
Cluster analysis (Chapter 14)

In cluster analysis, we determine clusters from multivariate data. There are
a number of questions of interest:

1. How many distinct clusters are there?

2. What is an optimal clustering approach? How do we define whether
one point is more similar to one cluster or another?

3. What are the boundaries of the clusters? To which clusters do
individual points belong?

4. Which variables are most related to each other? (i.e., cluster variables
instead of observations)
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Cluster analysis

In general, clustering can be done for multivariate data. Often, we have
some measure of similarity (or dissimilarity) between points, and we cluster
points that are more similar to each other (or least dissimilar).

Instead of using high-dimensional data for clustering, you could also use
the first two principal components, and cluster points in the bivariate
scatterplot.
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Cluster analysis

For a cluster analysis, there is a data matrix

Y =


y′1
y′2
...

y′n

 = (y(1), . . . , y(p))

where y(j) is the column corresponding to the jth variable. We can either
cluster the rows (observation vectos) or columns (variables). Usually, we’ll
be interested in clustering the rows.
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Cluster analysis

A standard approach is to make a matrix of the pairwise distances or
dissimilarities between each pair of points. For n observations, this matrix
is n × n. Euclidean distance can be used, and is

d(x, y) =
√

(x− y)′(x− y) =

√√√√ p∑
k=1

(xj − yj)2

if you don’t standardize. To adjust for correlations among the variables,
you could use a standardized distance

d(x, y) =
√

(x− y)′S−1(x− y)

Recall that these are Mahalonobis distances. Other measures of distance
are also possible, particularly for discrete data. In some cases, a function
d(·, ·) might be chosen that doesn’t satisfy the properties of a distance
function (for example, if it is a squared distance). In this case d(·, ·) is
called a dissimilarity measure.
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Cluster analysis

Another choice of distances is the Minkowski distance

d(x, y) =

 p∑
j=1

|xj − yj |r
1/r

which is equivalent to the Euclidian distance for r = 2. If data consists of
integers, p = 2 and r = 1, then this is the city block distance. I.e., if you
have a rectangular grid of streets, and you can’t walk diagonally, then this
measures the number of blocks you need to get from point (x1, x2) to
(y1, y2).

Other distances for discrete data are often used as well.
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Cluster analysis

The distance matrix can be denoted D = (dij) where dij = d(yi , yj). For
example, for the points

(x , y) = (2, 5), (4, 2), (7, 9)

there are n = 3 observations and p = 2, and we have (using Euclidean
distance)

d((x1, y1), (x2, y2)) =
√

(2− 4)2 + (5− 2)2 =
√

4 + 9 =
√

13 ≈ 3.6

d((x1, y1), (x3, y3)) =
√

(2− 7)2 + (5− 9)2 =
√

25 + 16 =
√

41 ≈ 6.4

d((x2, y2), (x3, y3)) =
√

(4− 7)2 + (2− 9)2 =
√

9 + 49 =
√

58 ≈ 7.6
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Thus, using Euclidean distance

D ≈

 0 3.6 6.4
3.6 0 7.6
6.4 7.6 0


However, if we use the city block distance, then we get

d((x1, y1), (x2, y2)) = |2− 4|+ |5− 2| = 5

d((x1, y1), (x3, y3) = |2− 7|+ |5− 9| = 9

d((x2, y2), (x3, y3) = |4− 7|+ |2− 9| = 10

D ≈

0 5 9
5 0 9
9 10 0


In this case, the ordinal relationships of the magnitudes are the same (the
closest and farthest pairs of points are the same for both distances), but
there is no guarantee that this will always be the case.
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Cluster analysis

Another thing that can change a distance matrix, including which points are the
closest, is the scaling of the variables. For example, if we multiply one of the
variables (say the x variable) by 100 (measuring in centimeters instead of meters),
then the points are

(200, 5), (400, 2), (700, 9)

and the distances are

d((x1, y1), (x2, y2)) =
√

(200− 400)2 + (5− 2)2 =
√

2002 + 9 = 200.0225

d((x1, y1), (x3, y3)) =
√

(200− 700)2 + (5− 9)2 =
√

5002 + 16 = 500.018

d((x2, y2), (x3, y3)) =
√

(400− 700)2 + (2− 9)2 =
√

3002 + 49 = 300.0817

Here the second variable makes a nearly negligible contribution, and the relative

distances have changed, so that on the original scale, the third observation was

closer to the second than to the first observation, and on the new scale, the third

observation is closer to the first observation. This means that clustering

algorithms will be sensitive to the scale of measurement, such as Celsius versus

Farenheit, meters versus centimeters versus kilometers, etc.
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Cluster analysis

The example suggests that scaling might be appropriate for variables
measured on very different scales. However, scaling can also reduce the
separation between clusters. What scientists usually like to see is well
separated clusters, particularly if the clusters are later to be used for
classification. (More on classificaiton later....)
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Cluster analysis: hierarchical clustering

The idea with agglomerative hierarchical clustering is to start with each
observation in its own singleton cluster. At each step, two clusters are
merged to form a larger cluster. At the first iteration, both clusters that
are merged are singleton sets (clusters with only one element), but at
subsequent steps, the two clusters merged can each have any number of
elements (observations).

Alternatively, divisive hierarchical clustering treats all elements as
belonging to one big cluster, and the cluster is divided (partitioned) into
two subsets. At the next step, one of the two subsets is then further
divided. The procedure is continued until each cluster is a singleton set.
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Cluster analysis: hierarchical clustering

The aggomerative and divisive hierarchical clustering approaches are
examples of greedy algorithms in that they do the optimal thing at each
step (i.e., something that is locally optimal), but that this doesn’t
guarantee producing a globally optimal solution. An alternative might be
to consider all possible sets of g ≥ 1 clusters, for which there are

N(n, g) =
1

g !

g∑
k=1

(
g

k

)
(−1)g−kkn

which is approximatley gn/g ! for large n. The number of ways of
clustering is then

n∑
g=1

N(n, g)

For n = 25, the book gives a value of ≥ 1019 for this number. So it is not
feasible (and never will be, no matter fast computers get) to evaluate all
possible clusterings and pick the best one.
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Cluster analysis

One approach for clustering is called single linkage or nearest neighbor
clustering. Even if the distance between two points is Euclidean, it is not
clear what the distance should be between a point a set of points, or
between two sets of points. For single linkage clustering, we use an
agglomerative approach, merging the two clusters that have the smallest
distance, where the distance between two sets of observations, A and B is

d(A,B) = min{yi , yj}, for yi ∈ A and yj ∈ B
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Cluster analysis: single linkage

As an analogy for the method, think about the distance between two
geographical regions. What is the distance between say, New Mexico and
California? One approach is to take the center of mass of New Mexico and
the center of mass of California, and measure the distance. Another
approach is to see how far it is from the western edge of NM to a
southeastern part of CA. The single linkage approach is taking the latter
approach, looking at the minimum distance from any location in NM to
any location in CA. Similarly, if you wanted to know the distance from the
US to the Europe, you might think of NY to Paris rather than say, St.
Louis to Vienna, or San Diego to Warsaw.
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Cluster analysis

The distance from NM to AZ?
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Cluster analysis

The distance from Alaska to Russia?

According to Wikipedia, “Big Diomede (Russia) and Little Diomede
(USA) are only 3.8 km (2.4 mi) apart.”
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Cluster analysis: example with crime data
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Cluster analysis: example with crime data

We’ll consider an example of cluster analysis with crime data. Here there
are seven categories of crime and 16 US cities. The data is a bit old, from
the 1970s, when crime was quite a bit higher. Making a distance matrix
results in a 16× 16 matrix. To make things easier to do by hand, consider
a subset of the first 6 cities. Note that we now have n = 6 observations
and p = 7 variables. Having n < p is not a problem for cluster analysis.
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Cluster analysis: example with crime data

As an example of computing the distance matrix, the squared distance
between Detroit and Chicago (which are geographically fairly close) is

d2(Detroit,Chicago) = (13− 11.6)2 + (35.7− 24.7)2 + (477− 340)2

+ (220− 242)2 + (1566− 808)2 + (1183− 609)2

+ (788− 645)2 = 971.52712

So the distance is approximately 971.5
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Cluster analysis: example with crime data

The first step in the clustering is to pick the two cities with the smallest
cities and merge them into a set. The smallest distance is between Denver
and Detroit, and is 358.7. We then merge them into a cluster
C1 = {(Denver,Detroit)}. This leads to a new distance matrix
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Cluster analysis: example with crime data

The new distance matrix is 5× 5, and the rows and columns for Denver
and Detroit have been replaced with a single row and column for cluster
C1. Distances between singleton cities remain the same, but making the
new matrix requires computing the new distances,
d((Atlanta,C1)), d((Boston,C1)), etc. The distance from Atalanta to C1 is
the minimum of the distances from Atlanta to Denver and Atlanta to
Detroit, which is the minimum of 693.6 (distance to Denver) and 716.2
(distance to Detroit), so we use 693.6 as the distance between Atlanta and
C1.

The next smallest distance is between Boston and Chicago, so we create a
new cluster, C2 = {(Boston,Chicago)}.
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Cluster analysis: example with crime data

The updated matrix is now 4× 4. The distance between C1 and C2 is the
minimum between all pairs of cities with one in C1 and one in C2. You can
either compute this from scratch, or, using the the previous matrix, think
of the distance between C1 and C2 as the minimum of d(C1,Boston) and
d(C1,Chicago). This latter recursive approach is more efficient for large
matrices.

At this step, C1 clusters with Dallas, so C3 = {Dallas,C1}.
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Cluster analysis: example with crime data
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Cluster analysis: example with crime data

At the last step, once you have two clusters, they are joined without any
decision having to be made, but it is still useful to compute the resulting
distance as 590.2 rather than 833.1 so that we can draw a diagram (called
a dendrogram) to show the sequence of clusters.

April 4, 2018 23 / 81



Cluster analysis: example with crime data
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Cluster analysis: example with crime data

The diagram helps visualize which cities have similar patterns of crime.
The patterns might suggest hypotheses. For example, in the diagram, the
top half of the cities are west of the bottom half of the cities, so you
might ask if there is geographical correlation in crime patterns?

Of course, this pattern might not hold looking at all the data from the 16
cities.
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Cluster analysis: example with crime data
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Cluster analysis: complete linkage and average linkage

With complete linkage, the distance between two clusters is the
maximum distance between all pairs with one from each cluster. This is
sort of like a worst-case scenario distance. (i.e., if one person is in AZ and
one in NZ, the distance is treated as the farthest apart that they might
be).

With average linkage, the distance between two clusters is the average
distance between all pairs with one from each cluster.
For the crime data, the subset of six cities results in the same clustering
pattern for all three types of linkage. Note that the first cluster is
necessarily the same for all three methods regardless of the data. However
the dendrogram differs between single linkage versus complete or average
linkage. Complete linkage and average linkage lead to the same
dendrogram pattern (but different times).
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Cluster analysis: example with crime data
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Cluster analysis: example with crime data
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Cluster analysis: centroid approach

When using centroids, the distance between clusters is the distance
between mean vectors

D(A,B) = d(yA, yB)

where

yA =
1

nA

∑
i∈A

yi

When two clusters are joined, the new centroid is

yAB =
1

nA + nB

∑
i∈A∪B

yi =
nAyA + nByB

nA + nB
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Cluster analysis: median approach

The median approach weights different clusters differently so that each
cluster gets an equal weight instead of clusters with more elements getting
more weight. For this approach, the distance between two clusters is

D(A,B) =
1

2
yA +

1

2
yB
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Cluster analysis: example with crime data
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Cluster analysis

A variation on the centroid method is Ward’s method which computes the
sums of squared distances within each cluster, SSEA and SSEB as

SSEA =
∑
i∈A

(yi − yA)′(yi − yA)

SSEB =
∑
i∈B

(yi − yA)′(yi − yA)

and the between sum of squares as

SSEAB ==
∑

i∈A∪B
(yi − yAB)′(yi − yA)

Two clusters are joined if they minimize IAB = SSEAB − (SSEA + SSEB).
That is, over all possible clusters, A, B at a given step, merge the two
clusters that minimize IAB . The value of IAB when A and B are both
singltons is 1

2d
2(yi , yj), so essentially a squared distance.
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This is an ANOVA-inspired method and results in being more likely to
result in smaller clusters being agglomerated than the centroid method.
For this data, Ward’s method results in 6 two-city cluster, whereas the
centroid method results in 5 two-city clusters. Different methods might
have different properties in terms of the sizes of clusters they produce.
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Cluster analysis
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Cluster analysis

To unify all of these methods, the flexible beta method gives a
generalization for which the previous methods are special cases. Let the
distance from a recently formed cluster AB to another cluster C be

D(C ,AB) = αAD(A,C ) +αBD(B,C ) +βD(A,B) +γ|D(A,C )−D(B,C )|

where αA + αB + β = 1. If γ = 0 and αA = βB , then the constraint that
αA + αB + β = 1 means that different choices of β determine the
clustering, which is where the name comes from. The following parameter
choices lead to the different clustering methods:
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Cluster analysis: example with crime data
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Cluster analysis

Crossovers occurred in some of the plots. This occurs when the distances
between later mergers are smaller than distances at earlier mergers.
Clustering methods for which this cannot occur are called monotonic
(that is distances are non-decreasing).

Single linkage and complete linkage are monotonic, and the flexible beta
family of methods are monotonic if αA + αB + β ≥ 1
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Cluster analysis

Clustering methods can be space conserving, space contracting, or
space dilating. Space contracting means that larger clusters tend to be
formed, so that singletons are more likely to cluster with non-singleton
clusters. This is also called chaining, and means that very spread out
observations can lead to one large cluster. Space dilating means that
singletons tend to cluster with other singletons rather than with
non-singleton clusters. These properties affect how balanced or
unbalanced trees are likely to be. Space conserving methods are neither
space-contracting nor space-dilating.

Single linkage clustering is space contracting whereas complete linkage is
space dilating. Flexible beta is is space contracting for β > 0, space
dilating for β < 0,and space-conserving for β = 0.
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Cluster analysis

To be space-conserving, if clusters satisfy

D(A,B) < D(A,C ) < D(B,C )

(think of points spread out on a line so that A is between B and C but
closer to B than C ), then

D(A,C ) < D(AB,C ) < D(B,C )

Single linkage violates the first inequality because
D(AB,C ) = min{D(A,C ),D(B,C )} = D(A,C ). And complete linkage
violates the second inequality because
D(AB,C ) = max{D(A,C ),D(B,C )} = D(B,C ).
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Cluster analysis
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Cluster analysis
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Cluster analysis
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Cluster analysis

The average linkage approach results in more two-observation clusters (14
versus 12), and results in the B group all clustering together, whereas for
single linkage, B4 is outside {A1, . . . ,A17,B1,B2,B3}.

April 4, 2018 44 / 81



Cluster analysis

Effect of variation. For the average linkage approach, the distance between
two clusters increases if the variation in one of the clusters increases, even
if the centroid remains the same. Furthermore, distance based on single
linkage can decrease while the distance based on average linkage can
increase.
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Cluster analysis

Effect of variation.
Suppose A has a single point at (0,0) and B has two points at (4,0) and
(6,0). Then the average squared distance is

[(4− 0)2 + (6− 0)2]/2 = 52/2 = 26

whereas the average squared distance if B has two points at (5,0) is
(52 + 52)/2 = 25 < 26. The actual distance are then

√
25 <

√
26. If

instead B has points (3,0) and (7,0), then the average squared distance is
(32 + 72)/2 = 58/2 = 29.
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Cluster analysis

For a divisive technique where you cluster on one qunatitative variable, you
can consider all partitions of n observations into n1 and n2 observations for
groups 1 and 2, with the only constraint being that n1 + n2 = n with
ni ≥ 1. Assuming that group 1 is at least as large as group 2, there are
bn/2c choices for the group sizes. For each group size, there are

( n
n1

)
of

picking which elements belong to group 1 (and therefore also to group 2).
For each such choice, you can find the the groups that minimize

SSB = n1(y1 − y)2 + n2(y2 − y)

Each subcluster can then be divided again repeatedly until only singleton
clusters remain.
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Cluster analysis

For binary variables, you could instead cluster on one binary variable at a
time. This is quite simple as it doesn’t require computing a sum of
squares. This also corresponds how you might think of animal taxonomy:
Animals are either cold-blooded or warm-blooded. If warm blooded, they
either lay eggs or don’t. If they lay eggs, then they are monotremes
(platypus, echidna). If they don’t lay eggs, then they either have pouches
or don’t (marsupials versus placental mammals). And so forth. This type
of classification is appealing in its simplicity, but the order of binary
variables can be somewhat arbitrary.
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Cluster analysis

There are also non-hierarchical methods of clustering, including
partitioning by k-means clustering, using mixtures of distributions, and
density estimation.

For partitioning, initial clusters are formed, and in the process, items can
be reallocated to different clusters, whereas in hierarchical clustering, once
an element is in a cluster, it is fixed there. First select g elements
(observations) to be used as seeds. This can be done in several ways

1. pick g items at random

2. pick the first g items in the data set

3. find g items that are furthest apart

4. partition the space into a grid and pick g items from different section
of the grid that are roughly equally far apart

5. pick items in a grid of points and create artificial observations that
are equally spaced.
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Cluster analysis

For all of these methods, you might want to constrain the choices so that
the seeds are sufficiently far apart. For example, if choosing point
randomly, then if the second choice is too close to the first seed, then pick
a different random second seed.

For these methods, the number g must be given in advance (the book
uses g rather than k), and sometimes a cluster analysis is run several
times with different choices for g . An alternative method is to specify a
minimum distance between points. Then pick the first item in the data set
(you could shuffle the rows to randomize this choice). Then pick the next
observation that is more than the minimum distance from the first. Then
pick the next observation that is more than the minimum distance from
the first two, etc. Then the number of seeds will emerge and be a function
of the minimum distance chosen. In this case, you could re-run the analysis
with different minimum distances which result in different values for g .
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Cluster analysis

Once the seeds are chosen, each point in the data set is assigned to the
closest seed. That is for each point that isn’t a seed, a distance is chosen
(usually Euclidean) and the distance between each non-seed and the seed
is computed. Then each non-seed is assigned to the seed with the smallest
distance.

Once the clusters are chosen, the centroids are computed, and distances
between each point and the centroids of the g clusters are computed. If a
point is closer to a different centroid than its current centroid, then it is
reallocated to a different cluster. This results in a new set of clusters, for
which new centroids can be computed, and the process can be reiterated.
The reallocation process should eventually converge so that points stop
being reallocated.
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Cluster analysis

You could also combine the k-means approach with hierarchical clustering
as a way of finding good initial seeds. If you run the hierarchical clustering
first, then choose some point at which it has g clusters (it initially has n
clusters, then one cluster at the end of the process, so at some point it will
have g clusters). You could then compute the centroids of these clusters
and start the reallocation process. This could potentially improve the
clustering that was done by the hierarchical method.

An issue with k-means clustering is that it is sensitive to the initial choice
of seeds. Consequently, it is reasonable to try different starting seeds to
see if you get similar results. If not, then you should be less confident in
the resulting clusters. If the clusters are robust to the choice of starting
seeds, this suggests more structure and natural clustering in the data.
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Cluster analysis

Clustering is often combined with other techniques such as principal
components to get an idea of how many clusters there might be. This is
illustrated with an example looking at sources of protein in European
countries.
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Cluster analysis
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Cluster analysis: how many clusters?
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Cluster analysis: how many clusters?

The book suggests that the PCA indicates at least 5 clusters. This isn’t
obvious to me, it seems like it could be 3–5 to me. But we can use g = 5
for the number of clusters. You can reanalyze (in homework) with different
numbers of clusters. The book considers four methods of picking starting
seeds:
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Cluster analysis: k means example
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Cluster analysis: k means example
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Cluster analysis: k means example
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Cluster analysis: k means example
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Cluster analysis: k means example
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Cluster analysis based on MANOVA

A different approach is motivated by MANOVA but isn’t used as often.
The idea is that once you have clusters assigned, you have multivariate
data from g groups. Then you could think of doing MANOVA to see if the
groups are different. Part of MANOVA is the generation of the E and H
matrices which are the within and between cluster sums of squares. So we
could pick clusters (once the number g has been fixed) to minimize some
function of these matrices. Possible criteria are

1. minimize trE

2. minimize |E|
3. maximimize tr(E−1H)
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Cluster analysis in R

k-measn clustering can be done with the kmeans() function in R. For the
European protein data, use

> x <- read.table("protein.txt",header=T)

> x2 <- x[,2:10] # x2 has numeric data only, not country names

> cluster <- kmeans(x2,centers=5)

The centers argument can either be the number of clusters (here g = 5)
or a set of seed vectors, which you would have to compute by hand if you
want some other method than randomly chosen observations. If the
number of clusters is given, then the starting seeds are randomly chosen.
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Cluster analysis in R

To create a new data frame of countries with their cluster assignment, you
can do this

> cluster2 <- data.frame(x$country,cluster$cluster)

> cluster2

x.country cluster.cluster # weird variable names

1 Albania 4

2 Austria 5

3 Belgium 5

> colnames(cluster2) <- c("country","cluster")

> cluster2

country cluster

1 Albania 4

2 Austria 5

3 Belgium 5
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Cluster analysis in R

To sort the countries by the cluster number

> cluster2[order(cluster2$cluster),]

country cluster

6 Denmark 1

8 Finland 1

15 Norway 1

20 Sweden 1

4 Bulgaria 2

18 Romania 2

25 Yugosloslavia 2

7 EGermany 3

17 Portugal 3

19 Spain 3

1 Albania 4

5 Czech. 4

10 Greece 4

11 Hungary 4

13 Italy 4

16 Poland 4

23 USSR 4

2 Austria 5

3 Belgium 5

9 France 5

12 Ireland 5

14 Netherlands 5

21 Switzerland 5

22 UK 5

24 WGermany 5
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Plotting

To plot in R, we might first try plotting the principal compoents with the
names of the countries.

> b <- prcomp(scale(x[,2:10]))

> plot(b$x[,1],b$x[,2],xlab="PC1",ylab="PC2",cex.lab=1.3,cex.axis=1.3)

> text(b$x[,1], b$x[,2]+.1, labels=x$country,cex=1)

Here I added 0.1 to the y -coordinate of the country name to avoid having
the label right on top of the point, which makes the label and the point
hard to read. Another approach is to just plot the label, and use
type=‘‘n’’ in the plot statement so that you initially generate an empty
plot.
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Cluster analysis

April 4, 2018 67 / 81



Plotting

To plot just the cluster number type

plot(b$x[,1],b$x[,2],xlab="PC1",ylab="PC2",cex.lab=1.3,cex.axis=1.3,

pch=paste(cluster2$cluster))

Here the pch option gives the plotting symbol. If you use pch=15 you get
a square, for example. Instead of a plotting symbol code, you can put
customized strings, which is what I did here. To convert the numeric
cluster numbers to a string, I used paste() which is a string function that
can sort of copy and paste strings together as objects.
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Cluster analysis:
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Cluster analysis

Another possibility...

> plot(b$x[,1],b$x[,2],xlab="PC1",ylab="PC2",cex.lab=1.3,

cex.axis=1.3,pch=cluster2$cluster,cex=1.5,

col=cluster2$cluster)

> legend(-2,4,legend=1:5,col=1:5,pch=1:5,cex=1.5,

title="Cluster")

Instead of picking default values, you can customize the color choice plot
character choices as vectors such as
col=c(‘‘red","blue",‘‘pink",...) With geographic data, you can
get kind of intricate....
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Cluster analysis:
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Cluster analysis

Another approach for determining the number of clusters is to perform the
cluster analysis using different numbers of clusters and plot the within
groups sums of squares against the number of clusters. If the number of
clusters is too low, then sums of squared distances (to the centroid) will
be high for some clusters. If the number of clusters is very high, then
these sums of squares will be close to zero. A scree plot can be used, and
the bend in the plot will suggest where there is little improvement in
adding more clusters.
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Cluster analysis

To illustrate this approach in R,

wss <- 1:12

for (i in 2:12) wss[i] <- sum(kmeans(x2,

centers=i)$withinss)

plot(wss)
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Cluster analysis:
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Cluster analysis

There is a slight bend at 4 clusters and another at 9. There isn’t an
obvious elbow in this graph, though, so it isn’t obvious how to decide how
many clusters should be used.

April 4, 2018 75 / 81



Text data as an example

Suppose you have an unstructured text file, such as a plain text (or html
code) for one of Shakespeare’s plays. We want to turn this into data,
specifically word frequencies.

Obviously, the data isn’t arranged into nice rectangular arrays of columns
with equal numbers of rows. Someting we can do is read in the data line
by line. For html data, we also want to strip away the html tags.
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Text data as an example

Here, I found a play of Shakespeare’s from http://shakespeare.mit.edu.

I downloaded the webpage as html for the play All’s Well That Ends Well,
one of his comedies.
You can view the play scene by scene or as an entire play in one webpage,
which is what I did, then downloaded the webpage (save as....), which
gave me the html code. It looks like this:
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Web page view
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<A NAME=speech2><b>BERTRAM</b></a>

<blockquote>

<A NAME=1.1.2>And I in going, madam, weep o’er my father’s death</A><br>

<A NAME=1.1.3>anew: but I must attend his majesty’s command, to</A><br>

<A NAME=1.1.4>whom I am now in ward, evermore in subjection.</A><br>

</blockquote>

<A NAME=speech3><b>LAFEU</b></a>

<blockquote>

<A NAME=1.1.5>You shall find of the king a husband, madam; you,</A><br>

<A NAME=1.1.6>sir, a father: he that so generally is at all times</A><br>

<A NAME=1.1.7>good must of necessity hold his virtue to you; whose</A><br>

<A NAME=1.1.8>worthiness would stir it up where it wanted rather</A><br>

<A NAME=1.1.9>than lack it where there is such abundance.</A><br>

</blockquote>
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We want to read in the html file but get rid of the html code. The html code is
in angled brackets, so basically we want to get rid of the angled brackets and
anything inside the angled brackets. Stuff that you want tends to be not within
the brackets.

First, we can read in the html code line by line. This creates a data set where
there is only one column, and each column is a wide string of text. This can be
accomplished using readLines(). First

> x <- readLines("shake1.html")

> head(x)

[1] "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 Transitional//EN\""

[2] " \"http://www.w3.org/TR/REC-html40/loose.dtd\">"

[3] " <html>"

[4] " <head>"

[5] " <title>All’s Well That Ends Well: Entire Play"

[6] " </title>"
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To remove html code, we’ll use the following function which I found online at
stackoverlow.com. Basically it removes characters that match the pattern of
having balanced open and closed angle brackets with anything in between, and
replaces it with nothing.

head(y)

[1] "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 Transitional//EN\""

[2] " \"http://www.w3.org/TR/REC-html40/loose.dtd\">"

[3] " "

[4] " "

[5] " All’s Well That Ends Well: Entire Play"

[6] " "
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> source("shake.r")

> words1

z

NA the i and to you of a

5726 1458 1384 1240 1028 964 918 890

my that in it is not his he

756 652 600 560 554 500 466 464

your lord me for have be but him

436 414 402 400 392 386 370 358

her parolles this with will so bertram as

352 348 346 326 314 308 258 246

helena king what lafeu shall first do no

246 244 238 232 230 228 208 208

if our all was countess thou by sir

206 200 194 192 190 190 188 188

are good she which we well thy would

186 180 178 174 172 172 168 168

know thee am from more second at clown

166 156 152 142 140 136 134 132
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