Practice Test

The test will be open note, open device.

- 1. This problem uses multiple regression. A data set includes mortality and pollution data for various cities. The variables include (among others). We'll only analyze a subset of the variables.
 - MORT (mortality per 100,000 adjusted for age—don't worry about this adjustment, just think of it as your response variable, and higher numbers mean a higher proportion of people die per year).
 - JANT average temperature in January
 - JULT average temperature in July
 - DENS a measure of population density
 - HC relative hydrocarbon potential
 - NOX measure of nitrous oxide pollution
 - SO measure of sulphur dioxide
 - POPN average household size

Here is what the data looks like

```
> head(x)
  PREC JANT JULT OVR65 POPN EDUC HOUS DENS NONW WWORK POOR HC NOX
                                                                       SO HUMID
                                                                       59
    36
         27
              71
                    8.1 3.34 11.4 81.5 3243
                                              8.8
                                                   42.6 11.7 21
                                                                  15
                                                                             59
2
    35
         23
              72
                   11.1 3.14 11.0 78.8 4281
                                                    50.7 14.4
                                                                   10
                                                                       39
                                                                             57
                                              3.5
3
    44
         29
              74
                   10.4 3.21 9.8 81.6 4260
                                              0.8
                                                   39.4 12.4
                                                                   6
                                                                       33
                                                                             54
4
              79
                   6.5 3.41 11.1 77.5 3125 27.1
                                                   50.2 20.6 18
                                                                   8
    47
         45
                                                                       24
                                                                             56
                   7.6 3.44 9.6 84.6 6441 24.4
5
    43
         35
              77
                                                   43.7 14.3 43
                                                                  38 206
                                                                             55
6
    53
         45
                    7.7 3.45 10.2 66.8 3325 38.5
                                                   43.1 25.5 30
                                                                     72
              80
                                                                             54
```

MORT

1 921.870

2 997.875

3 962.354

4 982.291

5 1071.289

6 1030.380

Suppose the full model uses these variables, and interaction terms won't be considered. Here is the summary of this full model:

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 317.234007 196.456766
                                      1.615
                                               0.1124
JANT
              0.740021
                          0.837653
                                      0.883
                                               0.3811
JULT
               1.463714
                          1.762884
                                      0.830
                                               0.4102
DENS
              0.008582
                          0.004999
                                      1.717
                                               0.0920 .
HC
             -1.412308
                          0.585429
                                     -2.412
                                               0.0194 *
NOX
               2.673728
                                      2.220
                                               0.0308 *
                          1.204168
SO
               0.136196
                          0.175738
                                      0.775
                                               0.4419
POPN
            135.180426
                         54.051238
                                      2.501
                                               0.0156 *
```

Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1

Residual standard error: 48.65 on 52 degrees of freedom Multiple R-squared: 0.4608, Adjusted R-squared: 0.3882 F-statistic: 6.349 on 7 and 52 DF, p-value: 2.078e-05

(a) If you were to do backward elimination using p-values, which variable would you eliminate from the model at this point to fit a slightly smaller model?

(b) If you were to do forward selection using p-values for doing model selection, which variable would you want to include first?

(c). Consider a smaller model

```
> m2 <- lm(MORT ~ HC + SO + NOX+POPN)
> summary(m2)
```

Call:

lm(formula = MORT ~ HC + SO + NOX + POPN)

Residuals:

Min 1Q Median 3Q Max -102.045 -29.481 5.781 29.330 161.247

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 533.8097 173.2101 3.082 0.00321 ** HC -1.4346 0.5912 -2.427 0.01854 * SO 0.1946 0.1668 1.166 0.24861 NOX 2.7138 1.2268 2.212 0.03114 * POPN 119.1855 52.8191 2.256 0.02804 *

Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1

Residual standard error: 50.05 on 55 degrees of freedom Multiple R-squared: 0.3966, Adjusted R-squared: 0.3527 F-statistic: 9.037 on 4 and 55 DF, p-value: 1.103e-05

Recall the Craigslist car data from earlier in the semester. Here we'll use logistic regression to model the probability that a car has a clean versus salvage title as a function of the price. Only the first ten observations were used.

```
> x <- read.table("cars2.txt",header=T)</pre>
   year price miles
                        title
  1995 1200 150000
                        clean
1
  2004 4500 184000 salvage
3
  1995
        3200
                 {\tt NaN}
                        clean
  1998
         1850 152000 salvage
5
  1998 3400 136000
                        clean
6 2004 8500 85500
                        clean
> title2 <- as.numeric(title=="clean")</pre>
> m3 <- glm(title2 ~ price,family="binomial")</pre>
> summary(m3)
Deviance Residuals:
     Min
                1Q
                      Median
                                     3Q
                                               Max
-1.72342
           0.08737
                      0.29287
                                0.78568
                                           1.12693
Coefficients:
              Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.2831230 1.5423663 -0.184
                                               0.854
price
          0.0003359 0.0003614
                                  0.929
                                            0.353
```

(a) Write the regression equation as a function of the log-odds of the probability of a clean title.

(b) Based on the model, what is the probability that a \$5000 car has a salvage title?

(c) Just based on AIC in the following output, is price or year a better predictor of title status?

```
> model1 <- glm(title2[1:10] ~ x$year[1:10],family="binomial")
> model2 <- glm(title2[1:10] ~ x$price[1:10],family="binomial")
> AIC(model1)
[1] 13.98852
> AIC(model2)
[1] 12.04338
```