
Principal Components (Chapter 12)

The idea of principal components is to find linear combinations of variables
that explain variation in the data.

Typically, we have a single sample and many variables, all of which are
considered random.

Principal components is generally used more to describe the data rather
than doing inference, and so doesn’t assume that the data are multivariate
normal, although the ideas are easier to visualize when the data is
multivariate normal and 2-dimensional.
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Principal Components

A crude example for the chile data, is that if we just looked at length and
width, we might construct two new variables:

size = length + width

shape = length − width

Here, we’ve transformed the two variables of length and width into two
new variables, size and shape. This doesn’t reduce the dimensions of the
data, but these two new variables might give a nice way to interpret the
variation in the data, and they don’t lose any of teh information in the
original data.

Typically, with principal components, we transform n observations of p
variables into n observations of a new set of p variables, where the new
variables are linear combinations of the old variables. The coefficients will
be real numbers, and not usually as easy to interpret as 1 and -1.
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Principal Components

The goal of principal compoents is not to choose new variables yourself,
but rather to let the principal components use the data to determine the
best linear combinations of the original variables.

For bivariate data, the “best” linear combinations create new axes which
go through the ellipsoidal cloud of data. One axis goes through the major,
longer axis, of the ellipse, while the other axis goes through the minor,
shorter axis of the ellipse. The two axes are orthogonal. Usual we hope
that the new linear combinations can be roughly interpreted, for example
as an average or as a contrast between aspects of the variables.
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Chile data from Chimayo
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Chile data from Chimayo

> y <- x[23:33,2:3] #subset for Chimayo and

# only length and width

> plot(y)

> plot(y,cex.axes=1.3,cex.lab=1.3)

> a <- prcomp(y,scale=TRUE)

> a

Standard deviations:

[1] 1.2385587 0.6826216

Rotation:

PC1 PC2

Length -0.7071068 -0.7071068

Width -0.7071068 0.7071068

> summary(a)

Importance of components:

PC1 PC2

Standard deviation 1.239 0.6826

Proportion of Variance 0.767 0.2330

Cumulative Proportion 0.767 1.0000
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Chile data from Chimayo

Another function that does principal components in R is in the stats

library and is called princomp() but works similarly. To scale the data,
you have to scale it yourself, which you can do in the function call.

> b <- princomp(scale(y))

> b$loadings

Loadings:

Comp.1 Comp.2

Length -0.707 0.707

Width -0.707 -0.707

Comp.1 Comp.2

SS loadings 1.0 1.0

Proportion Var 0.5 0.5

Cumulative Var 0.5 1.0
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Chile data from Chimayo

Here the Rotation matrix is in b$loadings (the coefficients to transform
the variables are sometimes called factor loadings). This gives a slightly
different matrix from the prcomp() function, with a change in the sign of
the bottom right coefficient. This doesn’t affect the interpretation much.
Shape here is measured by Length −Width instead of Width − Length, so
one is just the negative of the other. However, this matrix actually
corresponds to a rotation matrix in the linear algebra sense, so I would use
this instead of the prcomp() function to get the rotation matrix.
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Chile data from Chimayo

There are two principal components which are the following (based on
princomp():

PC1 = − 1√
2
Length − 1√

2
Width

PC2 =
1√
2
Length − 1√

2
Width

Essentially, the first principle component is minus the overall size measure
we had earlier, but scaled, and the second principle component is the
shape also scaled by

√
2.

March 19, 2015 8 / 76



Chile data from Chimayo

A common thing to do is to look at the proportion of the variance due to
each component. This is output directly using prcomp() but not using
princomp(). To get this information from princomp(), you can use

> b <- princomp(scale(y))

> cumsum(b$sdev^2)/sum(b$sdev^2)

Comp.1 Comp.2

0.7670139 1.0000000

Note that the sum of the squared coefficients is (1/
√

2)2 + (1/
√

2)2 = 1.
Also, looking at the output for the importance of the components, we see
that the first principle component accounts for about 77% of the variance,
and the second principle component accounts for about 23% of the
variance.
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Chile data from Chimayo

For the R code, the option scale.=TRUE divides observations by their
standard deviation for the variable, making the sample standard deviation
equal to 1, which is considered advisable, but the default is to not scale
the data. Not scaling the data will change the coefficients as well as the
relative importance of the variables. The option center=TRUE centers the
variables to each have mean 0, but doesn’t change the standard deviation
of the variables.
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Chile data from Chimayo

> b <- prcomp(y)

> b

Standard deviations:

[1] 2.3344877 0.4611584

Rotation:

PC1 PC2

Length -0.9913864 -0.1309693

Width -0.1309693 0.9913864
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Chile data from Chimayo

We could scale the data outside of the prcomp function.

> y2 <- scale(y)

> y2

Length Width

23 0.51832106 0.6363636

24 1.16622237 0.6363636

25 -0.12958026 -2.0909091

...

> c <- prcomp(y2)

> c

Standard deviations:

[1] 1.2385587 0.6826216

Rotation:

PC1 PC2

Length -0.7071068 -0.7071068

Width -0.7071068 0.7071068
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Chile data from Chimayo
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Chile data from Chimayo

The Rotation matrix gives the cosine of the angle between the x axis (the
first row) and the first principal component (the first column). Thus

cos θ = − 1√
2
θ ⇒ θ = cos−1

1√
2

So what was the angle of rotation?
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Chile data from Chimayo

Admittedly, it is easy to forget trigonometry for statisticians...but the
answer is that cos−1 1√

2
= 3π/4 = 135

◦
.
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Chile data from Chimayo

To check this with the chile data, we can try rotating the data. When the
standard rotation matrix for points in R2 from linear algebra has θ = 3π/4
plugged in, we get(

cos θ − sin θ
sin θ cos θ

)
= R =

1√
2

(
−1 −1

1 −1

)
Thus, a rotated data point (Lengthi ,Widthi ) is

1√
2

(
−1 −1

1 −1

)(
Lengthi
Widthi

)
=

1√
2

(
−Lengthi −Widthi
Lengthi −Widthi

)
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Chile data from Chimayo

Thus, the rotated data is equivalent to taking the rotation matrix R,
equivalent to the loadings matrix output from princomp() and
multiplying by the matrix of the data. Thus

RY′

gives the rotated data, where the new x-axis is the measure of size, and
the new y axis is the measure of shape.
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Chile data from Chimayo
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Chile data from Chimayo with rotated data
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Principal components

The point of finding how to rotate the data is to find new x and y axes
such that the new x axis is a linear combination of the variables such that
it is has the highest variance. The new y axis is then the linear
combination of variables that is orthogonal to the x axis.

The point of this is largely to figure out where most of the variability in
the data lies. For bivariate data, once the data is transformed, you rotate
by a multiple of 45 degrees and scale by 1√

2
. If you don’t scale, you might

get different numbers. However, principal compoenents is sensitive to the
scaling, so scaling is often done. This is particularly important if the data
are on different scales.
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Chile data from Chimayo

Here, I’ll try principal components on the three variables of Length, Width,
and Thickness.

> y <- x[23:33,2:4]

> b <- princomp(y)

Standard deviations:

Comp.1 Comp.2 Comp.3

1.4130783 0.7837540 0.3408988

2 variables and 11 observations.

> b$loadings

> b$loadings

Loadings:

Comp.1 Comp.2 Comp.3

Length -0.474 0.863 0.177

Width -0.641 -0.200 -0.741

Thickness -0.604 -0.465 0.648
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Chile data from Chimayo

If we use prcmp() instead, then we get

> c <- prcomp(scale(y))

> c

Standard deviations:

[1] 1.4820490 0.8220082 0.3575377

Rotation:

PC1 PC2 PC3

Length -0.4738953 0.8625419 -0.1773266

Width -0.6411163 -0.1999115 0.7409490

Thickness -0.6036499 -0.4648191 -0.6477268

The standard deviations are a bit different, but similar, and the rotations
(loadings) are the same except that PC3 is is multiplied by a factor of -1.
princomp() and prcmp() use different algorithms, but the total
proportion of variance is the same.
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Chile data from Chimayo

> summary(b) # from princomp()

Importance of components:

Comp.1 Comp.2 Comp.3

Standard deviation 1.4130783 0.7837540 0.34089882

Proportion of Variance 0.7321565 0.2252325 0.04261107

Cumulative Proportion 0.7321565 0.9573889 1.00000000

> summary(c) # from prcomp()

Importance of components:

PC1 PC2 PC3

Standard deviation 1.4820 0.8220 0.35754

Proportion of Variance 0.7322 0.2252 0.04261

Cumulative Proportion 0.7322 0.9574 1.00000
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Chile data from Chimayo

Note that with three variables, the principal components are harder to
interpret. For PC1, all variables have the same sign and have similar
magnitudes, so this is similar to to taking a sum or average of the three
variables, and is still a measure of size. The second PCA contrasts length
with width and thickness, and could still be a measure of shape. Here a
thin chile pepper will have a larger PC2 if it also not very thick. A long
but wide and thick chile pepper will have PCA2 close to 0. A long,
narrow, and thin chile pepper will have a large PCA2.

PCA3 contrasts width with length and thickness, so a wide, short, and
thin-walled pepper will have a large PCA3. However, PCA3 contributes
little to the overall variation in the chile data for Chimayo. A dimension
reduction technique is to only use PCA1 and PCA2 and ignore PCA3.
Since PCA1 and PCA2 use all three variables, this allows linear
combinations of the three variables to contribute to a two-dimensional
represenation of the data.
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Principal components: matrix approach

We’ll take a look at what’s going on with principal components from a
matrix point of view.

First, in PCA, we find the rotation of the axes (after centering) that leads
to maximal variance along the first axes (the axis of the first principal
component). The observation vectors yi will be assumed to have already
been centered, so that yi = 0.
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PCA: matrix approach

The rotation of the centered data is done by a p × p orthogonal matrix A
(meaning that columns are orthogonal so that dot products of distinct
columns are equal to 0) and for a column ai , we have a′iai = 1. We can
also say that A′A = I.

We then let zi = Ayi . Then

z′iz = (Ayi )
′Ayi = y ′iA

′Ayi = y′iyi

Thus, the rotated observation vectors zi have the same distance to the
origin as the observation vectors yi .
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PCA: matrix approach

The new variables zi must be uncorrelated (i.e., we rotate the data so that
the cloud is no longer tilted), which means that the covariance matrix for
z has 0s on the off diagonal. If the covariance matrix for y is S, then

cov(z) = cov(Ay) = ASA′ =


s2z1 0 · · · 0
0 s2z2 · · · 0
...

...
...

...
0 0 · · · s2zp
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PCA: matrix approach

The sample variances of zi are the eigenvalues of S with ai being the
eigenvectors of S. Thus, we get

s2zi = λi

This is a general property for orthogonal matrices, that if C is orthogonal,
then C′SC = diag(λ1, . . . , λp). Thus, for C = A′, we get the result.

The proportion of variance explained by the first k principle components is

λ1 + · · ·+ λk
λ1 + · · ·+ λp

The denominator can also be represented by tr(S). If the proportion
variance explained by the first k components is large, then it is reasonable
to represent the p-dimensional data using the first k principal components,
meaning that the data is nearly k-dimensional. For example, if you had
(x , y , z) coordinates of houses in a city, then this is strictly speaking
3-dimensional, but if elevation is relatively flat, the third dimension
(elevation) doesn’t contribute much, so that just using (x , y) coordinates
is a reasonable representation of the location of the houses.
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PCA: matrix approach

A more algebraic (but still matrix-based) approach is to note that the
sample variance for a linear combination z = a′y is a′Sa. The goal is to
find the linear combination a that maximizes

λ =
a′Sa

a′a

and this is found by solving

(S− λI)a = 0
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PCA: matrix approach

PCA can handle the case that there are more variables than observations
(p > n) because the inverse of S is not needed, so that S can be singular.
In this case, some eigenvalues are 0 and can be ignored.
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PCA: matrix approach

A nice interpretation of the first principle component for two-dimensional
data is that it minimizes the sum of perpendicular distances from the
observations to the first principal component axis.

This is contrast to linear regression, which minimizes the sum of vertical
distances from points to the regression line. Why should you minmize
vertical distances rather than perpendicular distances?
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PCA: perpendicular distances
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PCA: perpendicular distances

When you rotate the data, the perpendicular distance from (y1i , y2i ) to the
line becomes the vertical distance from the point to the z1 axis, which is
z2i (the z2 coordinate of the ith data point. Thus, the sum of the squared
perpendicular distances is (assuming y is already centered)

n∑
i=1

z22i = (a′2yi )
′(a′2yi )

= a′2

[∑
i

yiy
′
i

]
a2

= (n − 1)a′2Sa2

= (n − 1)λ2

which is minimized since the first principal component is in the direction of
maximal variance and the second principal component is in the direction of
minimum variance.
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PCA: perpendicular distances

Given two variables, such as head length versus head width, should regress
length against width, or width against length? The choice seems arbitrary,
but they result in different answers, and this is annoying (to me, anyway).
One thing you might think of doing is to take the two regression lines,
express both as say functions of head length (so regress length on width,
then solve for width as a function of length). You might then take the
average of the two regression lines. This way your answer doesn’t treat
one variable as the response more than the other one. (I have never heard
of anyone doing this, so I don’t recommend it.)

On the other hand, this solution is not equivalent to minimizing the
perpendicular distances, although minimizing the perpendicular distances
gives you a regression line that is in between the other simple linear
regression lines.
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PCA: perpendicular distances
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Using PCA to detect outliers and nonnormality

If you have data that you want to be multivariate normal, you can use
PCA to help detect outliers. In particular, since all principal components
are linear combinations of the original variables, if the original data is
multivariate normal, then so are the PCs, and the first two PCs will be
bivariate normal. They are also independent, so you should see a cloud of
points that doesn’t have an angle with the z1 axis.

It is also possible that outliers will show up in PCA plots that were hard to
detect using a scatterplot matrix of the original data, or that points will
cluster in ways that wouldn’t be expected from multivariate normal data
(this is particularly the case if data is combined from different populations).
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Plotting PCs

To plot PCs in R, you can run a PCA function and get the new rorated
data values. For the chile data (using all locations), I did the following to
plot

> a <- prcomp(scale(y))

> names(a)

[1] "sdev" "rotation" "center" "scale" "x"

> head(a$x)

PC1 PC2 PC3

[1,] -0.44691332 -0.04905345 0.2214757

[2,] 0.01737361 1.77329701 0.6517343

[3,] 0.85639612 0.73028423 0.2401843

[4,] 1.11583041 0.13152051 1.5130950

[5,] 1.10281969 0.43792077 0.1154351

[6,] 0.12776230 0.93423415 -0.5312896

> a

Standard deviations:

[1] 1.4165809 0.8187573 0.5682738

Rotation:

PC1 PC2 PC3

Length 0.5059428 -0.8415612 -0.1892000

Width 0.6270315 0.2082063 0.7506541

Thickness 0.5923287 0.4984224 -0.6330259

> plot(a$x[,1],a$x[,2])
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Plotting PCs

¿ b ¡- princomp(scale(y)) ¿
head(bscores)Comp.1Comp.2Comp.3[1, ]0.446913320.04905345−
0.2214757[2, ]− 0.01737361− 1.77329701− 0.6517343[3, ]−
0.85639612− 0.73028423− 0.2401843[4, ]− 1.11583041− 0.13152051−
1.5130950[5, ]− 1.10281969− 0.43792077− 0.1154351[6, ]−
0.12776230− 0.934234150.5312896 > head(ax) PC1 PC2 PC3 [1,]
-0.44691332 -0.04905345 0.2214757 [2,] 0.01737361 1.77329701
0.6517343 [3,] 0.85639612 0.73028423 0.2401843 [4,] 1.11583041
0.13152051 1.5130950 [5,] 1.10281969 0.43792077 0.1154351 [6,]
0.12776230 0.93423415 -0.5312896
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plotting PCs: chile example
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Plotting PCs: chile example

Here I plot the PCs from both prcomp() (black circles) and princomp

(red squares). I show lines connecting corresponding points (for just a few
points) to show that they are mirror images of each other. The code for
this is

> plot(a$x[,1],a$x[,2],xlim=c(-3,3),ylim=c(-2,2))

> points(b$scores[,1],b$scores[,2],col="red",pch=15)

> for(i in 1:6) {

+ lines(c(a$x[i,1],b$scores[i,1]),c(a$x[i,2],b$scores[i,2]))

+ }
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plotting PCs: chile example
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plotting PCs

There don’t appear to be any obvious outliers in this data. The book gives
some other interesting examples of how PCA was used to find unusual
observations.

The first example has 14 economic variables obtained on 29 chemical
companies. Note that the correlation between the first two PCs is 0, but
in this case, the outlier is so different from the other observations, that the
observations without the outlier are highly correlated.
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plotting PCs: chemical companies
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plotting PCs

The second example combines data from different samples of insects, and
the question is to determine the number of distinct “taxa”, which means
species, or subspecies, or populations within species. Species boundaries
can be very difficult to determine, so biologists sometimes talk about
“taxonomic distinctiveness” as well as “species delimitation”.

In this case, there were 40 individusal aphids sampled, and 19 variables
were measured. You might expect some of these variables to be highly
correlated, such as the lengths of different legs. I would guess, since there
are three pairs of legs, there were two measurements taken per leg pair,
one for each side, and the results were averaged. Note that you could have
taken six different leg measurements, with even higher correlations.
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plotting PCs: variables for the insect example
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plotting PCs: insect example
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plotting PCs

There do appear to be different clusters of points, perhaps 4 clusters.
Biologists can use these types of plots to help judge whether different
insects should be regarded as belonging to different species or subspecies.
These days, genetic data would likely to be used to help make such
judgments, but for many decades, only morphological data was available.
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Keeping k principal components

If you are interested in dimension reduction, you might want to keep more
than two principal compoents but less than p principal components. How
many should you keep?

There are four typical criteria

1. Keep enough principal components so that the proportion of variance
explained meets a threshold, e.g., 80% or 90%.

2. Keep components with larger than average eigenvalues,
λ = (1/p)

∑
i λi (often used in software)

3. Use a scree graph, plotting λi against i , and see where there is a large
break in the eigenvalues

4. Test for significance of larger components
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scree graph

March 19, 2015 49 / 76



Scree graph

The use of a scree graph is a little bit subjective, but the idea is to keep
cases where the slope appears to be changing. In this example, the last
four points are roughly on a line, so you would keep just the first two
principal components.
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scree graph: aphid example
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Testing for statistical significance of components

To test whether or not to keep some of the principal components, you can
test whether the last k eigenvalues are the same. If the last components
have no information, then they are essentially noise, and their eigenvalues
will be similar. To do this, let

λ =

p∑
i=p−k+1

λi

u =

(
n − 2p + 11

6

)k lnλ−
p∑

i=p−n+1

lnλi


Then u is approximately χ2 with degrees of freedom (k − 1)(k + 2)/2 if
the original data is multivariate normal. The assumption of multivariate
normality is needed for testing, but not for principal components generally,
and the first three methods are often used instead of this formal testing
procedure. The testing procedure often leads to retaining more
components than more informal procedures.
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Using the last few principal components

Often the last few principal components are ignored, but if the variance is
close to 0 for the last (few) principal component(s), this suggests
multicollinearity in the data, which could be useful to know in a regression
problem.
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Application of PCA to genetic data

PCA is very frequently applied to different types of genetic data. This was
first done in a paper from nearly 40 years ago: Menozzi P, Piazza A,
Cavalli-Sforza L (1978) “Synthetic maps of human gene frequencies in
Europeans”. Science 201: 786792.

Many different types of genetic data can be used for PCA, including
frequencies of different genotypes for different genes (for example, the
frequency of the type O allele, the frequency of the type A allele for blood
type). Gene frequencies are quantitative variables (like leg length for
insects) and tend to vary for different populations even within species.
When many genes are examined together, populations can tend to cluster,
much like the insect example showed clustering into 4-5 groups.
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Blood type frequencies
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Blood type frequencies
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Blood type frequencies
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PCA genetics paper
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Application of PCA to genetic data

For blood type, there are three alleles, different versions of the gene: A, B,
and O. You carry two copies of each gene in each cell (except for sex cells
— egg or sperm, which only carry one copy per cell), and the combination
determines your genotype. Frequently, geneticists use the frequencies of
the individual alleles in the population. Type O is the most frequent for
essentially all human populations, but the frequency still varies. For
example, in the Middle East, the frequency of O is lower than in Europe,
and the frequency of type O in Europe is lower than in the Americas.

A data set of gene frequencies would have separate columns for different
alleles, and these will be highly correlated. Given the frequencies of say, A
and B, the frequency of O is not needed since fA + fB + fO = 1, but the
frequencies of just A and B are also correlated. (Question: do you think
they are positively or negatively correlated?)
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Application of PCA to genetic data

In addition to blood type, you could also use other genetic markers, such
as frequencies of being Rh negative or Rh positive (another aspect of
blood), and the MN blood type (just another blood type marker. Early
uses of PCA often used genetics related to blood samples, so these types
of markers were used.

Instead of plotting the frequency of a single allele and needing separately
plots for each allele, such as in the Wikipedia plots, the idea is to find a
linear combination of the allele frequencies that will create the largest
amount of variation between populations. In this case, the value of each
principle component is plotted as a function of the geographical location,
and placed on a map.
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PCA genetics paper
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PCA genetics paper
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PCA genetics paper
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PCA for genetics

At the time of this study (1978), it was difficult to get many genetic
markers, but since genetic technology has improved, we can now get
genetic information across the whole genome. PCA today in genetics is
often applied to individual letters of DNA instead of frequencies of alleles.
This gives more detailed information because there might be several
genetic variants of an allele that can be distinguished genetically but not
phenotypically (not all O alleles necessarily have exactly the same DNA
sequence, so we can just use the sequence instead of noting the allele).
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PCA for genetics

In addition, we can use genomic locations that don’t correspond to
functional genes and have no phenotypic results at all. It is possible to find
over 1 million positions in the genome (out of over 3 billion letters of DNA
in our genomes) where there is some variability. These are often called
SNPs (Single Nucleotide Polymorphisms). DNA can be represented by
sequences of four letters: A, C, G, and T. A SNP is a specific location,
such as position 131,007 on the long arm of chromosome 7, where there is
some variability so that some humans have one DNA letter and other
humans have another DNA letter. For roughly 99.9% of genomic
locations, there is no variability, and all humans have the same DNA
letter. But with 3 billion letters, 0.1% of locations having variability means
that there are a few million locations where there is variability. This also
means that you need on average to observe about 1000 DNA letters from
two individuals to find any genetic differences between them.
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PCA for genetics

A paper in 2006 advocated using PCA with SNP data and was able to do
so efficiently for hundreds of thousands of SNPS on 1000s of individuals.
This was a bit different from the 1978 approach because: (1) the variables
were binary rather than continuous, (2) they used individuals rather than
summaries from populations.

Although you can use summaries of SNP frequencies from different
populations, this doesn’t tell you if some individuals have unusual patterns.
In particular, the authors of the 2006 paper were interested in admixed
populations — people with ancestry from geographically distinct areas.
Using individuals is also useful when the population that an individual is
from is unclear.
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PCA genetics paper
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PCA genetics paper

This paper applied principal components to the CEPH-HGDP (Centre
dEtude du Polymorphisme Human Genetic Diversity Project) data, a
famous data set which intensively sampled 1050 individuals from 52
populations around the world. The data set has nearly 1 million SNPs and
other types of genetic markers, including microsatellites (short segments of
DNA that get repeated a variable number of times), insertion/deletion
events, and CNV (copy-number variants, longer stretches of DNA that
occur a variable number of times).
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SNPs in HGDP-browser

The number of SNPs detected in a 50 kb window (i.e., 50,000 letter stretch of
DNA) was 15, a bit less than 0.1%; however, this data set sampled a large
number of SNPs but not the entire genomes of these individuals. The SNPs
chosen were based on earlier efforts to find SNPs in the CEPH data set which had
a smaller number of individuals and populations sampled.

The original CEPH data was based on: “The DNA samples for the HapMap will
come from a total of 270 people: from the Yoruba people in Ibadan, Nigeria (30
both-parent-and-adult-child trios), Japanese in Tokyo (45 unrelated individuals),
Han Chinese in Beijing (45 unrelated individuals), and the CEPH (30 trios). ”
(http://hapmap.ncbi.nlm.nih.gov/abouthapmap.html). Thus, there is some
ascertainment bias in the CEPH-HGDP data in that SNPs are more likely to be
detected that came from the original populations in the CEPH study (which
didn’t include Native Americans, for example).

More recently, entire human genomes have been sequenced, so this should reduce

any sampling bias issues.
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