HW6 FOR MATH441/STAT461/STA561 DUE 11/6/17

- 1. Suppose X has an exponential distribution with rate λ . Find the pdf of $Y = X^2$. Please specify $f_Y(y)$ as a function defined on the entire real line either as a piecewise function or using an indicator function.
- **2.** Suppose X has an exponential distribution with rate λ . Find the pdf of $Y = \sqrt{X}$. Please specify $f_Y(y)$ as a function defined on the entire real line either as a piecewise function or using an indicator function.
- **3**. Suppose X and Y have the following joint distribution for $i, j \in \{1, 2, 3\}$ (i.e., the i, j entry of the table is P(X = i, Y = j)).

		Y	
X	1	2	3
1	0.2	0.2	0.3
2	0.1	0.1	0.02
3	0.01	0.03	0.04

- (a) Write the marginal distribution of Y as a pmf.
- (b) What is $P(X \le i, Y \le j)$ for $i, j \in \{1, 2, 3\}$?
- (c) What is $P(X = 2|Y \le 2)$?
- (d) Let Z = X + Y. Find the pmf of Z (this is somewhat tedious, and you just have to figure the possible values of Z, much like rolling two three-sided "dice".
 - (e) Find Cov(X, Y) and Cor(X, Y) where

$$Cor(X,Y) = \frac{Cov(X,Y)}{SD(X)SD(Y)}$$

4. Let X have density

$$f_X(x) = \begin{cases} k\lambda e^{-\lambda|x|} & -\infty < x < \infty \end{cases}$$

where k is a normalizing constant. This density is sometimes called a double exponential, and looks like an exponential density for positive x and the mirror image of an exponential for negative x.

1

- (a) Find k.
- (b) Show that E[X] = 0.
- (c) Let Z = 2X + 1. Find the density function $f_Z(z)$.
- (d) (Graduate students) Let Y = |X|. Find the density for Y.