
Neural networks (not in book)

Another approach to classification is neural networks. Neural networks
were developed in the 1980s as a way to model how learning occurs in the
brain. There was therefore wide interest in neural networks among
researchers in cognitive science and artificial intelligence. It is also of
interest just as a classification technqiue, without necessarily having
connections to understanding the brain or artificial intelligence.

April 8, 2015 1 / 40

Neural networks

April 8, 2015 2 / 40

Neural networks

The motivation for neural networks comes from thinking about the brain.
The brain has cells called neurons which have multiple inputs (dendrites),
and a single output (axon). Brain cells are connected to each other so that
the output from one cell can part of the input in another neuron. The
connections between axons and dendrites and called synapses. A crude
model for this system is that there are multiple continuous or discrete
inputs and single binary output. The output is that either the axon fires or
doesn’t fire. Whether or not the axon fires depends upon the strength of
the inputs, which crudely could be determined by whether the sum of the
inputs in the dendrites reaches some threshold.

April 8, 2015 3 / 40

Neural networks

When the axon fires, it discharges an electrical pulse. This gets distributed
to other dendrites that are connected via synapses to the axon, which in
turn can cause other neurons to fire or not fire. Eventually, this processing
can result in, for example, perceptual inputs (e.g., visual images, sounds,
etc.) to be classified and possibly lead to actions (motor activity).

How much a neuron firing affects neurons downstream is weighted by
biological factors such as neurotransmitters in the synapses, and can be
modified by experience (i.e., learning).

April 8, 2015 4 / 40

Neural network

In an artificial neural network model, an array of neurons receives input
from multiple variables. The variables are weighted, so that each neuron
gets some linear combination of the input signals, and either fires or
doesn’t fire depending on the weighted sum of the inputs.

April 8, 2015 5 / 40

Neural networks

April 8, 2015 6 / 40

Neural networks

Generally, neuron i fires if the total input
∑

j wijxj is greater than some
threshold. Several neurons are together in the same network. If the data is
linearly separable, then you can have just a single layer of neurons
connected to an output.

Two sets of vectors y1, . . . , yn and x1, . . . , xm are called linearly
separarable if weights exist such that∑

j

wijyj ≥ θ for all i ∈ {1, . . . , n}

∑
j

wijxj < θ for alli ∈ {1, . . . ,m}

April 8, 2015 7 / 40

Neural networks

April 8, 2015 8 / 40

Neural networks

Neural networks can also be used for more complicated classifications,
including nonlinear functions, and what are called XOR functions. For
example, rather than classifying an observation as 1 versus 0 based on
whether a linear combination is high or low, it could could classified as 1 if
one variable is high or the other variable is high, but not both of them are
high.

April 8, 2015 9 / 40

Neural networks

April 8, 2015 10 / 40

Neural networks

Critical to how neural networks function is how to get the weights. Often
the weights are initially randomized (for example, numbers between 0 and
1), and then they are gradually improved through training or learning.
There are different types of learning, called supervised, unsupervised, and
reinforcement.

In supervised learning, a correct classification is known on some training
data. The system’s weights are updated when the networks classification is
compared to the training set so as to improve future performance.

In unsupervised learning, the correct classification is unknown. This is
more like the situtaiton in clustering.

In reinforcement, the correct classification isn’t given, but the system is
rewarded depending on how well it performed.

April 8, 2015 11 / 40

Neural networks

To illustrate supervised learning in a single-layer network, we have a target
output t, and the actually output

o = f

 n∑
j=1

w1jxj , . . . ,

p∑
j=1

wpjxj

The error is then

E = t − o

We have some learning rate parameter r , and the weights are adjusted by

∆wi = r(t − o)xi

April 8, 2015 12 / 40

Neural networks

April 8, 2015 13 / 40

Neural networks

To take an example, suppose a single layer network has two input nodes.
The two input nodes have weights w1 = .2 and w2 = .3, and we use
r = 0.2. Suppose we train on one observation which should be classified as
a 1 (i.e., the output neuron should fire). If the input is (x1, x2) = (1, 1),
then the combined weight is

w1x1 + w2x2 = 0.2 + 0.3 = 0.5

so the neuron doesn’t fire. The change in weights is

∆w1 = (0.2)(1− 0)(1)− 0.2, ∆w2 = (0.2)(1− 0)(1) = 0.1

so each weight increases by 0.2. The new weights are w1 = 0.4 and
w2 = 0.5.

April 8, 2015 14 / 40

Neural networks

To continue the example, suppose another training observation occurs,
and the target is again 1, but the observation is

(x1, x2) = (0, 1)

In this case, the output using the new weights is

w1x1 + w2x2 = 0 + 0.5 < 1.0

so again the output is 0. In this case

∆w1 = (0.2)(1− 0)(0) = 0, ∆w2 = (0.2)(1− 0)(1) = 0.2

Now we increase the weight for w2 but not for w1, so the new weights are
w1 = 0.4 and w2 = 0.7. For new input, the neural network will classify the
observation as 1 if the input is (1, 1) but will otherwise classify it as 0.

April 8, 2015 15 / 40

Neural networks

Assuming that you have a neural network sufficiently complex to correctly
classify all training data, you can go through the data again, re-updating
weights until all observations are correctly classified. If the data is too
complex (e.g., not linearly separable for a single-layer network), then you
need a stopping rule such as a maximum number of iterations before
finishing the training.

A common modification to this type of network is to have a bias input
unit, x0 that always fires regardless of the input unit. Its weight can still be
modified, so that if the weight is 0, you have an unbiased system; however
having the bias unit can be helpful in make the classifications more flexible.

April 8, 2015 16 / 40

Neural networks

April 8, 2015 17 / 40

Neural networks

It is possible to overtrain a network, in which case it’s rules become
optimized to the training data but might not perform well on new data. It
is therefore useful to have training data and validation data to be sure the
network will perform well on new data.

April 8, 2015 18 / 40

Neural networks

April 8, 2015 19 / 40

Neural networks

For multi-layer networks, the methods for updated the weights is more
complicated. The most common approach is called backpropogation.

April 8, 2015 20 / 40

Neural networks

April 8, 2015 21 / 40

Neural networks

April 8, 2015 22 / 40

Neural networks

April 8, 2015 23 / 40

Neural networks

April 8, 2015 24 / 40

Neural networks

The backpropogration rule requires derivatives of the f functions.
Previously, we considered this function to be an indicator equal to 1 if the
weighted sum of the inputs was greater than some threshold. To have a
function with a derivative, you can instead have a sigmoid function (for
example).

In the diagrams, η is used as the learning rate parameter. This can be a
function of time (or iteration) in the network, so that at first it updates
weights with bigger increments, then settles down over time.

April 8, 2015 25 / 40

Neural networks

An example with the chile data is

> library(nnet)

> target <- c(rep(0,11),rep(1,11))

> a <- nnet(target ~ y[,1] + y[,2],size=3)

> summary(a)

a 2-3-1 network with 13 weights

options were -

b->h1 i1->h1 i2->h1

32.94 7.00 -51.06

b->h2 i1->h2 i2->h2

-99.17 -12.47 77.75

b->h3 i1->h3 i2->h3

-1.92 -8.67 -6.18

b->o h1->o h2->o h3->o

38.95 -3.11 -40.56 -2.85

April 8, 2015 26 / 40

This created a network with two inputs plus a bias node, a 3-node hidden
layer, and 1 output. The summary gives the weights, for example the
weight from the bias node to hidden node 1 is 32.94. To get an idea of
the performance, type

> summary(a)

> a$fitted.values

[,1]

1 0.5000790274

2 0.1663292192

3 0.1663292192

4 0.1663292192

5 0.1663292192

6 0.1663292192

7 0.1663292192

8 0.1663292192

9 0.1667868688

10 0.1683388180

11 0.1663292192

12 0.9901308104

13 0.1663292192

There are two chiles misclassified from Cochiti (only one is shown here,
observation 13) and two that have essentially 50% weight (e.g.,
observation 1)– so the network couldn’t classify them.

April 8, 2015 27 / 40

Logistic regression as a classifier

Logistic regression might not appear to be a multivariate technique since
we have a single response (category as 1 or 2) and several explanatory
variables. However, the way data is often collected, we have two groups,
the response, which are known (e.g., cases and controls), and we collect
data on the explanatory variables.

It also makes sense to compare logistic regression to other classification
methods since it is often applied to the same types of data.

April 8, 2015 28 / 40

Logistic regression

The goal in logistic regression as a classifier is to give a probability that a
new observation belongs to a given class given the covariates. Again we
can use techniques such as training and validation sets or resubstitution
rates to estimate the error rate for a logistic regression classifier.

April 8, 2015 29 / 40

Logistic regression

Logistic regression, similar to regression, has a vector of coefficients
β = (β0, β1, . . . , βp) for the covariates (1, x1, x2, . . . , xp), where β0 is the
coefficient for an intercept term.

The probabilities are modeled as

P(yi = 0|xi) =
1

1 + exp(β0 +
∑p

j=1 βjxij)

P(yi = 1|xi) =
exp(β0 +

∑p
j=1 βjxj)

1 + exp(β0 +
∑p

j=1 βjxij)

April 8, 2015 30 / 40

Logistic regression

We can think of β0 as being similar to a bias term in neural networks. If
xi = 0, then the probability that yi = 0 is

1

1 + exp(β0 + 0)
=

1

1 + exp(β0)

For example, if β0 = .1, then P(yi = 0) = .475. When β0 = .2, this
probability is 0.45. The larger the value of β0, the more predisposed the
classifier is to category 1 instead of category 0.

April 8, 2015 31 / 40

Logistic regression

Using the logistic function,

σ(z) =
1

1 + exp(−z)

we can write the probabilities as

P(yi = 0|xi) = σ

−β0 +

p∑
j=1

βixij

P(yi = 1|xi) = 1− P(yi = 0|xi)

The logistic function σ(z) is S-shaped and is positive between 0 and 1.

April 8, 2015 32 / 40

Logistic regression

Another interpretation for the logistic regression model is that

P(yi = 1|xi)
P(yi = 0|xi)

= exp

β0 +

p∑
j=1

βjxij

and

log
P(yi = 1|xi)
P(yi = 0|xi)

= β0 +

p∑
j=1

βjxij

This makes the right side look like an ordinary regression problem, while
on the left we have the log odds of being in class 1. We can think of odds
as transforming probabilities, which are between 0 and 1, to a number
between 0 and ∞, and the log-odds transforms probabilities to numbers
between −∞ and ∞.

April 8, 2015 33 / 40

Logistic regression

The estimation of the weights β is a bit difficult and is done using
maximum likelihood numerically. Logistic regression can be done in R
using the function glm.

April 8, 2015 34 / 40

Logistic regression

> truth <- c(rep(0,11),rep(1,11))

> lr1 <- glm(truth ~ y[,1] + y[,2])

> summary(lr1)

Estimate Std. Error z value Pr(>|z|)

(Intercept) 14.3372 7.0332 2.038 0.0415 *

y[, 1] 0.5164 0.5766 0.896 0.3705

y[, 2] -6.6008 2.7367 -2.412 0.0159 *

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 30.498 on 21 degrees of freedom

Residual deviance: 16.413 on 19 degrees of freedom

AIC: 22.413

Number of Fisher Scoring iterations: 6

April 8, 2015 35 / 40

Logistic regression in R

To interpret the output, note that the number of Fisher Scoring iterations
refers to how difficult it was, in terms of the number of iterations, to
estimate the covariates using an iterative numerical method.

The deviance normally refers to −2Λ. The residual deviance compares the
model with the predictors to the null hypothesis of β = 0, while the null
deviance compares the likelihoods of the intercept only model (βj = 0 for
j > 0) to the null model (βj = 0 for j ≥ 0).

April 8, 2015 36 / 40

Logistic regression in R

The results suggest that width but not legnth were signficant predictors of
class membership. However, the main interest here is not in which
variables are significant but rather what leads to the best prediction.
However, including insignificant variables runs the risk of overfitting the
data, so one might prefer a model without length. However,
cross-validation methods might be used to decide this rather than usual
model selection methods based on p-values, AIC, etc.

To get a sense of how well the logistic regression classifies, we can look at
the fitted values first, which give the estimated probabilities of class
membership for group 1 (Cochiti).

April 8, 2015 37 / 40

Logistic regression in R

> names(lr)

[1] "coefficients" "residuals" "fitted.values"

[4] "effects" "R" "rank"

[7] "qr" "family" "linear.predictors"

[10] "deviance" "aic" "null.deviance"

[13] "iter" "weights" "prior.weights"

[16] "df.residual" "df.null" "y"

[19] "converged" "boundary" "model"

[22] "call" "formula" "terms"

[25] "data" "offset" "control"

[28] "method" "contrasts" "xlevels"

April 8, 2015 38 / 40

> t(t(lr1$fitted.values))

1 0.489107853

2 0.005758878

3 0.034092301

4 0.002176054

5 0.055848588

6 0.363563682

7 0.108225806

8 0.254209823

9 0.425129081

10 0.809937685

11 0.118241717

12 0.846548446

13 0.363563682

14 0.939374085

15 0.877176485

16 0.489107853

17 0.952513940

18 0.996929181

19 0.939374085

20 0.169012974

21 0.902396172

22 0.857711629

April 8, 2015 39 / 40

Logistic regression in R

In this case, observations 13, 16, and 20 were missclassified, with
observations 1 and 16 being close to 50%. The probability of being in
class 0 as a function of the covariates is

1

1 + exp(14.3372 + 0.5164Length − 6.6008Width

We could therefore make a plot showing whether an observation would be
classified as being Alcalde versus Cochiti as a function of Length and
Width for difference Length, Width combinations similar to the linear and
quadratic classifiers done earlier. Another nice way to make the plot would
be to use shades of grey or a heat map (e.g., yellow to red) indicating the
probability of being classified into one of the two groups.

April 8, 2015 40 / 40

Logistic regression in R

To get a sense of what the black-and-white plot should look like, the
boundary between the black and white regions is where the probabilities of
the two groups are equal, so 0.5. This is where the odds is 1, and
therefore the log-odds is 0. Thus, on the boundary, we get

log

(
p

1− p

)
= 0 = 14.3372 + 0.5164Length − 6.6008Width

so we get a linear relationship between Length and Width. Therefore
logistic regression is really a linear classifier.

April 8, 2015 41 / 40

Logistic regression in R

To plot this, I used

> plot(c(6,12),c(1.5,4.5),type="n",xlab="Length",ylab="Width",cex.lab=1.3,cex.axis=1.3)

> prob <- function(x,y) {

return(1/(1+exp(14.3372 + 0.5164*x -6.6008*y)))

}

> length <- seq(6,12,.05)

> width <- (length - 6)/6 * 3 + 1.5

> for(i in 1:length(width)) {

> for(j in 1:length(width)) {

points(length[i],width[j],col=

paste("grey",round(100*(1-prob(length[i],width[j]))),sep="")

,cex=2,pch=15)

April 8, 2015 42 / 40

Logistic regression

April 8, 2015 43 / 40

Neural networks

April 8, 2015 44 / 40

Logistic regression in R

If we add Thickness as the third variable, the error rate actually gets
worse, even using the substitution method. The method also has worse
error rates when Length is ignored. Using only width, the probabilities also
tend to be very moderate (close to .50).

April 8, 2015 45 / 40

> t(t(lr2$fitted.values))

[,1]

1 0.489964466

2 0.005259903

3 0.033651304

4 0.001951196

5 0.056337760

6 0.374129169

7 0.104482484

8 0.254654768

9 0.426804775

10 0.809361891

11 0.116277382

12 0.843432261

13 0.348551338

14 0.942023902

15 0.879010283

16 0.488579228

17 0.953083752

18 0.997011291

19 0.937312061

20 0.179098910

21 0.900990400

22 0.858031476

April 8, 2015 46 / 40

> t(t(lr3$fitted.values))

1 0.4452275

2 0.5818250

3 0.4452275

4 0.4068061

5 0.4068061

6 0.4843150

7 0.6008183

8 0.5235954

9 0.4647171

10 0.5818250

11 0.4941359

12 0.5625860

13 0.4843150

14 0.4843150

15 0.5431568

16 0.4452275

17 0.4647171

18 0.5039613

19 0.4843150

20 0.5625860

21 0.5235954

22 0.5059263

April 8, 2015 47 / 40

