HW2, due 3/22/19

1. Let Y_1, \ldots, Y_n be an iid sample from a normal distribution with mean μ and variance μ . Find the maximum likelihood estimate for μ and the information in μ in the sample. Use this to give the asymptotic variance of $\hat{\mu}$.

2. A certain bit of software is said to extend the duration of your laptop battery by a factor of α . (For example, if $\alpha = 2$, the software is supposed to double the duration of the battery). To test this, n computers (with new batteries) are tested without the software and m are tested with the software. To model this, let Y_1, \ldots, Y_n be iid exponential random variables with mean β , and let Y_{n+1}, \ldots, Y_{n+m} be iid exponential random variables are independent.

- (a) Write the likelihood and log likelihood functions.
- (b) Find maximum likelihood estimators for α and β .
- (c) Find the Information matrix for α and β .
- (d) Give the approximate asymptotic variance for the value of $\hat{\alpha}$ obtained in part (b).

(e) Design a simulation with n = 10, m = 15 and $\beta = 3$, $\alpha = 2$. Run the simulation at least 1000 times. Give a plot of $\hat{\alpha}$ against $\hat{\beta}$ and report the correlation between these two estimators.

(f) Use the theoretical information matrix to get the asymptotic variance for $\hat{\alpha}$ and report how often the confidence interval derived from the information matrix captured the true value of $\alpha = 2$ in your simulation. For a CI, you can use

$\widehat{\alpha} \pm 1.96SE(\widehat{\alpha})$

where $SE(\hat{\alpha})$ is the square root of the (1,1) entry of the inverse of the information matrix for the sample.