Practice Test 2

Formula Sheet

\[\text{Var}(X) = E(X^2) - (E(X))^2, \quad \text{Cov}(X, Y) = E[XY] - E[X]E[Y] \]

1. Let \(X \) have pdf

\[
f_X(x) = \begin{cases}
 x/2, & 0 < x < 2 \\
 0, & \text{otherwise}
\end{cases}
\]

(a) Find \(E[X] \)

\[
E[X] = \int_0^2 x^2/2 \, dx = \frac{x^3}{6} \bigg|_0^2 = \frac{4}{3}
\]

(b) Let \(Y = \sqrt{X} \). Find \(f_Y(y) \). Be sure to define \(f_Y(y) \) for \(-\infty < y < \infty\).

For \(0 < y < \sqrt{2} \),

\[
F_y(y) = P(Y \leq y) \\
= P(\sqrt{X} \leq y) \\
= P(X \leq y^2) \\
= F_X(y^2)
\]

\[
\Rightarrow f_Y(y) = \frac{d}{dy} F_X(y^2) \\
= f_X(y^2) \cdot \frac{d}{dy} y^2 \\
= y^2/2 \cdot 2y \\
= y^3
\]

Thus,

\[
f_Y(y) = \begin{cases}
 y^3, & 0 < y < \sqrt{2} \\
 0, & \text{otherwise}
\end{cases}
\]
(c) Find Cov(X, Y). Hint: Use the fact that Y = \sqrt{X} instead of trying to find the joint density for X and Y.

\[\text{Cov}(X, Y) = \text{Cov}(X, \sqrt{X}) = E[X \cdot \sqrt{X}] - E[X]E[\sqrt{X}] \]

\[E[X \sqrt{X}] = E[X^{3/2}] = \int_0^2 x^{5/2}/2 \, dx = (2/7)x^{7/2}/2 \bigg|_0^2 = (1/7)2^{7/2} = (8/7) \cdot \sqrt{2} \]

\[E[\sqrt{X}] = \int_0^2 x^{3/2}/2 \, dx = (2/5)x^{5/2}/2 \bigg|_0^2 = (1/5)2^{5/2} = (4/5) \cdot \sqrt{2} \]

\[\Rightarrow \text{Cov}(X, Y) = (8/7) \cdot \sqrt{2} - (4/5)(4/5) \cdot \sqrt{2} = \sqrt{2} \cdot ((8/7) - 16/15) = 0.1077496 \]

Note that as X increases, \(\sqrt{X} \) also increases, so it makes sense that the covariance is positive.

2. Let X and Y have joint density

\[f_{X,Y}(x, y) = \begin{cases} k(2x + y), & x, y > 0 \\ 0, & \text{otherwise} \end{cases} \]

Solution. I needed to put an upper limit on x and y for this problem to make sense. I’ll use 0 < x, y < 1 but you could use whatever finite limits you want to have a slight variation on the problem.

(a) Find k

\[k \int_0^1 \int_0^1 2x + y \, dx \, dy = 1 \]

\[\Rightarrow k \int_0^1 x^2 + y x \bigg|_0^1 \, dy = 1 \]

\[\Rightarrow k \int_0^1 1 + y \, dy = 1 \]

\[\Rightarrow k(1 + 1/2) = 1 \]

\[\Rightarrow k = 2/3 \]

(b) Find \(f_X(x) \)
for $0 < x < 1$,

$$f_X(x) = \int_0^1 f_{X,Y}(x,y) dy$$

$$= \left(\frac{2}{3}\right) \int_0^1 2x + y \ dy$$

$$= \left(\frac{2}{3}\right) \left(2xy + \frac{y^2}{2}\right) \bigg|_0^1$$

$$= \left(\frac{2}{3}\right)(2x + 1/2)$$

Thus,

$$f_X(x) = \left(\frac{2}{3}\right)(2x + 1/2) I(0 < x < 1)$$

(c) Find $f_Y(y)$

for $0 < y < 1$,

$$f_Y(x) = \int_0^1 f_{X,Y}(x,y) \ dx$$

$$= \left(\frac{2}{3}\right) \int_0^1 2x + y \ dx$$

$$= \left(\frac{2}{3}\right) \left(x^2 + xy\right) \bigg|_0^1$$

$$= \left(\frac{2}{3}\right)(1 + y)$$

Thus,

$$f_Y(y) = \left(\frac{2}{3}\right)(1 + y) I(0 < y < 1)$$

(d) Find Cov(X,Y)
\[E[XY] = \frac{2}{3} \int_0^1 \int_0^1 xy(2x + y) \, dx \, dy \]
\[= \frac{2}{3} \int_0^1 \int_0^1 2x^2y + xy^2 \, dx \, dy \]
\[= \frac{2}{3} \int_0^1 2x^3y/3 + x^2y^2/2 \bigg|_0^1 \, dy \]
\[= \frac{2}{3} \int_0^1 2y/3 + y^2/2 \, dy \]
\[= \frac{2}{3} \int_0^1 2y^2/6 + y^3/6 \bigg|_0^1 \, dy \]
\[= \frac{2}{3}(2/6 + 1/6) = 1/3 \]
\[E[X] = \frac{2}{3} \int_0^1 2x^2 + x/2 \, dx \]
\[= \frac{2}{3}\left(2x^2/3 + x^2/4\right) \bigg|_0^1 \]
\[= \frac{2}{3}\left(2/3 + 1/4\right) = (2/3)(11/12) = 11/18 \]
\[E[Y] = \frac{2}{3} \int_0^1 1 + y \, dx \]
\[= \left(2/3\right)(y + y^2/2) \bigg|_0^1 \]
\[= \left(2/3\right)(3/2) = 1 \]
\[\text{Cov}(X, Y) = 1/3 - 11/18 = -5/18 \]

This suggests that as either \(X \) or \(Y \) go up, the other tends to go down. This is not obvious from the mathematical description. However, they do not appear to be independent because the joint density does not look like a product of a function of \(x \) and a function of \(y \).

(e) Find the density of the sum, \(f_{X+Y}(a) \).

Solution. This problem is a bit more difficult than I realized...
For this density, keep in mind that for \(Z = X + Y \), the support of \(Z \) is from 0 to 2. We can’t use the convolution formula for this because \(X \) and \(Y \) are not independent. The limits of integration are a bit tricky. We note that for \(0 < z < 1 \), \(x \) ranges from 0 to \(z - y \) and \(y \) ranges from 0 to \(z \). If \(x > z - y \), then \(x + y > z \), which is not the range we are interested in, and if \(y > z \), then \(z - y < 0 \), so \(P(X \leq z - y) = 0 \), so again we are not interested in \(y > z \).
For $0 < z < 1$,

$$F_Z(z) = P(Z \leq z)$$
$$= P(X + Y \leq z)$$
$$= P(X \leq z - Y)$$

$$= \frac{2}{3} \int_0^1 \int_0^{1-z} f_{X,Y}(x, y) \, dx \, dy$$

$$= \frac{2}{3} \int_0^z \int_0^{z-y} 2x + y \, dx \, dy$$

$$= \frac{2}{3} \int_0^z x^2 + yx \bigg|_0^{z-y} \, dy$$

$$= \frac{2}{3} \int_0^z (z - y)^2 + y(z - y) \, dy$$

$$= \frac{2}{3} \int_0^z z^2 - 2yz + y^2 + yz - y^2 \, dy$$

$$= \frac{2}{3} \int_0^z z^2 - yz \, dy$$

$$= \frac{2}{3} \left(z^2 y - \frac{yz^3}{2} \right) \bigg|_0^z$$

$$= \frac{2}{3} \left(z^3 - z^3 / 2 \right)$$

$$= z^3 / 3$$

$$\Rightarrow f_Z(z) = z^2$$

For $1 < z < 2$, $x < z - y$ is automatically satisfied if $z - y > 1$, which occurs when $y < z - 1$, so we are interested in cases where $y > z - 1$. Consequently we integrate y from $z - 1$ to 1.
For $1 < z < 2$,

\[F_Z(z) = P(Z \leq z) = P(X + Y \leq z) = P(X \leq z - Y) = \int_{z-1}^{1} \int_{0}^{z-y} f_{X,Y}(x,y) \, dx \, dy \]

\[= \left. \frac{2}{3} \left(z^2 y - y^2 \frac{z}{2} \right) \right|_{z-1}^{1} \]

\[= \left. \frac{2}{3} \left(z^2 - z/2 - (z-1)^2 + z(z-1)^2/2 \right) \right|_{z-1}^{1} \]

\[= \left. \frac{2}{3} \left(z^2 - z^2/2 - z^2/2 - z^2 + 2z - 1 + z^3/2 - z^2 + z/2 \right) \right|_{z-1}^{1} \]

\[= (2/3)(z^3/2 - z^2 + 2z - 1) \]

\[= z^3/3 - 2z^2/3 + 4z/3 - 2/3 \]

\[\Rightarrow f_Z(z) = z^2 - 4z/3 + 4/3 \]

Thus,

\[f_Z(z) = \begin{cases}
 z^2 & 0 < z < 1 \\
 z^2 - 4z/3 + 4/3 & 1 \leq z < 2 \\
 0 & \text{otherwise}
\end{cases} \]
3. Let X and Y have joint mass function

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>(Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>0.1</td>
</tr>
<tr>
<td>1</td>
<td>0.05</td>
<td>0.1</td>
</tr>
<tr>
<td>2</td>
<td>0.2</td>
<td>0.1</td>
</tr>
</tbody>
</table>

(a) Are X and Y independent? Justify your answer.

Solution. \(P(X = 1) = 0.35 \). \(P(Y = 1) = 0.2 \). \(P(X = 1, Y = 1) = 0.1 \neq P(X = 1)P(Y = 1) = 0.07 \). Thus, X and Y are not independent.

(b) Find the marginal distribution of X by specifying the probability mass function for X.

\[
P(X = i) = \begin{cases}
0.35 & i = 1 \\
0.25 & i = 2 \\
0.4 & i = 3 \\
0 & \text{otherwise}
\end{cases}
\]

The values are obtained for $P(X = 1)$ (as an example) by calculating

\[
P(X = 1) = P(X = 1, Y = 1) + P(X = 1, Y = 2) + P(X = 1, Y = 3)
\]