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Abstract

The analysis of high-dimensional data sets is often forced to rely upon well-chosen summary
statistics. A systematic approach to choosing such statistics, which is based upon a sound
theoretical framework, is currently lacking. In this paper we develop a sequential scheme for
scoring statistics according to whether their inclusion in the analysis will substantially improve the
quality of inference. Our method can be applied to high-dimensional data sets for which exact
likelihood equations are not possible. We illustrate the potential of our approach with a series of
examples drawn from genetics. In summary, in a context in which well-chosen summary statistics
are of high importance, we attempt to put the `well' into `chosen.'
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1 Introduction
We are in the midst of an era in which the size of data sets is growing at an increas-
ingly rapid pace. While more data is always, in principle, helpful, there are several
problems associated with the increasingly high dimensionality of data. Motivated
by the growing number of such data sets appearing in genetics and genomics, in
this paper we focus on issues that arise with these large data sets when model-based
analysis methods are used.

In general, we collect data D∗ and wish to make inference about a parameter,
or set of parameters θ. The ∗ notation is used to distinguish between the given data
set and the simulated data sets that we will exploit below. If we do not use the ∗
superscript we are referring to simulated data. A variety of methods exist for in-
ference in this context, such as rejection algorithms (Ripley, 1982), Markov chain
Monte Carlo [MCMC] methods (e.g., the Metropolis-Hastings algorithm (Metropo-
lis et al., 1953; Hastings, 1970)), and Importance Sampling (Ripley, 1982). When
taking a Bayesian perspective, inference regarding θ typically proceeds via calcu-
lation of the posterior distribution P (θ | D∗) = P (D∗ | θ)P (θ)/P (D∗). In some
contexts calculation of the term P (D∗ | θ) is problematic, either because the sheer
size of the data makes the calculation computationally intractable, or because cal-
culation is impossible when using realistic models for how the data arise. These
problems have motivated a drive to more approximate methods, in particular the
field of approximate Bayesian computation [ABC] (e.g., Beaumont et al., 2002;
Marjoram et al., 2003; Sisson et al., 2007). For a general, low-level discussion of
this progression in a biological context see Marjoram and Tavaré (2006). In this
paper we focus on the use of rejection algorithms.

1.1 Rejection Algorithms
Assuming the existence of a model M to explain the generation of the data, and
a prior π(·) for the parameter(s) θ, the aim of a rejection method is to produce
observations from the posterior distribution f(θ | D∗). In its simplest form, when
calculation of f(D∗ | θ) is intractable, the algorithm takes the following form:

R1 Sample θ from π(·).

R2 Simulate data D from the model M using parameters θ.

R3 Accept θ if D = D∗, and go to R1.

The accepted observations have the required posterior distribution.
However, for high-dimensional data the probability of observing D = D∗ is of-

ten extremely small. This drove a move towards methods that directly approximate
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the likelihood of the full data D∗. As the complexity of data sets has continued to
grow these methods have themselves become intractable, forcing one to consider
summaries of the data. The choice of which summaries to use is frequently not
obvious, motivating a need for methods to help determine which summary statistics
carry information useful for inference. It is this problem we focus on here. These
issues are related to the concept of “nearly sufficient” statistics (Le Cam, 1964;
Abril, 1994; Cabrera and Yohai, 1999).

Thus, supposing the existence of a set of summary statistics S = {S1, . . . , Sn},
and letting S∗ denote the value taken by these statistics on the observed data D∗
while S denotes the value taken on simulated data D, [R3] in the above algorithm
is replaced with the following:

R3’ Accept θ if S = S∗, and go to R1.

The accepted observations now represent independent samples from f(θ |S = S∗).
In situations in which a sufficient statistic exists (and is contained in S) this distribu-
tion is equal to f(θ | D∗). However, it will often be the case that a sufficient statistic
does not exist, in which case the resulting distribution represents an approximation
to f(θ | D∗). Note that the closeness of the approximation is in general unknown
and depends upon the choice of statistics in S. A further complexity is that, even
when using summary statistics, the probability of observing S = S∗ often remains
small. In such a setting, it is common to define a distance metric d(S, S∗) to mea-
sure the distance between S and S∗ (with low distances corresponding to S being
relatively similar to S∗). Step R3’ is then replaced with:

R3” Accept θ if d(S,S∗)<E, and go to R1.

where E is an arbitrary, small, constant. The accepted observations now represent
independent samples from f(θ | d(S,S∗)<E), but again the degree of approxima-
tion between this distribution and f(θ | D∗) is, in general, unknown. Despite these
issues, these algorithms have been widely used (e.g., Plagnol and Tavaré, 2004;
Tavaré et al., 1997; Fu and Li, 1997; Innan et al., 2005). There is, however, a press-
ing need for theory to guide the choice of summary statistics.

Of course, in principle maximum information is gained by using all summary
statistics, since, in the worst case scenario that a statistic adds no information re-
garding θ, including that statistic has no effect on the posterior for θ. However,
that observation is a theoretical observation (in some sense, corresponding to the
use of an infinite number of iterations in the rejection algorithm). In practice, the
addition of a new statistic to those considered within a rejection method will result
in fewer iterations being accepted, which leads to the addition of stochastic noise to
the empirical estimator of the posterior distribution that is calculated from the set of
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accepted θs (unless the statistic is completely correlated with an already included
statistic - in which case it adds no information anyway). Thus, there is a trade-off
between the information added by a new statistic and the corresponding additional
stochastic noise that is caused by the fact that fewer iterations will now be accepted.
This means that a sensible strategy will be to only include an additional statistic if
it alters the posterior distribution in a meaningful way.

Thus, the purpose of this paper is to develop a conceptual framework with which
one can begin to assess the information content of a list of summary statistics. The
goal is to develop a procedure to score summary statistics in such a way that the
score provides a natural assessment of the utility of the summary, with the require-
ment that the score is computable for problems where exact likelihoods calculations
are not possible.

2 Theoretical Results
We focus on the following situation. Suppose we have a list of summary statistics
S1, S2, · · · , Sk−1 and a candidate summary Sk. The question we wish to address
is the following. If we add the statistic Sk to our existing list, will it substantially
improve the quality of inference, or is the added information associated with Sk
so low as to suggest that it can safely be ignored? We begin by considering the
log-likelihood of the summary statistics:

lnP (S1, S2, · · · , Sk|θ) = lnP (S1|θ) + lnP (S2|S1, θ) +

· · ·+ lnP (Sk|S1, S2, · · · , Sk−1, θ).

Note that lnP (S1, S2, · · · , Sk|θ) differs from lnP (S1, S2, · · · , Sk−1|θ) only by
the term

lnP (Sk|S1, S2, · · · , Sk−1, θ).

If S1, · · · , Sk−1 were sufficient then lnP (Sk|S1, S2, · · · , Sk−1, θ) would not depend
on θ and thus would not contribute any information to any inference of θ. The term
would drop out of the log-likelihoood calculation and under the Bayesian perspec-
tive P (θ|S1, S2 · · · , Sk) would equal P (θ|S1, S2 · · · , Sk−1) because P (Sk|S1, S2, · · ·
, Sk−1, θ) would equal P (Sk|S1, S2, · · · , Sk−1) and would appear in both the nu-
merator and denominator of the Bayes calculation and would cancel. Motivated by
these properties of sufficient statistics we will define a concept of approximately
sufficient.
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Definition A set of statistics S1, S2, · · · , Sk−1 are ε−sufficient relative to a statistic
X if

sup
θ

lnP (X|S1, S2, · · · , Sk−1, θ)− inf
θ

lnP (X|S1, S2, · · · , Sk−1, θ) ≤ ε

Note that if X represents the entire data and ε is zero then the above reduces to
the definition of sufficiency. We are interested in the case where X = Sk. We now
wish to consider sequentially adding new summary statistics to a list of summaries
and scoring each new summary as follows.

Definition The score of Sk relative to S1, S2, · · · , Sk−1 is defined as follows.

δk = sup
θ

lnP (Sk|S1, S2, · · · , Sk−1, θ)− inf
θ

lnP (Sk|S1, S2, · · · , Sk−1, θ). (1)

Once the score drops below a certain threshold we will stop adding new statistics.
The result below shows how the score of the proposed summary is related to the
posterior distributions of interest.

Result 1 If δk is the score of a statistic Sk relative to S1, S2, · · · , Sk−1, and π(θ) is
the prior distribution on θ, and the odds-ratio Rk(θ) is defined to be

Rk(θ) =
P (θ|S1, S2, · · · , Sk)
P (θ|S1, S2, · · · , Sk−1)

(2)

then
e−δk ≤ Rk(θ) ≤ eδk

Result 1 follows from the fact that

P (θ|S1, S2, · · · , Sk) =
P (S1, S2, · · · , Sk−1|θ)P (Sk|S1, S2, · · · , Sk−1, θ)π(θ)∫
P (S1, S2, · · · , Sk−1|θ)P (Sk|S1, S2, · · · , Sk−1, θ)π(θ)dθ

≤ P (S1, S2, · · · , Sk−1|θ)π(θ)∫
P (S1, S2, · · · , Sk−1|θ)π(θ)dθ

supθ (P (Sk|S1, S2, · · · , Sk−1, θ))

infθ (P (Sk|S1, S2, · · · , Sk−1, θ))

= P (θ|S1, S2, · · · , Sk−1)
supθ (P (Sk|S1, S2, · · · , Sk−1, θ))

infθ (P (Sk|S1, S2, · · · , Sk−1, θ))

= P (θ|S1, S2, · · · , Sk−1)e
δk ,
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and similarly

P (θ|S1, S2, · · · , Sk) ≥ P (θ|S1, S2, · · · , Sk−1)
infθ (P (Sk|S1, S2, · · · , Sk−1, θ))

supθ (P (Sk|S1, S2, · · · , Sk−1, θ))

= P (θ|S1, S2, · · · , Sk−1)e
−δk

Note that if we choose our threshold score small enough then eδk ≈ e−δk ≈ 1
and there is little difference between the posterior distribution for θ given S1, S2, · · ·,
Sk and the posterior for θ given S1, S2, · · · , Sk−1. So the odds-ratio Rk(θ) defined
by (2) is close to 1. In fact, the next result shows that the scoring function can be
defined in terms of the odds-ratio Rk(θ).

Result 2 Let δk be the score of a statistic Sk relative to S1, S2, · · · , Sk−1 defined by
(1) and let Rk(θ) be the odds-ratio defined by (2) then

eδk =
supθ Rk(θ)

infθ Rk(θ)
(3)

Result 2 follows by first noting that

P (Sk|S1, S2, · · · , Sk−1, θ) =
P (θ, Sk|S1, · · · , Sk−1)

P (θ|S1, · · · , Sk−1)

=
P (θ|S1, · · · , Sk)P (Sk|S1, · · · , Sk−1)

P (θ|S1, · · · , Sk−1)

= Rk(θ)P (Sk|S1, · · · , Sk−1).

(4)

It therefore follows that

eδk =
supθ P (Sk|S1, S2, · · · , Sk−1, θ)

infθ P (Sk|S1, S2, · · · , Sk−1, θ)
=

supθ Rk(θ)

infθ Rk(θ)
(5)

Remark Note that P (Sk|S1, · · · , Sk−1) depends on the prior distribution, since
an integral involving the prior is required to calculate this quantity. Therefore, while
P (Sk|S1, S2, · · · , Sk−1, θ) does not depend on any prior, the odds ratio Rk(θ) will
be influenced by the prior, even though equation (5) shows that supθ Rk(θ)

infθ Rk(θ)
will not

depend on the prior.

5

Joyce and Marjoram: Approximate Sufficiency and Bayesian Computation

Brought to you by | University of New Mexico University Libraries
Authenticated

Download Date | 4/22/19 5:25 PM



An ABC algorithm for approximating δk
We now consider a fixed data set D∗ and a set of summary statistics that take ob-
served value S∗1 , S

∗
2 · · · , S∗k . The algorithm for scoring a summary statistic S∗k given

S∗1 , S
∗
2 , · · · , S∗k−1 is quite simple. First generate a large enough number of data sets

so that one can reasonably approximate the posterior P (θ|S∗1 , S∗2 , · · · , S∗k) using the
standard ABC rejection algorithm. Note that this single simulation can be used to
approximate all of the posteriors for θ given any subset of the k summary statistics
under consideration. Since the algorithm will produce a finite set of accepted θ’s,
we can estimate δk by

δ̂k = max
j

lnRk(θj)−min
j

lnRk(θj) = max
j,l
|lnRk(θj)− lnRk(θl)|

Since
δ̂k ≤ 2 max

i
| lnR∗k(θi)|

then if the estimate of the score δ̂k exceeds some threshold then the absolute value
of the log of the odds-ratio | lnR∗k(θi)| will exceed half that threshold. Therefore
we can base our decision whether or not to accept a statistic Sk based on whether or
not the score departs significantly from the null expectation (δk = 0) or the absolute
odds-ratio |R∗k(·)| departs significantly from 1.

3 Examples
In this section we give several example applications of the above ideas. The general
schema is to generate a set of 100 data sets (the ‘observed’ data) and then use our
algorithm to decide which of a family of test statistics should be used for inference
on each of those data sets. In each case, we then assess the accuracy of the final
choice of statistics by calculating the error ei to be the difference between the mean
of the posterior distribution for θ for data set i and the value of θ that was used to
generate that data. We report the mean of e2i over the 100 data sets.

We simulate a set, D, of 5 million data sets which we will use in order to choose
which statistics should be used for each observed data set. In principle, for each ob-
served data set, we would like to proceed by adding randomly chosen statistics,
one-by-one, and determining whether δk, as defined in (1), exceeds some thresh-
old T after each addition. In practise, we actually use a conceptually equivalent
statement derived from equation (5), and, after the addition of each new statistic,
determine whether the ratio of posteriors

R∗k(θ) =
P (θ|S∗1 , S∗2 , · · · , S∗k−1, S

∗
k , )

P (θ|S∗1 , S∗2 , · · · , S∗k−1)
(6)
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differs from 1 by more than some threshold value T (θ) for any value of θ. We defer
details of this to the appendix.

Since we choose to attempt to add a randomly chosen statistic at each iteration
of the algorithm it is entirely possible that a more informative statistic might be
added after a statistic which is less informative has already been included. This
would result in a final set of statistics that was non-optimal. To help avoid this
we implemented an additional step in which, after the addition of any statistic, we
attempt to remove each of the other already accepted statistics. In this context,
suppose we are currently attempting to remove statistic Si from the set of statistics
SA that are currently included. Conceptually speaking, we proceed as if the set of
currently included statistics were SA\Si, and try to add statistic Si. If Si is not
added in this scenario, we drop it from the set SA.

We now give three example applications.

3.1 Example 1: The Ewens Sampling Formula
We begin with a “proof of principle” example using the Ewens Sampling formula
[ESF]. This formula was introduced in (Ewens, 1972) to describe the distribution
of allelic types in a genetic sample drawn from the so-called infinite sites model
(in which every new mutation results in a unique, new type) under a number of
standard assumptions, such as neutrality. See (Ewens, 1972) for a more complete
discussion. The ESF has the appealing property that the number of types is a suffi-
cient statistic for the mutation rate (see, for example, Joyce, 1998). Thus we use it
as an elementary example application of our algorithm, in which the correct answer
is known: if the algorithm performs well it will select the number of types as the
only statistic to use when estimating the mutation rate.

In each application of this example we compare results from our algorithm to
those obtained from a rejection method estimator that uses only the number of types,
NT , in the sample. SinceNT is sufficient for the mutation rate θ, this latter estimator
represents the optimum performance that could be attained.

We simulate data sets of size 50 and attempt to estimate the mutation rate. For
each data set the prior for the mutation parameter θ is assumed to be uniformly dis-
tributed on [0,10]. We then simulate N = 5000000 data sets to use when deciding
whether to add statistics. For convenience, when calculating posterior distributions
for θ we discretize the range of θ using 10, equally-spaced bins. We begin by pre-
senting a case in which we consider two statistics:
S1: the number of types in the sample, NT ;
S2: p, where p is a random number that is uniformly distributed on [0,25].
The range of p is chosen so that both statistics have roughly the same degree of vari-
ation between data sets. Obviously, S2 is designed to be completely uninformative.
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Table 1: Example application: the ESF using statistics S1 and S2. The table shows
the frequency with which statistics S1 and S2 are chosen to be used in this example,
along with the mean square error of the resulting estimator over the 100 test data
sets.

Statistic Error
S1 S2 baseline algorithm

100 0 2.19 2.19

In Table 1, we show the results, presented as counts of the number of times each
of the statistics was chosen to be used. We see that S1 was always chosen to be used,
while S2 was never chosen. (We note that it is entirely possible for application
of our algorithm to result in no statistics being chosen.) These results are as one
would hope, since the number of types is sufficient for the mutation parameter in
this model. Of course, stochastic noise will lead to non-optimal choices from time-
to-time (but this does not occur in this example). The frequency of such occurrences
can be reduced by increasing L, the number of data sets used to determine which
statistics should be chosen.

We now consider the same example again, but this time we use S1 and S3, where
S3 is defined as 50H , and H is the homozygosity of the sample. The factor of 50
is chosen so that the two statistics have comparable variances (see Discussion).
Results are shown in Table 2. Here, it is the case that both the number of types
and homozygosity contain signal regarding θ (Ewens, 1972). However, since the
number of types is sufficient for θ it should generally be the only statistic chosen.
This is indeed the case, there being only two exceptions. Despite these exceptions
the mean square error of the estimators derived from our algorithm matches that
resulting from the baseline algorithm which uses only S1, indicating that on the two
data sets on which S3 was chosen the resulting estimator performed as well as one
constructed from the sufficient statistic.

Finally, we consider an example in which we introduce two further statistics:
S4=25*frequency of the commonest type (as a proportion);
S5=Number of singleton types (i.e. types that have but one representative in the
sample).
These two statistics both carry some information regarding θ (albeit less informa-
tion than is carried by S1). We allow the algorithm to consider any of S1, . . . , S5.
Results are shown in Table 3. Again the mean square error from our algorithm is
essentially identical to that resulting from the algorithm that uses only the sufficient
statistic. However, given the greater range of informative statistics, the algorithm
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Table 2: Example application: the ESF using statistics S1 and S3. The table shows
the frequency with which statistics S1 and S3 are chosen to be used in this example,
along with the mean square error of the resulting estimator over the 100 test data
sets.

Statistic Error
S1 S3 baseline algorithm
98 2 2.19 2.19

Table 3: Example application: the ESF using statistics S1 through S5. The table
shows the frequency with which each statistic is chosen to be used in this example,
along with the mean square error of the resulting estimator over the 100 test data
sets.

Statistic Error
S1 S2 S3 S4 S5 baseline algorithm
91 1 5 4 6 2.19 2.19

sometimes includes other statistics in addition to, or in place of, S1. We note that
though the algorithm performs well, it would not be obvious from these results that
S1 was a sufficient statistic (although the results clearly indicate that this statistic is
by far the most informative with respect to mutation rate).

3.2 Example 2: Coalescent Simulation - Estimation of Mutation
Rate

We now move onto an example in which there is no sufficient statistic, but where
there is a statistic that is known to be nearly sufficient: estimation of mutation rate
in coalescent simulation. The coalescent, introduced by (Kingman, 1982c,a,b), is a
widely-used model for the evolution of genetic material. For a general overview of
the coalescent see (e.g., Hudson, 1990; Nordborg, 2001). In this example we sim-
ulate samples of 50 haplotypes under the coalescent using the infinite sites model
(where each mutation occurs at a unique position).

We begin with a simple simulation in which there is no recombination and where
we attempt to estimate the scaled mutation rate (generally denoted by θ, and which
varies continuously from 0 to 10 in data sets simulated for this example). Initially
we consider just two statistics:
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Table 4: Example application: Estimation of mutation rate in the coalescent, with-
out recombination, using statistics C1 and C2. The table shows the frequency with
which each statistic is chosen to be used in this example, along with the mean square
error of the resulting estimator over the 100 test data sets.

Statistic Error
C1 C2 baseline algorithm
100 2 1.77 1.77

C1: the number of mutations in the data;
C2: p, where p is a random number that is uniformly distributed on [0,25].
Here, C1 is a highly informative, but not a sufficient statistic for θ. Consequently, in
order to assess performance, in each application in this example we compare results
from our algorithm to those obtained from a baseline rejection method estimator
that uses only C1. Results of this analysis are shown in Table 4. Again, we see
that in this simple scenario the algorithm successfully chooses only the informative
statistic in almost all cases.

We now make the example more interesting by adding five more statistics to the
mix:
C3: The mean number of pairwise differences between haplotypes;
C4: 25*(The mean pairwise LD across all pairs of loci that are within a distance
of 0.1 of each other in the sample - for convenience we re-scale the length of the
region being simulated to be 1 unit.);
C5: The number of haplotypes;
C6: The frequency of the commonest haplotype (as an integer);
C7: The number of singleton haplotypes.
Here, the number of pairwise differences between two haplotypes is simply the
number of mutations that are present in one, but not both, of the haplotypes; and
pairwise LD is measured as r2.

Results of an analysis in which the algorithm is now able to choose between
all seven statistics are presented in Table 5. We see that the algorithm chooses
a combination of statistics that varies from one data set to another, but that the
resulting estimate has a lower mean square error than that obtained from a rejection
method that uses just the number of mutations.
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Table 5: Example application: Estimation of mutation rate in the coalescent, with-
out recombination, using statistics C1 through C7. The table shows the frequency
with which each statistic is chosen to be used in this example, along with the mean
square error of the resulting estimator over the 100 test data sets.

Statistic Error
C1 C2 C3 C4 C5 C6 C7 baseline algorithm
75 4 27 56 43 18 16 1.77 1.59

Table 6: Example application: Estimation of recombination rate in the coalescent,
using statistics C1 through C7. The table shows the frequency with which each
statistic is chosen to be used in this example, along with the mean square error of
the resulting estimator over the 100 test data sets.

Statistic Error
C1 C2 C3 C4 C5 C6 C7 baseline algorithm
73 2 52 35 78 11 16 7.41 6.96

3.3 Example 3: Coalescent Simulation - Estimation of Recom-
bination Rate

We conclude with an example of a more complex situation: estimation of recom-
bination rate in a coalescent setting. Here there is no known sufficient, or nearly
sufficient statistic. However, many of the statistics (C1, . . . , C7) above are known
to be informative regarding recombination rate (see, e.g., Innan et al., 2005). We
proceed as for example 2, but now set the mutation parameter θ equal to 5 for all
simulations while allowing the scaled recombination rate parameter (commonly de-
noted by ρ) to be sampled uniformly at random from the interval [0, 10]. In order to
assess performance, we compare the estimator constructed using our algorithm to a
baseline estimate resulting from a rejection method that usesC4, which is somewhat
informative for ρ. Results are shown in Table 6. We see that the algorithm appears
to choose statistics that we would expect to be informative regarding ρ but, once
again, the exact set of statistics that is used varies across data sets. However, over-
all, the set of statistics that is chosen represents an improvement over the baseline
estimator.
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4 Discussion
This paper presents a first step towards solving a difficult but increasingly common
problem: how to choose summary statistics in an ABC application. We presented
an algorithm that, given a particular data set to analyze, will choose a set of sum-
mary statistics to use based upon the effect of inclusion of those statistics on an
empirically calculated posterior distribution. The algorithm performs well and is
able to distinguish useful statistics from noise. However, a number of issues remain
to be explored. We discuss some of these below.

One potential drawback to our approach follows from the observation that the
order in which you add the statistics will matter. There is no way of knowing a
priori which statistics hold the most information. You would like to be able to add
statistics in decreasing order of information. Since this is likely to be unknown we
might like to try all possible subsets of the statistics, but this is likely to be com-
putationally intractable in most settings. Thus, in this paper we have implemented
a scheme in which we attempt to add a randomly chosen statistic at each step, and
then, if the statistic is added to the set of statistics used by the rejection method,
we subsequently attempt to drop each other statistic. We admit this is an imperfect
solution to the problem, but it is practical to implement and appears to work rea-
sonably well. For example, when we took one of the coalescent data sets contained
within the results presented in Table 5 and analyzed it 100 times, with the order in
which we attempted to introduce statistics randomized for each analysis, we discov-
ered that the algorithm always chose to use statistic C1, the number of mutations.
In each case, one other statistic was also chosen to be used, but the identity of that
statistic varied across analyses. If one wished to improve this behavior, one might
explore generalizations of our approach in which we attempt to add or remove a
randomly chosen set of statistics at each iteration, or use a larger set of test data in
order to reduce the level of stochastic noise (i.e. increase the value of N ).

It is relevant to note that our algorithm decides which statistics should be in-
cluded in a rejection method, but it does not address the issue of how each chosen
statistic should be weighted. When using exact rejection this will not matter, since
simulated data sets must exactly match the observed data for the chosen statistics.
However, in many real applications, exact matching is either impossible (because of
statistics that vary on a continuous scale), or computationally intractable (because
of the extremely large number of simulations that will typically be needed in order
to produce each exact match).

We illustrate the effect of varying the weight of a statistic using the scenario
of Example 3. In Table 7 we show results for three analyses in which the weight
of statistic C4 is varied. We see that if the weight of C4 is low the statistic is not
used, but if the weight is increased the statistic becomes more informative. This
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Table 7: Frequency with which statistics C1 through C7 are chosen to be used in the
coalescent example when estimating recombination rate and allowing the weight of
C4 to vary.

Weight of C4 Statistic Error
C1 C2 C3 C4 C5 C6 C7

1 83 1 60 0 85 9 9 7.21
10 77 0 51 27 81 15 15 6.98
25 73 2 52 35 78 11 16 6.96

demonstrates that the weight that is placed on a statistic (in the form of a constant
by which the statistic is multiplied) can have a significant impact upon the infor-
mation added by including the statistic. It is important to note that this is only an
issue when approximate methods are being used (as opposed to a situation in which
exact matching between S and S∗ can be insisted upon), but this is likely to be the
case in many real applications. It is straightforward to imagine a generalization of
the approaches we give here, in which as well as considering the addition/removal
of statistics we also consider altering the weight placed on each statistic. The algo-
rithm would now proceed by considering a set of weightsW1, . . . ,Wn, withWi = 0
corresponding to a statistic not being included in the estimator; with weights being
altered from iteration to iteration. The overall logic of the approach would be the
same, but the details would be somewhat more complex. We propose to investigate
the feasibility of such an approach in future work. We also note the development of
alternative methods for estimating the optimum weights for a set of statistics, such
as the use of projection-pursuit methods (Peter Calabrese - personal communica-
tion).

Finally, we note that our scoring scheme does not, in principle, require that
one use the rejection method. Ultimately, the score function depends only on the
odds-ratio, which does not require the calculation of the constant of integration of
the posterior, so it is also amenable to MCMC and other computationally intensive
methods. We speculate that convergence of an MCMC algorithm would be much
quicker if one only had to propose moves in ‘summary statistics’ space rather than
the full high dimensional space of most computationally intensive problems. So
the same trade-off between computational efficiency and loss of information that
applies to ABC techniques would still apply.
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5 Appendix
Here we give more details of the implementation of our algorithm. In actual imple-
mentations of such an algorithm we will, for practical purposes, need to discretize
the set of possible θ values into a set, {θ1, . . . , θL} say, in order to construct an em-
pirical estimate of the posterior distributions used in (5). (It would be possible to
implement a versions that instead applied a density estimation procedure, but this
would make substantially greater computational demands than the method we de-
scribe here.) What results will be an estimate of the posterior, subject to stochastic
noise; the degree of noise being a function of the number of accepted data sets be-
fore, and after, the addition of the new statistic. This leads to a stochastic estimate
of the odds-ratio in (5). The intuition here is that if the observed value of

R∗k(θi) =
P (θi|S∗1 , S∗2 , · · · , S∗k−1, S

∗
k , )

P (θi|S∗1 , S∗2 , · · · , S∗k−1)

differs from 1 by more than would expected by chance, we consider the new statistic
to be informative. Consequently, we use an intuitively reasonable definition of
the threshold T (θ) which is defined in terms of the the probability of observing a
deviation from 1 as large as that which was actually observed. We now explain the
details of this procedure.

Suppose that we accept Nk−1 of the total set of N = 5000000 data sets when
performing a rejection method using S1, . . . , Sk−1, and that this results in an empir-
ically estimated posterior for θi of Pk−1(i) for each i. Furthermore, let Nk denote
the number of accepted data sets after the addition of the kth statistic (the statistic
we are currently considering adding). Under the null hypothesis that statistic Sk
adds no information to the posterior for θ, when we add Sk we are equally likely to
accept any subset (of size Nk) of the Nk−1 data sets that were accepted using statis-
tics θ1, . . . , θk−1. Thus, we can, in a relatively straightforward manner, approximate
the probability of observing any particular deviation from 1 when constructing the
ratio

P (θi|S∗1 , S∗2 , · · · , S∗k−1, S
∗
k , )

P (θi|S∗1 , S∗2 , · · · , S∗k−1)
.

In particular, for each i, we proceed as follows:
Suppose that there were Nk−1(i) accepted data sets with θ = θi when consid-

ering statistics S1, . . . , Sk−1. Then, under the null, the expected number of accep-
tances after adding the kth statistic is Nk−1(i)Nk/Nk−1. For computational conve-
nience we treat each θi (i = 1, . . . , L) independently. Since Nk(i) and Nk(i

′) are
negatively correlated for any i 6= i′, this means that the approach is conservative.
From this we can calculate the standard deviation of the number of acceptances. We
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then define T (i), the threshold for acceptable differences in the ratio (5) in terms
of this standard deviation, allowing the ratio to differ from 1 by up to 4 standard
deviations.
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