend on the random subset of the data used, so you
could repeat the procedure with different random subsets and take the
average misclassification rates. Instead of 50%, you could also use a
number such as 80% or 90%. This will make the classification rule more
similar between random samples (which would tend to reduce the
variability in the number of misclassifications). On the other hand, the
number of misclassifications is binomial where the parameter n is size of
the validation set, so this would tend to increase the variability in the
misclassification rates.
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Partitioning samples

Another approach is to just leave out one observation at a time. In this
case, you construct N classification rules, each based on N − 1
observations, and classify the one observation left out on the basis of the
previous N − 1 observations. This way, the one observation mbeing
classified is independent of the classification rule. You then calculate the
misclassification rate based on the number of misclassified observations
out of the N observations. This method is called the holdout,
leave-one-out, or cross-validation. Note that it is a similar idea to
studentized residuals from regression.
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Partitioning samples

A generalization of this approach are to leave out more than one
observation at a time (for example leave out two), but this would require
leaving out

(N
2

)
observations, but this is computationally intensive for large

N.

Another generalization is k-fold cross-validation, in which you partition the
data in k sets (e.g., k = 10) and train the classifer using N(1− 1/k)
observations to classify the remaining N/k observations. This is repeated
k times, one for each partition, and the misclassification rates can be
averaged. k = 2 is the original idea of splitting the data into two halves,
and k = N is the leave-one-out-method. k = 10 is the most common
choice for k-fold cross-validation.
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Creating random subsets in R

The sample() command in R makes it pretty easy to create random
subsets. If you have N total observations, then you can shuffle a vector
with the values {1, . . . ,N}. Here are some examples:

> n1 <- round(n/2)

> N <- 1:length(x[,1]) # assume data is in x

> training <- sample(N,n1,replace=F)

> x.training <- x[training,]

> x.validation <- x[-training,] #indices

from 1,...,N NOT in the training set
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Creating random subsets in R

> k <- 10

> x.temp <- x[sample(1:n,replace=F),]

> for(i in 1:10) {

> first.obs <- floor((i-1)*N/k) + 1

> last.obs <- floor(i*N/k)

> x.temp.training <- x[first.obs:last.obs,]

To understand the loop, suppose we have 325 observations and want to do
k-fold cross-validation. When i=1, first.obs is set to
b0 ∗ 325/10c+ 1 = 1 and last.obs is set to b325/10c = 32. Thus, the
first temporary data set has observations 1 through 32 of the shuffled
data. When i=2, first.obs is set to b325/10c+ 1 = 33 and last.obs

is set to 2(325)/10 = 65. Thus the second partition has observations 33
through 65 of the shuffled data set. Note that partition 2 has one more
observation than partition 1 because it isn’t possible for all partitions to
have exaclty the same number of observations.
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Variable selection

You can also use misclassification rates as a basis for variable selection. If
a small number of variables has similar misclassification rates as a larger
number of variables, then the larger set of variables isn’t helping predictive
ability, so we might decide to go with the smaller set of variables.
Different subsets of variables can be tried with cross-validation applied to
each subset to help determine a reasonable subset of variables when the
goal is to classify using a small number of variables.
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Fisher Iris data

A famous data set used to illustrate classification is Fisher’s Iris data from
1936. There are three species of iris with 50 observations each. The
species are:

1. Iris setosa

2. Iris versicolour

3. Iris virginica

The variables are (in cm)

1. sepal length

2. sepal width

3. petal length

4. petal width
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Fisher Iris data
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Fisher Iris data

The data is famous enough to be built into R

> data(iris)

> iris

> head(iris)

> head(iris)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa

2 4.9 3.0 1.4 0.2 setosa

3 4.7 3.2 1.3 0.2 setosa

4 4.6 3.1 1.5 0.2 setosa

5 5.0 3.6 1.4 0.2 setosa

6 5.4 3.9 1.7 0.4 setosa
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Fisher Iris data
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Fisher Iris data

Species 1 (setosa) seems clearly separated from species 2 and 3 on petal
length and width, but not on sepal length and width. Species 2 and 3 are
less clearly separated, but also seem to have more separation for petal
attributes than the sepals.

> plot(Petal.Length,Petal.Width,col=species,pch=14+species,

cex.lab=1.3,cex.axis=1.3,cex=1.5)

> legend(1,2.5,legend=c("setosa","versicolor","virginica"),

pch=c(15,16,17),col=c(1,2,3),cex=1.5)

> plot(Petal.Length,Petal.Width,col=species+2,pch=14+

species,cex.lab=1.3,cex.axis=1.3,cex=1.5)

> legend(1,2.5,legend=c("setosa","versicolor","virginica"),

pch=c(15,16,17),col=c(1,2,3)+2,cex=1.5)

can also use col=mycolor in plot where
mycol=c(rep("orange",50),rep("red",50),rep("brown",50)), for
example to customize colors.
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Fisher Iris data
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Fisher Iris data: easier colors for me
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Fisher Iris data: less separation on sepal variables
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Fisher Iris data

> S1 <- cov(iris[1:50,1:4])

> S2 <- cov(iris[51:100,1:4])

> S3 <- cov(iris[101:150,1:4])

> Sp <- (S1+S2+S3)/3

> S <- cov(iris[,1:4])

Is the covariance matrix S the same as the pooled covariance matrix when
all sample sizes are equal?

April 11, 2018 64 / 69



Fisher Iris data

No, the pooled covariance matrix tends to have smaller variances than the
variance matrix on all the data when there are differences between groups.

> D2.1 <- 1:150

> D2.2 <- 1:150

> D2.3 <- 1:150

> for(i in 1:150) {

+ D2.1[i] <- as.matrix(iris[i,1:4]-ybar1) %*%

Sinv %*% t(as.matrix(iris[i,1:4]-ybar1))

+ D2.2[i] <- as.matrix(iris[i,1:4]-ybar2) %*%

Sinv %*% t(as.matrix(iris[i,1:4]-ybar2))

+ D2.3[i] <- as.matrix(iris[i,1:4]-ybar3) %*%

Sinv %*% t(as.matrix(iris[i,1:4]-ybar3))

+ }
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> classifier <- 1:150

> for(i in 1:150) {

+ if(D2.1[i] < min(D2.2[i],D2.3[i])) classifier[i] <- 1

+ else if(D2.2[i] < min(D2.1[i],D2.3[i])) classifier[i] <- 2

+ else if(D2.3[i] < min(D2.1[i],D2.2[i])) classifier[i] <- 3

+ }

> classifier

[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

[38] 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2

[75] 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3

[112] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3

[149] 3 3

> truth <- c(rep(1,50),rep(2,50),rep(3,50))

> which(as.numeric(classifier==truth)==0)

[1] 71 84 134

So observations 71, 84, and 134 were misclassified, with two versicolor
being classified as virginica and one virginica being misclassified as
versicolor.
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For a quadratic classifier, we use

> for(i in 1:150) {

+ D2.1[i] <- as.matrix(iris[i,1:4]-ybar1) %*% solve(S1)

%*% t(as.matrix(iris[i,1:4]-ybar1))}

> for(i in 1:150) {

+ D2.2[i] <- as.matrix(iris[i,1:4]-ybar2) %*% solve(S2)

%*% t(as.matrix(iris[i,1:4]-ybar2))}

> for(i in 1:150) {

+ D2.3[i] <- as.matrix(iris[i,1:4]-ybar3) %*% solve(S3)

%*% t(as.matrix(iris[i,1:4]-ybar3))}

> for(i in 1:150) {

+ if(D2.1[i] < min(D2.2[i],D2.3[i])) classifier[i] <- 1

+ if(D2.2[i] < min(D2.1[i],D2.3[i])) classifier[i] <- 2

+ if(D2.3[i] < min(D2.1[i],D2.2[i])) classifier[i] <- 3

+ }

> which(as.numeric(classifier==truth)==0)

[1] 71 73 84

So again 71 and 84 are misclassified, but now 73 is misclassified instead of
134.
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Fisher Iris data

We can’t really plot the classification rule in the nice way as was done for
two variables since we now have 4 variables. The classification decision
depends on the value of all four variables. We could write a function that
gave the decision as a function of the four variables, and we could make a
2D plot of the decision rule by fixing two of the other variables, but there
would a separate plot for each combination of the fixed variables.
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Fisher Iris data

We might want to look at the individual flowers that were misclassified.

> iris[c(71,73,84,134),]

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

71 5.9 3.2 4.8 1.8 versicolor

73 6.3 2.5 4.9 1.5 versicolor

84 6.0 2.7 5.1 1.6 versicolor

134 6.3 2.8 5.1 1.5 virginica

> y2bar

Sepal.Length Sepal.Width Petal.Length Petal.Width

5.936 2.770 4.260 1.326

> ybar3

Sepal.Length Sepal.Width Petal.Length Petal.Width

6.588 2.974 5.552 2.026

So generally virginica has larger values on all variables, on average, and the

misclassified versicolor irises had larger than average values for versicolor, and the

misclassified virginica had smaller than average values for virginica.
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