Answer keys for the 2nd week homework

$5(\mathrm{p} .23)$. Suppose that $\lim _{\mathrm{x} \rightarrow \mathbf{a}} f(x)=l$. Then for any number $\epsilon>0$ there is a number $\delta>0$ so that

$$
|f(\mathbf{x})-l|<\epsilon \text { whenever } 0<|\mathbf{x}-\mathbf{a}|<\delta .
$$

We now consider any sequence $\left\{\mathbf{x}_{k}\right\}$ that converges to \mathbf{a}. Then, by definition of the convergent sequence, for any $\delta>0$ there is an integer K such that $\left|\mathbf{x}_{k}-\mathbf{a}\right|<\delta$ if $k>K$. By combining these two statements, we have for any $\epsilon>0$ there is an integer K such that $\left|f\left(\mathbf{x}_{k}\right)-l\right|<\epsilon$ whenever $k>K$. Conversely, we assume that, for every sequence $\left\{x_{k}\right\}$ that converges to $\mathbf{a}, f\left(\mathbf{x}_{k}\right) \rightarrow l$ and $\lim _{\mathbf{x} \rightarrow \mathbf{a}} f(x) \neq l$. Since $\lim _{\mathbf{x} \rightarrow \mathbf{a}} f(x) \neq l$, for all $\delta>0$ there is $\epsilon>0$ and \mathbf{x} such that $|\mathbf{x}-\mathbf{a}|<\delta$ but $|f(\mathbf{x})-l| \geq \epsilon$. Taking $\delta=1 / k$, we can always find the points \mathbf{x}_{k} 's so that $\left|\mathbf{x}_{k}-\mathbf{a}\right|<1 / k$ but $\left|f\left(\mathbf{x}_{k}\right)-l\right| \geq \epsilon$. This contradict to our another assumption $f\left(\mathbf{x}_{k}\right) \rightarrow l$.

3(p.28). Let us consider $a \in[0,1]$ is a irrational number. Otherwise, it is clear that there is an subsequence that converges to a. For any irrational number $a \in[0,1]$, consider its decimal expansion, that is,

$$
a=0 . d_{1} d_{2} d_{3} d_{4} \ldots=\sum_{n=1}^{\infty} \frac{d_{n}}{10^{n}},
$$

where $d_{n} \in\{0,1,2, \ldots, 8,9\}$, for all n. Let us define the sequence

$$
a_{k}=\sum_{n=1}^{k} \frac{d_{n}}{10^{n}} .
$$

Then one can easily check that the sequence $\left\{a_{k}\right\}_{k=1}^{\infty}$ is a subsequence of the given sequence and $\left\{a_{k}\right\}_{k=1}^{\infty}$ converges to a.

7 (p.29). Let us assume that there is a subsequence of $\left\{\mathbf{x}_{k}\right\},\left\{\mathbf{x}_{k_{j}}\right\}_{j=1}^{\infty}$, converges to \mathbf{x}. For any given number r, consider the ball centered at \mathbf{x} with radius $r, B(r, \mathbf{x})$. Taking $\epsilon=r$ in the definition of the convergent sequence, for every $r>0$ there is an integer J_{r} such that $\left|\mathbf{x}-\mathbf{x}_{k_{j}}\right|<r$ if $j>J_{r}$. Thus, there are infinitely many values of k so that every ball centered at \mathbf{x} contained \mathbf{x}_{k}. we now assume conversely, i.e. every ball centered at \mathbf{x} contains \mathbf{x}_{k} for infinitely many values of k. For some fixed number r, consider the ball $B(r, \mathbf{x})$. Then by assumption there are infinitely many \mathbf{x}_{k} 's which contained in $B(r, \mathbf{x})$. Thus one can always pick any point inside the ball. Let us pick any point in the ball and set $\mathbf{x}_{k_{1}}$ Again, we consider the ball $B(r / 2, \mathbf{x})$ and pick a point in the ball $B(r / 2, \mathbf{x})$ and set $\mathbf{x}_{k_{2}}$ By repeating this process (pick a point in $B\left(r / 2^{j}, \mathbf{x}\right)$ and set $\left.x_{k_{j}}\right)$, one can built the subsequence of $\left\{\mathbf{x}_{k}\right\},\left\{\mathbf{x}_{k_{j}}\right\}$, which converge to \mathbf{x}.
$5(\mathrm{p} .33)$. Let $G_{k}=\left(S_{k}\right)^{c}$. Assume that there is no point contained in all of S_{k} 's, that is, $\bigcap_{1}^{\infty} S_{k}=\emptyset$. Then the sets

$$
\left\{G_{k}\right\}_{2}^{\infty}=\left\{G_{2}, G_{3}, \cdots\right\}
$$

form an open cover of S_{1}. Since S_{1} is compact, by the Heine-Borel Theorem, there is finite number n such that

$$
S_{1} \subset \bigcup_{j=1}^{n} G_{k_{j}}
$$

But this means that

$$
S_{1} \cap S_{k_{1}} \cap S_{k_{2}} \cap \cdots \cap S_{k_{n}}=\emptyset .
$$

This contradict to our nested property assumption $\left(S_{1} \supset S_{2} \supset S_{3} \cdots\right)$.

