Practice Test

The test will be open note, open device.

1. This problem uses multiple regression. A data set includes mortality and pollution data for various cities. The variables include (among others). We'll only analyze a subset of the variables.

- MORT (mortality per 100,000 adjusted for age-don't worry about this adjustment, just think of it as your response variable, and higher numbers mean a higher proportion of people die per year).
- JANT average temperature in January
- JULT average temperature in July
- DENS a measure of population density
- HC relative hydrocarbon potential
- NOX measure of nitrous oxide pollution
- SO measure of sulphur dioxide
- POPN average household size

Here is what the data looks like

> head(x)														
	PREC	JANT	JULT	OVR65	POPN	EDUC	HOUS	DENS	NONW	WWORK	POOR HC	NOX	SO	MID
1	36	27	71	8.1	3.34	11.4	81.5	3243	8.8	42.6	11.721	15	59	59
2	35	23	72	11.1	3.14	11.0	78.8	4281	3.5	50.7	14.48	10	39	57
3	44	29	74	10.4	3.21	9.8	81.6	4260	0.8	39.4	12.46	6	33	54
4	47	45	79	6.5	3.41	11.1	77.5	3125	27.1	50.2	20.618	8	24	56
5	43	35	77	7.6	3.44	9.6	84.6	6441	24.4	43.7	14.343	38	206	55
6	53	45	80	7.7	3.45	10.2	66.8	3325	38.5	43.1	25.530	32	72	54
MORT														
1921.870														
2997.875														
3962.354														
4982.291														
51071.289														
61030.380														

Suppose the full model uses these variables, and interaction terms won't be considered. Here is the summary of this full model:

Estimate Std. Error t value $\operatorname{Pr}(>\|\mathrm{t}\|)$				
(Intercept)	317.234007	196.456766	1.615	0.1124
JANT	0.740021	0.837653	0.883	0.3811
JULT	1.463714	1.762884	0.830	0.4102
DENS	0.008582	0.004999	1.717	0.0920
HC	-1.412308	0.585429	-2.412	0.0194
NOX	2.673728	1.204168	2.220	0.0308
SO	0.136196	0.175738	0.775	0.4419
POPN	135.180426	54.051238	2.501	0.0156
Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1				
Residual standard error: 48.65 on 52 degrees of freedom				
Multiple R-squared: 0.4608,Adjusted R-squared: 0.3882				
F-statistic: 6.349 on 7 and $52 \mathrm{DF}, \mathrm{p}$-value: $2.078 \mathrm{e}-05$				

(a) If you were to do backward elimination using p-values, which variable would you eliminate from the model at this point to fit a slightly smaller model?
(b) If you were to do forward selection using p-values for doing model selection, which variable would you want to include first?
(c). Consider a smaller model

```
> m2 <- lm(MORT ~ HC + SO + NOX+POPN)
> summary(m2)
Call:
lm(formula = MORT ~ HC + SO + NOX + POPN)
Residuals:
\begin{tabular}{rrrrr} 
Min & 1Q & Median & 3Q & Max \\
-102.045 & -29.481 & 5.781 & 29.330 & 161.247
\end{tabular}
Coefficients:
            Estimate Std. Error t value Pr (>|t|)
(Intercept) 533.8097 173.2101 3.082 0.00321 **
HC -1.4346 0.5912 -2.427 0.01854 *
SO 0.1946 0.1668 1.166 0.24861
NOX 2.7138 1.2268 2.212 0.03114 *
POPN 119.1855 52.8191 2.256 0.02804 *
---
Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1
Residual standard error: 50.05 on 55 degrees of freedom
Multiple R-squared: 0.3966,Adjusted R-squared: 0.3527
F-statistic: 9.037 on 4 and 55 DF, p-value: 1.103e-05
```

(c) continued. Interpret the coefficient POPN. According to this model, what is the effect of having an average household size of 4 versus 3 assuming everything else in the model is equal.
(d) Write the regression equation for model m2
(e) Predict the mortality from model m 2 when $\mathrm{HC}=40, \mathrm{SO}=50$, $\mathrm{NOX}=25$, and $\mathrm{POPN}=3$ (These are close to the mean values for the data set).
(f) Comment on the histogram of the residuals and diagnostic plots. If you were analyzing this data, would you have any concerns? Is there something you would consider doing to reanalyze the data?

Recall the Craigslist car data from earlier in the semester. Here we'll use logistic regression to model the probability that a car has a clean versus salvage title as a function of the price. Only the first ten observations were used.

```
> x <- read.table("cars2.txt",header=T)
> x
    year price miles title
1 1995 1200 150000 clean
2 2004 4500 184000 salvage
3 1995 3200 NaN clean
4 1998 1850 152000 salvage
5 1998 3400 136000 clean
6 2004 8500 85500 clean
> title2 <- as.numeric(title=="clean")
> m3 <- glm(title2 ~ price,family="binomial")
> summary(m3)
\begin{tabular}{rrrrr} 
Deviance & Residuals: & & & \\
Min & 1Q & Median & 3Q & Max \\
-1.72342 & 0.08737 & 0.29287 & 0.78568 & 1.12693
\end{tabular}
Coefficients:
                    Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.2831230 1.5423663 -0.184 0.854
price 0.0003359 0.0003614 0.929 0.353
```

(a) Write the regression equation as a function of the log-odds of the probability of a clean title.
(b) Based on the model, what is the probability that a $\$ 5000$ car has a salvage title?
(c) Just based on AIC in the following output, is price or year a better predictor of title status?

```
> model1 <- glm(title2[1:10] ~ x$year[1:10],family="binomial")
model2 <- glm(title2[1:10] ~ x$price[1:10],family="binomial")
> AIC(model1)
[1] 13.98852
> AIC(model2)
[1] 12.04338
```

