
Yan Lu and Sharon L. Lohr

R Companion for

Sampling: Design and Analysis,

Third Edition

Half Title

Title Page

LOC Page

To Guoyi and Lynn, and to Doug

Contents

Preface iv

1 Getting Started 1
1.1 Obtaining the Software . 2
1.2 Installing R packages . 2
1.3 R Basics . 4
1.4 Reading Data into R . 5
1.5 Saving Output . 7
1.6 Integrating R Output into LATEX Documents 10
1.7 Missing Data . 12
1.8 Summary, Tips, and Warnings . 13

2 Simple Probability Samples 14
2.1 Selecting a Simple Random Sample . 14
2.2 Computing Statistics from an SRS . 17
2.3 Additional Code for Exercises . 23
2.4 Summary, Tips, and Warnings . 24

3 Strati�ed Sampling 26
3.1 Allocation Methods . 26
3.2 Selecting a Strati�ed Random Sample . 29
3.3 Computing Statistics from a Strati�ed Random Sample 31
3.4 Estimating Proportions from a Strati�ed Random Sample 35
3.5 Additional Code for Exercises . 36
3.6 Summary, Tips, and Warnings . 37

4 Ratio and Regression Estimation 39
4.1 Ratio Estimation . 39
4.2 Regression Estimation . 42
4.3 Domain Estimation . 44
4.4 Poststrati�cation . 46
4.5 Ratio Estimation with Strati�ed Sampling 47
4.6 Model-Based Ratio and Regression Estimation 48
4.7 Summary, Tips, and Warnings . 52

5 Cluster Sampling with Equal Probabilities 54
5.1 Estimates from One-Stage Cluster Samples 54
5.2 Estimates from Multi-Stage Cluster Samples 56
5.3 Model-Based Design and Analysis for Cluster Samples 60
5.4 Additional Code for Exercises . 62
5.5 Summary, Tips, and Warnings . 64

i

ii Contents

6 Sampling with Unequal Probabilities 66
6.1 Selecting a Sample with Unequal Probabilities 66

6.1.1 Sampling With Replacement . 66
6.1.2 Sampling Without Replacement . 67

6.2 Selecting a Two-stage Cluster Sample . 68
6.3 Computing Estimates from an Unequal-Probability Sample 74

6.3.1 Estimates from With-Replacement Samples 74
6.3.2 Estimates from Without-Replacement Samples 76

6.4 Summary, Tips, and Warnings . 80

7 Complex Surveys 82
7.1 Selecting a Strati�ed Two-Stage Sample . 82
7.2 Estimating Quantiles . 85
7.3 Computing Estimates from Strati�ed Multistage Samples 86
7.4 Univariate Plots from Complex Surveys . 89
7.5 Scatterplots from Complex Surveys . 92
7.6 Additional Code for Exercises . 100
7.7 Summary, Tips, and Warnings . 102

8 Nonresponse 104
8.1 How R Functions Treat Missing Data . 104
8.2 Poststrati�cation and Raking . 105
8.3 Imputation . 107
8.4 Summary, Tips, and Warnings . 109

9 Variance Estimation in Complex Surveys 110
9.1 Replicate Samples and Random Groups . 110
9.2 Constructing Replicate Weights . 113

9.2.1 Balanced Repeated Replication . 114
9.2.2 Jackknife . 117
9.2.3 Bootstrap . 119
9.2.4 Replicate Weights and Nonresponse Adjustments 121

9.3 Using Replicate Weights from a Survey Data File 123
9.4 Summary, Tips, and Warnings . 124

10 Categorical Data Analysis in Complex Surveys 125
10.1 Contingency Tables and Odds Ratios . 125
10.2 Chi-Square Tests . 127
10.3 Loglinear Models . 129
10.4 Summary, Tips, and Warnings . 133

11 Regression with Complex Survey Data 134
11.1 Straight Line Regression in an SRS . 134
11.2 Linear Regression for Complex Survey Data 137

11.2.1 Multiple Linear Regression . 137
11.3 Using Regression to Compare Domain Means 140
11.4 Logistic Regression . 144
11.5 Additional Resources and Code . 146
11.6 Summary, Tips, and Warnings . 147

12 Additional Topics for Survey Data Analysis 149
12.1 Two-Phase Sampling . 149

Contents iii

12.2 Estimating the Size of a Population . 151
12.2.1 Ratio Estimation of Population Size 151
12.2.2 Loglinear Models with Multiple Lists 153

12.3 Small Area Estimation . 155
12.4 Summary . 156

A Data Set Descriptions 157

Bibliography 191

Index 199

Preface

R Companion for Sampling: Design and Analysis shows how to use the R statistical software
environment to perform the calculations in the textbook Sampling: Design and Analysis,
Third Edition (SDA) by Sharon L. Lohr. It is intended to be read in conjunction with SDA,
and is not a stand-alone text. The parallel book by Lohr (2022) shows how to perform the
computations for the examples using SAS® software, and could be read together with this
book and SDA to learn how to perform the analyses in each software package.

All code and data sets can be downloaded from any of the following websites:

https://math.unm.edu/~luyan/rbook.html

https://www.sharonlohr.com

https://www.routledge.com

The �rst two websites also contain additional programs, not discussed in this book, that
you can adapt for some of the SDA exercises. The data sets used in this book have also
been saved in R format in the contributed R package SDAResources (Lu and Lohr, 2021).

In this book, we give step-by-step guidance for using functions from base R and contributed
packages to select samples and analyze the data sets discussed in Chapters 1�13 of SDA.
The software, however, can do much more than analyze the examples presented in this book.
You can �nd information on advanced capabilities for the survey and sampling contributed
packages in the documentation for those packages by Lumley (2020) and Tillé and Matei
(2021); the books and articles by Lumley (2004, 2010) and Tillé and Matei (2010) provide
additional information about the packages. Goga (2018) gives an overview of using R for
survey sampling.

For easy reference, the index at the back of the book gives page numbers for the examples
in SDA. To locate the code and output for Example 2.5, for example, look up the subentry
�Example 02.05� under �Examples in SDA� in the index. The book also gives code and sug-
gestions for some of the exercises in SDA, and these are listed under index entry �Exercises
in SDA.�

Each chapter ends with a summary section containing tips and warnings for the analyses
discussed in that chapter. These provide ways of avoiding common survey data analysis
errors and checking whether you did the analysis correctly.

Although prior experience with R is helpful, it is not needed to read this book. Chapter 1
tells how to obtain the software and do basic operations in R. It also lists resources for
learning more about programming in R, and tells how to obtain help.

This book makes use of functions that exist in base R and contributed packages, and does
not discuss how to write R functions. One of R's most valuable features, however, is the
capacity for writing functions to carry out new tasks. Advanced R users may want to write
their own functions to select samples or analyze data from a complex survey. When teaching
survey sampling to students who have R programming experience, we have sometimes asked

iv

https://math.unm.edu/~luyan/rbook.html
https://www.sharonlohr.com
https://www.routledge.com

Preface v

them to write their own functions to carry out various sampling tasks. This helps solidify
their knowledge of the material and allows them to do computations not available in existing
functions. For example, we have asked students to write R functions to perform allocation
for and analyze data from a strati�ed random sample, select a with-replacement unequal-
probability sample using Lahiri's method, compute the Sen�Yates�Grundy estimate of the
variance, simulate the sampling distribution of a statistic, and �nd empirical estimates of
the coverage probability of a con�dence interval for a biased estimator.

All code, data sets, and output in this book are provided for educational purposes only
and without warranty. Base R does not contain functions for survey data, and this book
relies heavily on contributed packages that have been developed. These packages are in
widespread use and have been quality-checked by their authors and other users. We have
veri�ed that the calculations from the R functions used for the examples in this book agree
with calculations by the formulas and with calculations performed in other survey software
packages.

Other R packages may not be checked as carefully, however. Although R contributed pack-
ages undergo some consistency and functionality tests when they are submitted (see Wick-
ham, 2015, for a description of checks that are performed), no central authority reviews
the packages to make sure that the functions do what they claim or that the algorithms
perform computations accurately. Most R contributed packages are not peer reviewed, and
you should be aware that some may contain errors.

The code and output in this book were developed using version 4.0.4 of R for Windows (R
Core Team, 2021) and the versions of the packages listed in their respective bibliography
entries, and all code in the book works with those versions. But R is a dynamic language,
and the R Core Team and authors of contributed packages can change or remove functions at
any time. Although most authors who revise a package try to avoid changes that will a�ect
previously written code, functions in R are not guaranteed to be backwards compatible�it
is possible that R code you write today may not work the same way with future versions
of the software. If backwards compatibility is important to you�for example, if you will be
using the same code to produce estimates each year for an annual survey�you may want
to perform or check your computations in a package that is backwards compatible, such as
SAS software. If a function changes in a subsequent version of an R package, you can either:

� Read the documentation and change your code so that it works with the modi�ed
function, or

� Download and use the older version of the package. You can �nd previous versions on
the package's web page under the heading �Old sources.�

Acknowledgements. Many thanks to John Kimmel, our editor at CRC Press, for encour-
aging us to write this book, and to the CRC Press production team for all their support
and help. We are grateful to Yves Tillé and Thomas Lumley for answering questions about
the sampling and survey packages. Students in Yan Lu's sampling class at the University
of New Mexico provided helpful suggestions for clarifying material. We also want to thank
Lynn Zhang for helping with the preparation of the SDAResources package.

1

Getting Started

The R statistical software environment is a powerful and �exible platform for performing
statistical analyses. The basic package contains thousands of functions for computing statis-
tics, and user-contributed packages for this open-source software provide thousands more.
Advanced users can write their own functions to implement new methods for statistical
analyses.

Best of all, the base R package and all user-contributed packages are available free of charge
to anyone with an internet connection.

This chapter tells you how to obtain R software and contributed packages and introduces
you to some basic R functions. It also shows you how to read data sets into R and save
output and graphics produced while you are using the package.

Conventions used in this book. This book is intended to be read in conjunction with
Sampling: Design and Analysis, Third Edition by Sharon L. Lohr, henceforth referred to as
SDA. Many of the examples in this book refer to �gures, tables, examples, or exercises in
SDA. To avoid confusion, we refer to �gures in SDA as �Figure x.x in SDA.� We refer to
�gures in this book as �Figure x.x� with no quali�er.

The names of external data �les and programs, such as agsrs.csv and ch02.R, are in
typewriter font, as are the names of R packages and code we type. Variable names and
internal R data set names are in italic type.

Much of this book consists of R commands and output, set in light shaded boxes such as
the following:

This is a comment

Enter data values into vector 'myvec'

myvec <- c(1,2,3,9,14,27,5,21,pi)

Print the vector 'myvec'

myvec

[1] 1.000000 2.000000 3.000000 9.000000 14.000000 27.000000 5.000000

[8] 21.000000 3.141593

Calculate summary statistics

summary(myvec)

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.00 3.00 5.00 9.46 14.00 27.00

To distinguish between the code and the output that is produced, a command that we
typed into R is displayed �ush against the left margin. The output from that command is
preceded by ##. Our comments are preceded by a single #. You can obtain the commands
and comments (without the output) for all code in �les ch01.R, ch02.R, etc., on the book
website (see page iv of the Preface for the website address).

1

2 Getting Started

1.1 Obtaining the Software

The R system is available for FREE download from the Comprehensive R Archive Network
at

https://cran.r-project.org/.

If R is not already installed on your system, download the package now. Click on the link for
the operating system of your choice: Windows, Mac, or Linux. Install the package (you can
do this for Windows or Mac by double-clicking on the icon after the download is �nished).
You should be able to click �Next� for all dialogs to �nish the installation.

Good! Now you can use R directly or through the integrated development environment
RStudio. RStudio adds a larger number of statistical packages to R and provides a user-
friendly graphical interface. You can obtain RStudio free of charge for Windows, Mac, or
Linux from https://rstudio.com. As with R, you can install RStudio by double-clicking
on the icon after download and can click on �Next� for all dialogs. If you have any trouble,
numerous videos are available online that demonstrate the installation of R and RStudio.

Figure 1.1 is a screenshot of RStudio. It shows four windows:

1. Upper-left: Program editor window, where you will write code and programs. You can
save the contents of this window, so you have a record of what you have done.

2. Lower-left: R console, where you will run R commands.
3. Upper-right: The Workspace tells you what you have created so far. Environment lists

the variables in memory. History lists the commands you have submitted in the R
console. Tutorial provides a tutorial for using R and RStudio.

4. Lower-right: Displays the �les in the current working directory, plots you have produced,
packages installed and whether they are loaded, and help for commands.

How to get things done in RStudio.

1. Work out commands in the program editor window, and then either copy/paste the
commands into the console, or use Ctrl-Enter or click the icon �Run� to submit the
current line or selection. You can open a new program editor window by clicking �R
Script� under the �New File� icon in the upper left of the main RStudio toolbar (this
can also be accessed through the File menu).

2. The program editor will keep a history of what you have done.
3. Make comments using # to help your future self recall what you did and why you did it.

Updating R and RStudio. If you already have R and RStudio installed, you may update
them to the latest versions. You can either reinstall the latest version or (only for Windows)
use the updateR function from contributed package installr. To update RStudio, select
�Check for Updates� from the Help menu within the program.

1.2 Installing R packages

The base R software contains few functions for analyzing survey data. In this book we rely
on user-contributed packages that provide functions for selecting probability samples, and
for graphing and analyzing survey data.

https://cran.r-project.org/
https://rstudio.com

Installing R packages 3

FIGURE 1.1: Screenshot of Rstudio

The main contributed packages used in this book are:

� survey (Lumley, 2020): Used to calculate statistics from complex surveys with functions
such as svydesign, svymean, and svytotal.

� sampling (Tillé and Matei, 2021): Used to select probability samples. The sampling

package will also analyze data from complex samples, although in this book we primarily
use the survey package for data analysis.

� SDAResources (Lu and Lohr, 2021): Includes all the data sets of SDA in R format and
additional functions for analyzing and graphing probability samples.

Install these packages now. You only need to install each package once for a particular
version of R (you may need to reinstall packages if you update to a new R version).

Copy and paste the following code into the R Console window and press [Enter]. Each
package will be downloaded (along with package dependencies) and installed.

install.packages("survey")

install.packages("sampling")

install.packages("SDAResources")

You must load a package into the program with the library function each time you open a
new R session. When they are needed, run (in this order):

library(survey)

library(sampling)

library(SDAResources)

4 Getting Started

1.3 R Basics

Getting help. There are many sources for help about R and RStudio. The web pages
https://www.r-project.org/ and https://education.rstudio.com/ contain links to
online tutorials and resources. For those who prefer a printed book, Horton and Kleinman
(2015), Horton et al. (2018), Ismay and Kennedy (2019), and Kabaco� (2021) provide useful
introductions to getting started with R and RStudio. The book by Wickham (2019) is an
advanced guide to R.

The help function in R provides access to the documentation pages for R functions, data
sets, and other objects. For example, If you want to get help with the function mean, type
help("mean"), or type help.search("mean") into the R console to search the help system
for documentation matching the given character string �mean�. You can also display the
code of a function (for some packages) by typing its name. For example, typing ls in the R
console window displays the code for the function ls, which lists the objects in the directory;
to list the objects, type ls().

For another example, suppose that you have not installed package survey yet, and
you want to get help with the function svymean. Typing help("svymean") will show
that �No documentation for `svymean' in speci�ed packages and libraries�. Typing
help.search("svymean") will direct you to the page with information that function
svymean is under package survey.

To �nd help for a package, for example, package survey, type help(package = "survey").
To �nd help for data agpop, type help("agpop").

In RStudio, you can �nd help on a function by typing the function name into the search
window of the Help menu.

Frequently used commands. Tables 1.1 and 1.2 list frequently used operators, functions,
and commands on vectors, matrices, and data frames. Note that R is case-sensitive: myvar,
MYVAR, and Myvar are all di�erent variables.

The R functions we use to analyze survey data operate on data frames. A data frame is
like a matrix, where each row contains the data values for an observation and each column
contains the data values for one variable. You can turn a matrix A into a data frame with
the as.data.frame function.

A<-matrix(0,2,2) # create a 2*2 matrix with all 0s

A[1,1]<-2

A[1,2]<-5

A[2,1]<-1

A[2,2]<-4

colnames(A)<-c("y","x")

A

y x

[1,] 2 5

[2,] 1 4

A.data <- as.data.frame(A) # turn matrix A into a data frame A.data

A.data

y x

1 2 5

2 1 4

https://www.r-project.org/
https://education.rstudio.com/

Reading Data into R 5

TABLE 1.1
Frequently used commands in R: Vectors, matrices, and mathematical functions.

Command Purpose Example Output

Assignment and Comment
<- Assign value a <- 1 1
= Assign value b = 1 + 2 3
Comment # My comment
Mathematical Functions

+ Addition 1 + 1 2
− Subtraction 1− 1 0
* Scalar multiplication 1*2 2
/ Division 1/2 0.5
∧ Exponentiation 2∧3 8
abs Absolute value abs(−3) 3
exp Exponential function exp(1) 2.718282
log Natural log log(2.718282) 1
sqrt Square root sqrt(4) 2
Vector/Matrix Operations
c Combine values vec1<-c(1,2,3) 1 2 3

into vector vec2<-c(4,5,6) 4 5 6
seq Sequence seq(from=1,to=10,by=2) 1 3 5 7 9

or, when by=1 1:5 1 2 3 4 5
sequence Vector of sequences sequence(vec1) 1 1 2 1 2 3
rep Replicate rep(1,4) 1 1 1 1

vec3<-rep(vec1,2) 1 2 3 1 2 3

cbind Column bind mat1<-cbind(vec1,vec2)
1 4
2 5
3 6

rbind Row bind mat2<-rbind(vec1,vec2)
1 2 3
4 5 6

length Length of vector length(vec1) 3
sort Sort a vector sort(vec3) 1 1 2 2 3 3
order Indices to sort a vector order(vec3) 1 4 2 5 3 6
unique List unique objects unique(vec3) 1 2 3
sum Summation sum(c(1,2,4)) 7
prod Product prod(c(1,2,4)) 8

%*% Matrix multiplication mat1 %*% mat2
17 22 27
22 29 36
27 36 45

t Transpose t(mat1)
1 2 3
4 5 6

1.4 Reading Data into R

The �rst step for using R to analyze data from a survey is to read the data into the system.
There are four basic ways to do this.

Enter the data directly into R. You can use the c function to enter a vector directly from
the R console. Type

myvec <- c(5,2,8,4)

6 Getting Started

TABLE 1.2
Frequently used commands in R: Extracting data elements and computing statistics.

Command Purpose Example Output

Working with Data
as.data.frame Create data frame A<-as.data.frame(mat1)

vec1 vec2
1 4
2 5
3 6

names(data) Extract variable names names(A) "vec1" "vec2"
$ Extract a column by name A$vec1 1 2 3
[, j] Extract a column by number A[,1] 1 2 3
[i ,] Extract a row by number A[1,] 1 4
nrow(data) # of rows in data nrow(A) 3
ncol(data) # of columns in data ncol(A) 2

head(data,n=i) First i rows head(A,n=2)
1 4
2 5

tail(data, n=i) Last i rows tail(A,n=2)
2 5
3 6

Statistics
max/min Maximum/Minimum of max(vec1) 3

a vector or matrix min(mat1) 1
quantile Calculate quantiles quantile(1:101,probs=c(0,0.25,0.5))

0% 25% 50%
1 26 51

mean Sample mean mean(vec1) 2
var Sample variance var(vec1) 1
cor Correlation of two vectors cor(vec1,vec2) 1

to store the vector of values (5, 2, 8, 4) in variable myvec. You can also use the data.frame
function to enter data into a data frame from the R console:

read matrix into data frame "mydata"

mydata <- data.frame(x = c(1,4,3,2), y = c(2,4,2,4), z = c(3,7,2,3))

show the data

mydata

x y z

1 1 2 3

2 4 4 7

3 3 2 2

4 2 4 3

Read data from a comma-delimited (.csv) or text �le. With a longer data set, it is often
more convenient to store the data in an external �le and then read it in through the data
step. The following code will read data in a text �le from a web page.

ex.data <- read.table(file="https://math.unm.edu/**/**.txt", header=T)

Use header=T if there is a header

ex.data # print the data

Suppose the folder on your computer containing the data sets is C:\MyFilePath\. To read
a csv �le, use read.csv. Note that to specify a �le path in R, you should replace each
backslash `\' with either a forward slash `/' or a double backslash `\\'.

ex.data <- read.csv(file="C:/MyFilePath/exampledata.csv",header=F)

Saving Output 7

header=F is the default

colnames(ex.data) <- c("y","x1","x2") #add column names

ex.data

Import data with RStudio. Use the �Import Dataset� dropdown from the �Environment�
window (top right panel in RStudio). The import formats are grouped into 3 categories:
text data, spreadsheet data and statistical data.

� import data from webpage

Select �From Text (readr)�, enter URL address, and click �Import�.

� import data from local �le

Select �From Text (base)� or �From Excel�, select a local �le and click �Import�

Luraschi (2021) gives a detailed description of how to import data in RStudio.

Read R data sets. This is the easiest method of all�provided someone else has al-
ready saved the �le as an R data set. All the data sets in SDA are loaded in R package
SDAResources. Here is an example to read data agpop.

library(SDAResources)

data(agpop) # Load the agpop data set

N <- nrow(agpop)

N

[1] 3078

head(agpop)

county state acres92 acres87 acres82 farms92 farms87 farms82

1 ALEUTIAN ISLANDS AREA AK 683533 726596 764514 26 27 28

2 ANCHORAGE AREA AK 47146 59297 256709 217 245 223

3 FAIRBANKS AREA AK 141338 154913 204568 168 175 170

4 JUNEAU AREA AK 210 214 127 8 8 12

5 KENAI PENINSULA AREA AK 50810 85712 98035 93 119 137

6 AUTAUGA COUNTY AL 107259 116050 145044 322 388 453

largef92 largef87 largef82 smallf92 smallf87 smallf82 region

1 14 16 20 6 4 1 W

2 9 10 11 41 52 38 W

3 25 28 21 12 18 25 W

4 0 0 0 5 4 8 W

5 9 18 17 12 18 19 W

6 25 32 32 8 19 17 S

1.5 Saving Output

Section 1.4 gave four methods for reading data into R. How do you save the output from
the program? Here are several methods that will allow you to save the output or paste it
into another document. Section 1.6 will show you how to incorporate R output directly into
a LATEX document.

Use the sink function to save console input and output. First, use sink to create a �le
in local drive. Next, run the R program. Last, close sink. Below is an example.

sink(file = "C:/MyOutputPath/output.txt",append = TRUE,

type = c("output","message"))

8 Getting Started

cat("boot.samples", sep="\n") #add name of the R output

#R program

set.seed (244)

B <- 6

n <- 5

boot.samples <- matrix(sample(agpop$acres92, size=B*n, replace=TRUE),B,n)

boot.samples

sink(file = NULL) #close sink

The �le C:\MyOutputPath\output.txt in the local drive appears as follows:

boot.samples

[,1] [,2] [,3] [,4] [,5]

[1,] 831 1449976 98142 161724 138986

[2,] 86856 215222 245681 576468 80905

[3,] 96474 45214 51836 284888 302352

[4,] 137426 17392 141260 117768 177189

[5,] 342653 338529 73654 118291 297984

[6,] 50319 2531 223429 710546 216638

In some cases you may also want to save the R commands, so you can look at them later.
You may use the function source to read in an R program with option echo=TRUE to include
the R code, so that R output together with R code will be saved in output.txt.

sink(file ="MyOutputPath/output.txt",append = TRUE,

type = c("output","message"))

source("MyInputFilePath/homework3.R", echo=TRUE)

sink(file = NULL)

Convert a matrix to LATEX code in table format. In case you want to include a matrix as
part of a LATEX document, there is an easy way to convert the matrix to LATEX code in table
format. The following code, using the stargazer package, converts the matrix boot.samples
to a LATEX table.

save output as latex

library(stargazer)

set.seed (244)

B <- 6

n <- 5

boot.samples <- matrix(sample(agpop$acres92, size=B*n, replace=TRUE),B,n)

Now use stargazer to produce Latex commands for table

Add header=FALSE to omit the initial comments in the Latex code output.

stargazer(boot.samples, digits = 2,header=FALSE)

##

\begin{table}[!htbp] \centering

\caption{}

\label{}

\begin{tabular}{@{\extracolsep{5pt}} ccccc}

\\[-1.8ex]\hline

\hline \\[-1.8ex]

831 & $1,449,976$ & $98,142$ & $161,724$ & $138,986$ \\

$86,856$ & $215,222$ & $245,681$ & $576,468$ & $80,905$ \\

$96,474$ & $45,214$ & $51,836$ & $284,888$ & $302,352$ \\

$137,426$ & $17,392$ & $141,260$ & $117,768$ & $177,189$ \\

$342,653$ & $338,529$ & $73,654$ & $118,291$ & $297,984$ \\

$50,319$ & $2,531$ & $223,429$ & $710,546$ & $216,638$ \\

Saving Output 9

\hline \\[-1.8ex]

\end{tabular}

\end{table}

Saving graphs. R and RStudio both allow you to save a graph using menu options. In
standalone R, you can save a graph by choosing �Save as� from the File menu. In RStudio,
select the Export dropdown from the plot panel (lower right-panel):

Plots→ Export → Save as Image or Save as PDF.

Alternatively, you can specify �les to save the image using functions such as jpeg, png, and
pdf, which save the plot in an external �le with the designated format. All of these functions
have multiple options for sizing and formatting the graph. To save a graph as a pdf �le, for
example, �rst open the pdf �le, then create the plot, and then close the �le:

Open a pdf file

pdf("~/MyOutputPath/rplot.pdf")

Create a plot

boxplot(acres92/10^6 ~ region, xlab = "Region", ylab = "Millions of Acres",

data = agpop)

Close the pdf file

dev.off()

Or, to save as a jpeg �le,

save as jpeg file

jpeg("~/MyOutputPath/rplot.jpg",width=350,height=350)

boxplot(acres92/10^6 ~ region, xlab = "Region", ylab = "Millions of Acres",

data = agpop)

dev.off()

Saving a data set. You can use function write.table or write.csv to save a data set to an
external �le. In the following, we will use data classes to create a new dataset in a long
format called classeslong, and use write.csv to save the data in �le classeslong.csv.

read in data classes

data(classes)

change to a long format by creating a record for each student

create new data frame with each row repeated as many times as number of students

classeslong<-classes[rep(1:nrow(classes),times=classes$class_size),]

add column of student ids, goes from 1 to number of students in each class

classeslong$studentid <- sequence(classes$class_size)

nrow(classeslong)

[1] 647

head(classeslong)

class class_size studentid

1 1 44 1

1.1 1 44 2

1.2 1 44 3

1.3 1 44 4

1.4 1 44 5

1.5 1 44 6

you can save classeslong in your local drive (or other file path) using write.csv

write.csv(classeslong, file="~/classeslong.csv", row.names = FALSE)

10 Getting Started

1.6 Integrating R Output into LATEX Documents

The Sweave system within R allows you to embed R code and output within LATEX doc-
uments to generate a pdf �le that includes narrative, graphics, code (if needed), and the
results of the computations in R. The R package knitr serves as an engine for Sweave and
allows you to generate dynamic reports with reproducible research (that is, someone else
can produce the exact same results when given access to the data and code) using R. Help
for knitr is available on the web (https://yihui.org/knitr/) and in the book by Xie
(2015). We used the knitr package to produce this book.

Let's start with a simple example, using RStudio.

Step 1. Open a new Rnw script by clicking the �R Sweave� icon under the �New File� icon in
the upper left of the main RStudio toolbar. Your �rst Rnw �le will appear as in Figure 1.2.
Save the �le with extension Rnw�for example, you might name this �le test.Rnw.

FIGURE 1.2: Example of a Rnw �le

Step 2. Weave the Rnw �le using knitr. You will be asked to install package knitr if this
is the �rst time you have used it.
Click Tools → Global options → Sweave → Weave Rnw �les using → knitr.

Step 3. Click �Compile PDF� to generate a pdf �le. The �le test.pdf will appear in the
same directory as test.Rnw, along with the LATEX �le, log �le and other auxiliary �les.

Embedding R code within LATEX. Sweave allows you to embed R code within LATEX doc-
uments so you can incorporate statistical results in your pdf document. Type your LATEX
document in the program editor window in RStudio. To embed a �chunk� of R code in

https://yihui.org/knitr/

Integrating R Output into LATEX Documents 11

knitr, start with << ·· >>= (all on one line) and close with @. Below is an illustration
(we had to break the �rst line so it �t on the page, but you should leave it unbroken):

<<exercise0, echo=TRUE, size='footnotesize', include=TRUE, fig.width=6,

fig.height=5, out.width='0.80\\textwidth'>>=

Insert R code here!

x <- 1:10

y <- seq(from=20,to=2,by=-2)

x

y

x*y

cor(x,y)

End the chunk with an @

@

This example, which has label exercise0, includes the following options to customize the R
output.

echo = TRUE (print source code in document) or FALSE (do not print source code in
document).

size = font size of the code text, if echoed. Options include `normalsize,' `footnotesize,'
`large,' and other font sizes in LATEX.

include = TRUE if it is desired to include the chunk output in the document. If FALSE,
the output is not produced, but the R code is still executed and the plots are generated.

�g.width = �gure width in inches

�g.height = �gure height in inches

out.width = scaling �gures to �t on page (can be inches or cm, or relative to page size).
Here, the width is scaled to be 0.8 times the value of the textwidth in the LATEX docu-
ment.

To learn more about chunk options, please refer to https://yihui.org/knitr/options/

#chunk_options.

Here is what is displayed when we include the code for exercise0 in the document:
Insert R code here!

x <- 1:10

y <- seq(from=20,to=2,by=-2)

x

[1] 1 2 3 4 5 6 7 8 9 10

y

[1] 20 18 16 14 12 10 8 6 4 2

x*y

[1] 20 36 48 56 60 60 56 48 36 20

cor(x,y)

[1] -1

End the chunk with an @

Now, try a slightly more complicated example hw0.Rnw (included on the book webpage) to
see how to embed R chunks (including graphs) within latex, and compile it. You can see
the pdf document that is produced by the example in �le hw0.pdf.

Many excellent books are available for learning and using LATEX. The books by Talbot
(2012), Oetiker et al. (2021), and Wikibooks contributors (2021) may be downloaded free
of charge.

https://yihui.org/knitr/options/#chunk_options
https://yihui.org/knitr/options/#chunk_options

12 Getting Started

1.7 Missing Data

Many survey data sets have observations that are missing. For example, the data �le
agpop.csv, from which the sample used in Chapter 2 is drawn, has missing data. As is
common in data sets intended to be readable by multiple programs, a designated number is
used to indicate that the data value is missing. In this data set, the value �−99� indicates
that the data value is missing. This value must be recoded to the R symbol that indicates
missing data before performing calculations. Otherwise, if, say, you want to calculate the
mean of a variable, the procedure will treat all the �−99�s as if they were observations with
the value −99 instead of missing values�this could lead to embarrassing results such as
computing a negative value for the average number of acres per farm.

Missing values in R are coded by the symbol NA. If your data set has missing values that
are coded as a number (such as −99), you should recode those to NA before starting your
analysis. Missing data in the R data sets in package SDAResources (Lu and Lohr, 2021)
have been recoded to NA, but the data sets for SDA that are in .csv format use other
codes, which are described in Appendix A. If you want to read the data set agpop.csv into
R from the .csv (instead of loading it from SDAResources), you should recode the missing
data as follows:

agpop1 <- read.csv(file="~/agpop.csv",header=TRUE)

some variables have missing values, coded as -99

sum(agpop1==-99) # 59 missing values altogether

[1] 59

look at a row with missing data

agpop1[200,]

county state acres92 acres87 acres82 farms92 farms87 farms82

200 SAN FRANCISCO COUNTY CA 7 -99 19 6 5 7

largef92 largef87 largef82 smallf92 smallf87 smallf82 region

200 0 0 0 6 5 7 W

agpop2 <- agpop1

recode missing values to NA

agpop2[agpop1==-99] <- NA

look at row with missing data again

agpop2[200,]

county state acres92 acres87 acres82 farms92 farms87 farms82

200 SAN FRANCISCO COUNTY CA 7 NA 19 6 5 7

largef92 largef87 largef82 smallf92 smallf87 smallf82 region

200 0 0 0 6 5 7 W

count missing values in recoded data

sum(is.na(agpop2))

[1] 59

Di�erent functions in R treat missing data in di�erent ways. For many functions, the treat-
ment of missing values can be speci�ed using the na.rm option. The sum function, for
example, will compute the sum of the non-missing values in a vector if you include the
option na.rm=TRUE; otherwise, it returns NA if there are missing values.

sum(agpop2$acres87)

[1] NA

sum(agpop2$acres87,na.rm=TRUE)

[1] 963466689

Summary, Tips, and Warnings 13

1.8 Summary, Tips, and Warnings

Tables 1.1 and 1.2 describe commonly used R functions for working with data. Table 1.3
lists other functions used in this chapter to read and write data. The base, stats, and
utils packages are automatically included when you install R on your system.

TABLE 1.3
Functions used for Chapter 1.

Function Package Usage

library base Load an R package that you have installed on your
system. You need to load a package each time you start
a new R session.

sink base Send R output to an external �le
source base Read and execute R commands from an external �le
install.packages utils Install an R package
data utils Load a speci�ed data set
read.table utils Read data from an external �le into a data frame. You

can specify the character that separates �elds, row and
column names, and whether the �rst line of the �le
gives the variable names.

read.csv utils This function is like read.table for an external �le that
is in comma-delimited (.csv) format.

write.table utils Write an R data set to an external �le
write.csv utils Write an R data set to an external �le in .csv format

Tips and Warnings

� R commands can be tricky, and sometimes the result of using functions on vectors and
matrices may not be what you were expecting. When creating new variables or matrices,
print out the �rst few rows or compute summary statistics to check that you have created
the object you want.

� Use vector and matrix commands whenever possible when performing calculations with
R. Although we occasionally use for loops in this book where this will make the code
easier to understand, in general it is much more e�cient to perform operations on
vectors.

� Many surveys contain missing data. Check how these are coded in the data set, and
recode missing values to NA before starting your analysis.

� Sometimes multiple packages contain functions or data sets with the same names. For
example, the sampling and survival packages (the survival package is loaded when
you load the survey package) both have functions named strata and cluster. If you
load sampling and then load survival, you will get the function from the survival

package when you call strata�the function strata from the sampling package is masked.
To avoid this problem, load the sampling package after loading the survival package,
or access the function from sampling by typing sampling::strata. For this book we
suggest loading the packages in the order given in Section 1.2.

2

Simple Probability Samples

Data from a simple random sample (SRS) can be analyzed using R functions that are
designed for data that can be considered as independent and identically distributed, and an
SRS can be selected using the R sample function. For other types of probability samples,
however, you either need to write your own function to account for the survey design, or
employ functions that have been written by other R users in contributed packages. This
chapter reviews how to select a sample and compute estimates from an SRS using functions
in base R. It also introduces you to the srswor and srswr functions from the sampling

package (Tillé and Matei, 2021) to select an SRS, with or without replacement; and the
svydesign, svymean, and svytotal functions from the survey package (Lumley, 2020) to
calculate the statistics.

All code in this chapter can be found in �le ch02.R on the book website (see the Preface
for the website address). The data sets are available from the book website and in the R
package SDAResources (Lu and Lohr, 2021). The variables in the data sets are described
in Appendix A.

In this and future chapters, load the following three packages before starting the computa-
tions. You installed these packages in Chapter 1. In the R console, type:

library(survey)

library(sampling)

library(SDAResources)

Before calculating statistics, let's �rst look at how to use R functions to select an SRS from
a population.

2.1 Selecting a Simple Random Sample

Example 2.5 of SDA. Selecting an SRS from a population. SDA used a random number
table to select an SRS of size 4 from a population of size 10. There are several options for
selecting an SRS in R.

Using the sample function in base R. Base R contains the function sample that can
be used to select an SRS. We can select an SRS (without replacement) of size 4 from a
population of size 10 as follows:

Set the seed for random number generation

set.seed(108742)

Select an SRS of size n=4 from a population of size N=10 without replacement

srs4 <- sample(1:10, 4, replace = FALSE)

Print the sample to see

srs4

14

Selecting a Simple Random Sample 15

[1] 1 8 9 5

The �rst line of the code uses the function

set.seed(seed)

where seed is an integer that you supply to the function. If you want to be able to reproduce
your sample later, call set.seed immediately before calling the function that generates a
sample, and record the value of seed that you used. You will then get the same sample
the next time you call the sample function with the same value of seed.1 If you do not call
set.seed during your R session, the starting point will be generated by the program.

For this example, the sample function provided a sample containing units 1, 8, 9, and 5.
Running the sample function again, without using set.seed, gives a di�erent sample. But
when we reset the seed to the original value of 108742, we obtain the �rst sample {1, 8, 9, 5}
again.

Run again, without setting a new seed.

sample(1:10, 4, replace = FALSE)

[1] 9 7 3 10

Now go back to original seed.

set.seed(108742)

sample(1:10, 4, replace = FALSE)

[1] 1 8 9 5

The sample function is called with

sample(x,size,replace=FALSE)

to select an SRS without replacement of size observations from the population in x. We
sample 4 observations from the population in the vector [1, 2, . . . , 10].

The sample function will also select a simple random sample with replacement by calling it
with replace = TRUE. Unit �9� appears twice in the following with-replacement sample.

Using the sample function to select an SRS with replacement

set.seed(101)

srswr4 <- sample(1:10, 4, replace = TRUE)

srswr4

[1] 9 9 7 1

Using the srswor or srswr function from the sampling package. An alternative is to use
function srswor or srswr to select an SRS without or with replacement, respectively. These
are in the sampling package (Tillé and Matei, 2021), which you installed in Chapter 1. Now
load the package and select a sample by calling:

srswor(n,N)

where n is the sample size and N is the population size.

Load the sampling package if you have not already done so.

library(sampling)

set.seed(1329)

Select an SRS of size n=4 from a population of size N=10 without replacement.

1Samples generated by the sample function in R versions 3.6.0 and later, however, will di�er from samples

generated by earlier versions of R because the sample function was revised in version 3.6.0 to �x a bug.

16 Simple Probability Samples

s1<-srswor(4,10)

List the units in the sample (the population units having s1=1).

s1

[1] 0 0 1 1 1 0 0 0 1 0

(1:10)[s1==1]

[1] 3 4 5 9

The function srswor returns of vector of length N , with ones in the positions of the units
selected for the sample. The sample in s1 consists of units 3, 4, 5, and 9.

Function srswr for drawing a with-replacement sample is similar, but returns a vector
containing the number of times each unit is in the sample.

Select an SRS of size n=4 from a population of size N=10 with replacement.

set.seed(35882)

s2<-srswr(4,10)

the selected units are 2 and 9

s2

[1] 0 2 0 0 0 0 0 0 2 0

(1:10)[s2!=0]

[1] 2 9

number of replicates, units 2 and 9 both appear twice

s2[s2!=0]

[1] 2 2

can use the getdata function to extract the sample from data frame with population

popdf<-data.frame(popid=1:10)

getdata(popdf,s2)

[1] 2 2 9 9

The getdata function in the sampling package extracts the sample from the population
listing. For this example, since units 2 and 9 are each selected twice, getdata repeats each
of these units twice.

Note that the sample function has the sample size as the second argument, while the srswor
and srswr functions have the sample size as the �rst argument. When you type srswr(4,10),
R assigns the values to variables in the order given in the function de�nition (see Usage
in the help �le for the function). If you want to assign values in a di�erent order (or even
if you want to use the same order, but want to be able to read the call easily), name the
variables when calling the function. All of the following are equivalent:

Call a function using variable names

set.seed(35882)

srswr(4,10)

[1] 0 2 0 0 0 0 0 0 2 0

set.seed(35882)

srswr(n=4,N=10)

[1] 0 2 0 0 0 0 0 0 2 0

set.seed(35882)

srswr(N=10,n=4)

[1] 0 2 0 0 0 0 0 0 2 0

Example 2.6 of SDA. In SDA, the sample in agsrs.csv was selected from the population
agpop.csv using random numbers generated in a spreadsheet. In the following, we show
how to use R code to select a di�erent SRS of size 300 from the 3078 counties in data set
agpop. The function getdata is used to extract the sampled units from the population data,
and the �rst 6 observations are printed.

Computing Statistics from an SRS 17

Select a different sample of size 300 from agpop

Load the SDAResources package containing all the data in SDA book

library(SDAResources) # we comment this since we already loaded the package

data(agpop)

N <- nrow(agpop)

N #3078 observations

[1] 3078

Select an SRS of size n=300 from agpop

set.seed(8126834)

index <- srswor(300,N)

each unit k is associated with index 1 or 0, with 1 indicating selection

index[1:10]

[1] 0 0 0 1 0 0 0 0 0 0

agsrs2 is an SRS with size 300 selected from agpop

extract the sampled units from the data frame containing the population

agsrs2 <- getdata(agpop,index)

agsrs2 <- agpop[(1:N)[index==1],] # alternative way to extract the sampled units

head(agsrs2)

county state acres92 acres87 acres82 farms92 farms87 farms82

4 JUNEAU AREA AK 210 214 127 8 8 12

30 DE KALB COUNTY AL 210733 213440 221502 1894 2047 2228

38 HALE COUNTY AL 167583 154581 179618 382 441 481

46 LEE COUNTY AL 67962 79836 100949 336 402 407

50 MADISON COUNTY AL 224370 235478 292873 871 977 1101

62 RUSSELL COUNTY AL 112620 143568 141048 213 276 314

largef92 largef87 largef82 smallf92 smallf87 smallf82 region

4 0 0 0 5 4 8 W

30 13 5 6 114 133 168 S

38 38 33 39 12 22 17 S

46 10 10 20 15 22 20 S

50 59 59 61 46 76 89 S

62 25 30 33 14 14 25 S

The functions sample, srswor, and srswr select a sample but do not provide sampling
weights. After drawing the sample, you need to create a variable of sampling weights for
the sampled units. For agsrs2, the weight variable sampwt has the value 3078/300 for all
units.

Create the variable of sampling weights

n <- nrow(agsrs2)

agsrs2$sampwt <- rep(3078/n,n)

Check that the weights sum to N

sum(agsrs2$sampwt)

[1] 3078

2.2 Computing Statistics from an SRS

In this section, we look at two ways of computing estimates from an SRS: by using standard
functions in R to calculate estimates from the formulas, and by using functions in the survey
package. We shall use the survey package to calculate estimates for the other chapters of
this book, but show how to compute estimates for an SRS using the formulas so you can

18 Simple Probability Samples

see that the two methods give the same numbers. Since R is a highly �exible language, you
can also write your own functions to compute estimates using the formulas.

Examples 2.6, 2.7 and 2.11 of SDA. This section analyzes variables in data set agsrs.csv,
described in Example 2.5 of SDA and in Appendix A of this book. The primary response
variable for these examples is acres92 (acreage devoted to farms in 1992).

First, we draw a histogram of the variable acres92, shown in Figure 2.1. The optional
argument breaks=20 tells R to use 20 bins for the histogram. The arguments col (speci�es
color of bars), xlab (gives label for the x-axis), and main (speci�es the title for the graph)
arguments are also optional, but make the picture look nicer.

Draw a histogram

hist(agsrs$acres92,breaks=20,col="gray",

xlab="Acres devoted to farms, 1992",

main="Histogram: Number of acres devoted to farms, 1992")

Histogram: Number of acres devoted to farms, 1992

Acres devoted to farms, 1992

F
re

qu
en

cy

0 500000 1000000 1500000 2000000

0
20

40
60

80

FIGURE 2.1: Histogram of Farm Acreage in 1992 (data agsrs)

Using the formulas in SDA. Statistics from an SRS can be computed using functions
supplied in the base R package with the formulas in SDA. Functions such as t.test will
compute con�dence intervals without a �nite population correction (fpc).

Base R functions such as t.test will calculate statistics for an SRS,

but without the fpc.

t.test(agsrs$acres92)

##

One Sample t-test

##

data: agsrs$acres92

t = 14.975, df = 299, p-value < 2.2e-16

alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:

Computing Statistics from an SRS 19

258749.6 337044.5

sample estimates:

mean of x

297897

The con�dence interval from the t.test function is wider than that in Example 2.11 of SDA,
however. Standard errors and con�dence intervals that incorporate the fpc can be calculated
directly with the formulas. If you are familiar with writing functions in R, you could also
write your own function to do these calculations.

Calculate the statistics by direct formula

n <- length(agsrs$acres92)

ybar <- mean(agsrs$acres92)

ybar

[1] 297897

hatvybar<-(1-n/3078)*var(agsrs$acres92)/n

seybar<-sqrt(hatvybar)

seybar

[1] 18898.43

Calculate confidence interval by direct formula using t distribution

Mean_CI <- c(ybar - qt(.975, n-1)*seybar, ybar + qt(.975, n-1)*seybar)

names(Mean_CI) <- c("lower", "upper")

Mean_CI

lower upper

260706.3 335087.8

To obtain estimates for the population total,

multiply each of ybar, seybar, and Mean_CI by N = 3078

seybar*3078

[1] 58169381

Mean_CI*3078

lower upper

802453859 1031400361

Calculate coefficient of variation of mean

seybar/ybar

[1] 0.06343948

Using functions in the survey package. Most of the statistics discussed in Chapter 2 can
be computed in R using functions svydesign, svymean and svytotal from the survey package
(Lumley, 2020).

The data set agsrs does not contain a variable of sampling weights, so we need to create
one. Also de�ne the variable lt200k, which takes on value 1 if acres92 < 200,000 and the
value 0 if acres92 ≥ 200,000. The mean of variable lt200k estimates the proportion of farms
that have fewer than 200,000 acres.

Create the variable of sampling weights

n <- nrow(agsrs)

agsrs$sampwt <- rep(3078/n,n)

Create variable lt200k

agsrs$lt200k <- rep(0,n)

agsrs$lt200k[agsrs$acres92 < 200000] <- 1

look at the first 10 observations with column 3 (acres92) and column 17 (lt200k)

agsrs[1:10,c(3,17)]

acres92 lt200k

1 175209 1

2 138135 1

20 Simple Probability Samples

3 56102 1

4 199117 1

5 89228 1

6 96194 1

7 57253 1

8 210692 0

9 78498 1

10 219444 0

Now specify the survey design with function svydesign. The function has numerous optional
arguments, so we call it using the variable names in the arguments. The arguments used
for an SRS are:

id In general survey designs, id speci�es the cluster identi�ers. For an SRS we use id = �1,
which tells svydesign that there is no clustering. The tilde (�) is used by R to specify a
formula, and the syntax for formulas will be discussed in later chapters.

weights Names the variable in the data frame that contains the sampling weights. The
weights argument can actually be omitted for calculating means in an SRS (the function
will calculate weights from the fpc argument if it is supplied, or set all weights equal to
1 if neither weights nor fpc is included), but it is good to get in the habit of using a
weight variable so we include it here.

fpc Information for calculating the �nite population correction. In an SRS, we can use
fpc = rep(N, n) with N the population size and n the sample size. For agsrs, N =
3078, n = 300, and fpc = rep(3078, 300).

data Name of the data frame containing the variables to be analyzed.

If you did not load the survey package at the beginning of the chapter, do it now

library(survey)

Specify the survey design.

This is an SRS, so the only design features needed are the weights

or information used to calculate the fpc.

dsrs <- svydesign(id = ~1, weights = ~sampwt, fpc = rep(3078,300), data = agsrs)

dsrs

Independent Sampling design

svydesign(id = ~1, weights = ~sampwt, fpc = rep(3078, 300), data = agsrs)

When we print dsrs, we are told that this is an �Independent Sampling design��that is,
there is no strati�cation or clustering. We will come back to the function svydesign in later
chapters as we encounter other survey designs.

Now that the survey design has been speci�ed, we can calculate estimated means and totals
using the svymean and svytotal functions. For each of these, the �rst argument contains
the name(s) of the variable(s) to be analyzed, and the second argument is the name of
the design object that was created by svydesign. The function con�nt will construct a 95%
con�dence interval (you can specify other con�dence levels with the optional level argument
but we omit this since we always use 95% intervals in this book) using a t distribution with
df degrees of freedom. If you do not specify the df, a normal distribution will be used for
the con�dence intervals. In an SRS, the df for the t distribution is n − 1, where n is the
sample size.

Calculate the mean for acres92 and its standard error using the svymean function.

smean <- svymean(~acres92,dsrs)

smean

Computing Statistics from an SRS 21

mean SE

acres92 297897 18898

Use the confint function to compute a 95% confidence interval from

the information in smean, df = n-1 = 300-1 = 299

confint(smean, df=299)

2.5 % 97.5 %

acres92 260706.3 335087.8

Repeat these steps with the svytotal function to obtain estimated totals.

stotal <- svytotal(~acres92,dsrs)

stotal

total SE

acres92 916927110 58169381

confint(stotal, df=299)

2.5 % 97.5 %

acres92 802453859 1031400361

Calculate the CV of the mean

SE(smean)/coef(smean)

acres92

acres92 0.06343948

or

smean<-as.data.frame(smean)

smean[[2]]/smean[[1]]

[1] 0.06343948

You can analyze multiple variables at a time by putting them in a formula. The following
code estimates the population means for variables acres92 and lt200k.

Estimate population means for multiple variables

agsrs_means <- svymean(~acres92+lt200k,dsrs)

agsrs_means

mean SE

acres92 297897.05 18898.4344

lt200k 0.51 0.0275

confint(agsrs_means, df=299)

2.5 % 97.5 %

acres92 2.607063e+05 3.350878e+05

lt200k 4.559508e-01 5.640492e-01

Estimating proportions from an SRS. For a binary numeric variable (taking on values
0 or 1), the estimated proportion is the mean of the variable, and the proportion of the
population having lt200k = 1 is the mean of variable lt200k. From the above output, we can
see that the value of p̂ = 0.51 is the estimated proportion where lt200k takes on the value
1. The standard error is 0.0275 and a 95% con�dence interval of p is [0.456, 0.564].

Sometimes you want to estimate the proportion of the population that falls in each of
multiple categories. The variable region in the agsrs data describes the census region for
each county in the sample, and takes on the values �NE,� �NC,� �S,� and �W�. Running
svymean with the variable region gives the estimated proportion in each category.

Analyzing a categorical variable that is coded as characters

First, display the category names and counts

table(agsrs$region)

##

NC NE S W

107 24 130 39

Find the estimated proportions in each category

22 Simple Probability Samples

region_prop <- svymean(~region,dsrs)

region_prop

mean SE

regionNC 0.35667 0.0263

regionNE 0.08000 0.0149

regionS 0.43333 0.0272

regionW 0.13000 0.0185

confint(region_prop,df=299)

2.5 % 97.5 %

regionNC 0.30487557 0.4084578

regionNE 0.05066780 0.1093322

regionS 0.37975605 0.4869106

regionW 0.09363889 0.1663611

region_total <- svytotal(~region,dsrs)

region_total

total SE

regionNC 1097.82 81.005

regionNE 246.24 45.878

regionS 1333.80 83.799

regionW 400.14 56.872

confint(region_total,df=299)

2.5 % 97.5 %

regionNC 938.4070 1257.2330

regionNE 155.9555 336.5245

regionS 1168.8891 1498.7109

regionW 288.2205 512.0595

Numeric and categorical variables. Numeric variables are variables for which you want to
calculate statistics such as means (for example, acres92 is a numeric variable). Categorical
variables are those for which the values represent categories. Region is a categorical variable.
We want to estimate the proportion of the population in each region, but we cannot calculate
an �average� of region. Here, region is automatically recognized as a categorical variable
because it contains characters other than numbers.

Some surveys code categories as numbers; be careful to treat such variables as categorical
rather than numeric. For example, a survey variable haircolor might take values 1�6, where
1 represents black, 2 represents brown, 3 represents blond, 4 represents red, 5 represents
bald, and 6 represents other. You can calculate the mean for the variable haircolor, but it
has no meaning. If you want to estimate the population proportion with each hair color, you
can either (1) de�ne binary variables for each category, for example redhair = 1 if haircolor
= 4 and 0 otherwise and �nd the mean of each variable, or (2) declare the variable haircolor
to be categorical.

In R, you specify that a variable is categorical with the factor function. You can either
declare the variable to be a factor variable in the data set, or in the function call of svymean.

Analyzing a categorical variable that is coded as numbers

First, analyze lt200k as a numeric variable. This gives the mean of variable

lt200k, which is the proportion with lt200k = 1.

svymean(~lt200k,dsrs)

mean SE

lt200k 0.51 0.0275

Now, analyze lt200k as a factor variable. This gives the proportion

in each category.

svymean(~factor(lt200k),dsrs)

Additional Code for Exercises 23

mean SE

factor(lt200k)0 0.49 0.0275

factor(lt200k)1 0.51 0.0275

2.3 Additional Code for Exercises

This section contains additional code and references to functions used in three of the exer-
cises in Chapter 2 of SDA. Some of these make use of advanced features of R; you should
skip this section if you are new to R.

Exercise 2.27 of SDA asks you to estimate the sampling distribution of ȳ by repeatedly
taking samples of size n with replacement from the sample in agsrs, where y is the variable
acres92. The following code constructs the histogram of the statistics from the bootstrap
replicates that is shown in Figure2.2. We use the apply function to calculate the mean value
of acres92 from each bootstrap replicate.

Calculating bootstrap means for Exercise 2.27 in SDA

set.seed (244)

B = 1000

n = length(agsrs$acres92)

boot.samples = matrix(sample(agsrs$acres92, size = B * n, replace = TRUE),B, n)

boot.statistics = apply(boot.samples, 1, mean)

hist(boot.statistics, main="Estimated Sampling Distribution of ybar",

xlab="Mean of acres92 from Bootstrap Replicate",

col="gray",border="white")

Estimated Sampling Distribution of ybar

Mean of acres92 from Bootstrap Replicate

F
re

qu
en

cy

240000 260000 280000 300000 320000 340000 360000

0
50

10
0

15
0

20
0

FIGURE 2.2: Histogram of means from bootstrap replicates

24 Simple Probability Samples

Exercise 2.32 of SDA. The function srswor1 in the sampling package will select an SRS
using the algorithm in this exercise.

Exercise 2.34 of SDA. The function binom.test will calculate Clopper-Pearson con�dence
intervals for an SRS. For complex surveys, the function svyciprop in the survey package
will calculate a variety of asymmetric con�dence intervals for a proportion (see Section 3.4).

2.4 Summary, Tips, and Warnings

Table 2.1 lists the major functions used in this chapter to select or analyze data from an
SRS. The base, graphics, stats, and utils packages are automatically included when you
install R on your system.

TABLE 2.1
Functions used for Chapter 2.

Function Package Usage

sample base Select a simple random sample with or without replace-
ment

mean base Calculate the mean of a vector
var base Calculate the variance of a vector
table base Compute the counts in each category of a vector
factor base Convert a vector to a factor object
set.seed base Initialize the seed for the random number generator
hist graphics Draw a histogram of data from an SRS
qt stats qt(.975,df) calculates the 0.975 quantile of a t distribu-

tion with the speci�ed df
t.test stats Calculates a t con�dence interval for an SRS (assumed

to be with-replacement)
con�nt stats Calculate con�dence intervals
data utils Loads the data set enclosed in parentheses; data() lists

the available data sets
srswor sampling Select a simple random sample without replacement
srswr sampling Select a simple random sample with replacement
getdata sampling Extract the sampled data from a data frame containing

the population units
svydesign survey Specify the survey design, for example, SRS
svymean survey Calculate mean and standard error of mean (if the vari-

able is numeric), or proportion in each category (if vari-
able is categorical)

svytotal survey Calculate total and standard error of total

Tips and Warnings

� If you want to be able to draw the same sample from a population at a later date, use
the set.seed function before calling the sample-generating function.

� Although the weight variable is optional in the svydesign function for an SRS, it is a
good practice to include it for computing estimates in svymean or svytotal. Most data
sets from complex surveys come with weights that must be used to compute estimates
correctly.

Summary, Tips, and Warnings 25

� When computing weights for an SRS, check that the sum of the weights equals the
population size.

� If you are analyzing categorical variables with the svymean or svytotal functions, make
sure to declare them to be factor variables. Otherwise, the functions will treat them as
numeric variables and calculate the mean instead of computing the proportion in each
category.

3

Strati�ed Sampling

In a strati�ed random sample, the population is divided into subgroups called strata. An
SRS is selected independently from each stratum. In this chapter, we look at methods
for allocating and selecting strati�ed random samples using functions in base R and the
sampling package (Tillé and Matei, 2021). We then discuss the usage of functions svydesign,
svymean, svytotal, and svyby from the survey package (Lumley, 2020) in a strati�ed random
sample.

All code in this chapter can be found in �le ch03.R on the book website. As always, load
the packages survey, sampling, and SDAResources before starting your work.

3.1 Allocation Methods

Data agpop contains a stratum variable region that describes the census region for each
county in the population, and takes on the values North Central (NC), Northwest (NE),
South (S) and West (W). The following code calculates the population counts (Nh) for the
variable region with the table function.

data(agpop) # load the data set

names(agpop) # list the variable names

[1] "county" "state" "acres92" "acres87" "acres82" "farms92"

[7] "farms87" "farms82" "largef92" "largef87" "largef82" "smallf92"

[13] "smallf87" "smallf82" "region"

head(agpop) # take a look at the first 6 obsns

county state acres92 acres87 acres82 farms92 farms87 farms82

1 ALEUTIAN ISLANDS AREA AK 683533 726596 764514 26 27 28

2 ANCHORAGE AREA AK 47146 59297 256709 217 245 223

3 FAIRBANKS AREA AK 141338 154913 204568 168 175 170

4 JUNEAU AREA AK 210 214 127 8 8 12

5 KENAI PENINSULA AREA AK 50810 85712 98035 93 119 137

6 AUTAUGA COUNTY AL 107259 116050 145044 322 388 453

largef92 largef87 largef82 smallf92 smallf87 smallf82 region

1 14 16 20 6 4 1 W

2 9 10 11 41 52 38 W

3 25 28 21 12 18 25 W

4 0 0 0 5 4 8 W

5 9 18 17 12 18 19 W

6 25 32 32 8 19 17 S

nrow(agpop) #number of rows, 3078

[1] 3078

unique(agpop$region) # take a look of the four regions, NC, NE, S, W

[1] "W" "S" "NE" "NC"

table(agpop$region) # number of counties in each stratum

26

Allocation Methods 27

##

NC NE S W

1054 220 1382 422

We can use the information about region to allocate a strati�ed sample.

Proportional allocation. With proportional allocation, the stratum sample sizes are pro-
portional to the population stratum sizes Nh. A proportional allocation is easy to calculate
in R; simply multiply Nh/N by the desired sample size. For example, region NC has 1054
counties, and the population has 3078 counties. For a sample with n = 300, proportional
allocation will select 300∗1054/3078 = 103 counties from region NC. The values in propalloc
are fractions, so we round these to the nearest integers to obtain the sample size.

popsize <- table(agpop$region)

propalloc <- 300*popsize/sum(popsize)

propalloc

##

NC NE S W

102.7290 21.4425 134.6979 41.1306

Round to nearest integer

propalloc_int <- round(propalloc)

propalloc_int

##

NC NE S W

103 21 135 41

sum(propalloc_int) # check that stratum sample sizes sum to 300

[1] 300

Neyman allocation. For Neyman allocation, you need to provide additional information
about the stratum variances. Sometimes you have information about a variable that is
related to key survey responses from the sampling frame, or sometimes you have information
on variances from a pilot study or from similar surveys that have been done. In other cases,
you may need to make a conjecture about the stratum variances.

In the following example, we assume that the survey planner does not have the true pop-
ulation variances available, and enter conjectures for the relative variances of the strata.
For example, the variance in the West is set at twice the variance for the South. Using the
popsize vector that was calculated in the previous code, we have:

stratvar <- c(1.1,0.8,1.0,2.0)

Make sure the stratum variances in stratvar are in same

order as the table in popsize

neymanalloc <- 300*(popsize*sqrt(stratvar))/sum(popsize*sqrt(stratvar))

neymanalloc

##

NC NE S W

101.07640 17.99204 126.36327 54.56828

neymanalloc_int <- round(neymanalloc)

neymanalloc_int

##

NC NE S W

101 18 126 55

sum(neymanalloc_int)

[1] 300

28 Strati�ed Sampling

Optimal allocation. Optimal allocation can be done similarly, by de�ning costs or relative
costs for sampling in each stratum.

relcost <- c(1.4,1.0,1.0,1.8)

Make sure the relative costs in relcost are in same

order as the table in popsize

optalloc <- 300*(popsize*sqrt(stratvar/relcost))/sum(popsize*sqrt(stratvar/relcost))

optalloc

##

NC NE S W

94.75776 19.95766 140.16833 45.11626

optalloc_int <- round(optalloc)

optalloc_int

##

NC NE S W

95 20 140 45

sum(optalloc_int)

[1] 300

Table 3.1 summarizes the results of these three allocation methods for the agpop popula-
tion. Of course, the Neyman and optimal allocations are only optimal under the assumed
variances and costs used in the calculations. If those variances or costs are wrong, then
these allocations will not be optimal for the variable of interest. And an allocation that is
optimal for one response variable may not be optimal for another.

TABLE 3.1
Proportional, Neyman, and optimal allocation in the four regions

Number of counties in stratum NC NE S W Total

Population 1054 220 1382 422 3078
Sample with proportional allocation 103 21 135 41 300
Sample with Neyman allocation 101 18 126 55 300
Sample with optimal allocation 95 20 140 45 300

Other allocation methods. The sample sizes speci�ed by the proportional, Neyman, and
optimal methods are just guidelines. You can set the stratum sample sizes to any values that
meet your research needs. For example, if you want to have high precision for comparing
stratum means, you may want to select the same number of observations from each stratum.

There are other functions in R that you can use for allocation with strati�ed data such
as functions strAlloc from the PracTools package (Valliant et al., 2020) and optiallo from
the optimStrat package (Bueno, 2020). The package SamplingStrata (Barcaroli, 2014;
Barcaroli et al., 2020) provides R functions for determining the optimal strati�cation and
allocation that will achieve predetermined precisions for multiple y variables. For example,
you can use the package to design a strati�cation that will ensure that the coe�cients of
variation for �ve key variables do not exceed 0.05. The package stratification (Bail-
largeon and Rivest, 2011; Rivest and Baillargeon, 2017) contains functions for determining
stratum boundaries when the stratifying variable is continuous.

Selecting a Strati�ed Random Sample 29

3.2 Selecting a Strati�ed Random Sample

The sample in Example 3.2 of SDA was selected using a spreadsheet but let's look at how
to select a similar sample using R, with the sample and strata functions (this will, of course,
give a di�erent sample than obtained in Example 3.2 of SDA).

Using the sample function in base R. As we have discussed in Chapter 2, the sample
function can be used to select an SRS. To select a strati�ed random sample, we select an
SRS independently from each stratum.

Data agpop.csv contains a stratum variable region that describes the census region for
each county in the population. In the following example, we use the proportional allocation
from Table 3.1 to divide the n = 300 units among the four strata, i.e., selecting 103, 21,
135, and 41 counties from regions NC, NE, S, and W respectively.

Select an SRS without replacement from each region with proportional allocation

with total size n=300

regionname <- c("NC","NE","S","W")

Make sure sampsize has same ordering as regionname

sampsize <- c(103,21,135,41)

Set the seed for random number generation

set.seed(108742)

index <- NULL

for (i in 1:length(sampsize)) {

index <- c(index,sample((1:N)[agpop$region==regionname[i]],

size=sampsize[i],replace=F))

}

strsample<-agpop[index,]

Check that we have the correct stratum sample sizes

table(strsample$region)

##

NC NE S W

103 21 135 41

Print the first six rows of the sample to see

strsample[1:6,]

county state acres92 acres87 acres82 farms92 farms87

1316 ISANTI COUNTY MN 131563 142998 153003 680 817

2034 DEFIANCE COUNTY OH 196759 206905 210781 830 987

864 ATCHISON COUNTY KS 245099 233619 234730 686 694

553 DES MOINES COUNTY IA 192467 210843 224770 681 753

1738 DUNN COUNTY ND 1352738 1358843 1397141 650 733

1325 LAKE OF THE WOODS COUNTY MN 103665 118959 119296 176 222

farms82 largef92 largef87 largef82 smallf92 smallf87 smallf82 region

1316 947 18 14 8 14 26 34 NC

2034 1033 25 20 18 40 50 50 NC

864 768 55 42 41 48 48 65 NC

553 815 33 30 24 56 56 72 NC

1738 697 358 368 361 19 13 34 NC

1325 230 30 35 26 4 4 1 NC

This simple code used a for loop to select an SRS from each stratum (de�ned by the subset
having region equal to the stratum name) in turn; alternatively, one could use the tapply
function, or write a custom R function, to do this without looping. Note that the vector

30 Strati�ed Sampling

containing the sample sizes must be in the same order as the vector giving the stratum
names.

Using the strata function from the sampling package. An alternative is to use function
strata to select a strati�ed random sample. This function is in the sampling package (Tillé
and Matei, 2021), which you installed in Chapter 1.

First, sort the data by the strati�cation variable region before selecting the sample. Next,
call the strata function with sorted data agpop2 and the strati�cation variable region with
�rst argument agpop2 and second argumentstratanames="region". You can also use a
vector of variables to de�ne the strata such as stratanames=c("A","B") if the strata are
formed from multiple variables. Add the information on number of counties to be selected
within each stratum by size=c(103,21,135,41) in the strata function. Finally, choose the
method to select the sample within each stratum; for this chapter we use either SRS without
replacement (method="srswor") or SRS with replacement (method="srswr").

Sort the population by stratum

agpop2<-agpop[order(agpop$region),]

Use the strata function to select the units for the sample

Make sure size argument has same ordering as the stratification variable

index2<-strata(agpop2,stratanames=c("region"),size=c(103,21,135,41),

method="srswor")

table(index2$region) # look at number of counties selected within each region

##

NC NE S W

103 21 135 41

head(index2)

region ID_unit Prob Stratum

2 NC 2 0.09772296 1

9 NC 9 0.09772296 1

27 NC 27 0.09772296 1

36 NC 36 0.09772296 1

42 NC 42 0.09772296 1

43 NC 43 0.09772296 1

strsample2<-getdata(agpop2,index2) # extract the sample

head(strsample2)

county state acres92 acres87 acres82 farms92 farms87 farms82

526 ADAMS COUNTY IA 239800 243607 254071 643 688 737

533 BREMER COUNTY IA 236668 235086 250402 1058 1140 1287

551 DECATUR COUNTY IA 261494 278714 300684 648 715 769

560 FREMONT COUNTY IA 302352 308796 306786 596 719 771

566 HARDIN COUNTY IA 332358 337990 355823 986 1065 1208

567 HARRISON COUNTY IA 399155 387190 408601 919 1024 1192

largef92 largef87 largef82 smallf92 smallf87 smallf82 region ID_unit

526 38 32 21 40 50 33 NC 2

533 25 18 11 96 116 109 NC 9

551 52 54 56 20 34 37 NC 27

560 91 72 51 37 59 50 NC 36

566 56 36 42 90 115 132 NC 42

567 88 62 51 60 60 66 NC 43

Prob Stratum

526 0.09772296 1

533 0.09772296 1

551 0.09772296 1

560 0.09772296 1

566 0.09772296 1

Computing Statistics from a Strati�ed Random Sample 31

567 0.09772296 1

The data frame index2 contains the stratum variables, the identi�ers of the units selected
to be in the sample, and the inclusion probability for each unit in the sample. The function
getdata then extracts the sampled units from the population data.

The strata function gives the inclusion probabilities for the sample units but not the weights.
You can calculate the sampling weights by taking the reciprocal of the inclusion probabili-
ties. When calculating weights for a strati�ed random sample, always check that the weights
sum to the stratum population sizes. If they do not sum to the stratum population sizes,
you have made a mistake somewhere in the weight calculations.

Calculate the sampling weights

sum(strsample2$Prob<=0) # first check that no probabilities are 0

[1] 0

strsample2$sampwt<-1/strsample2$Prob

Check that the sampling weights sum to the population sizes for each stratum

tapply(strsample2$sampwt,strsample2$region,sum)

NC NE S W

1054 220 1382 422

3.3 Computing Statistics from a Strati�ed Random Sample

Examples 3.2 and 3.6 of SDA. As in Chapter 2, function svydesign from the survey pack-
age can be used to enter the strati�ed random sample information, and functions svymean
and svytotal will calculate estimated means and totals from a strati�ed random sample.
The data set agstrat is a strati�ed random sample taken from the population data agpop
with proportional allocation. First, let's look at the data.

data(agstrat)

names(agstrat) # list the variable names

[1] "county" "state" "acres92" "acres87" "acres82" "farms92"

[7] "farms87" "farms82" "largef92" "largef87" "largef82" "smallf92"

[13] "smallf87" "smallf82" "region" "rn" "strwt"

agstrat[1:6,1:8] # take a look at the first 6 obsns

county state acres92 acres87 acres82 farms92 farms87 farms82

1 PIERCE C NE 297326 332862 319619 725 857 865

2 JENNINGS IN 124694 131481 139111 658 671 751

3 WAYNE CO OH 246938 263457 268434 1582 1734 1866

4 VAN BURE MI 206781 190251 197055 1164 1278 1464

5 OZAUKEE WI 78772 85201 89331 448 483 527

6 CLEARWAT MN 210897 229537 213105 583 699 693

nrow(agstrat) # number of rows, 300

[1] 300

unique(agstrat$region) # take a look at the four regions, NC, NE, S, W

[1] "NC" "NE" "S" "W"

table(agstrat$region) # number of counties in each stratum

##

NC NE S W

103 21 135 41

check that the sum of the weights equals the population size

sum(agstrat$strwt) #3078

[1] 3078

32 Strati�ed Sampling

Figure 3.1 gives a boxplot for variable acres92 (scaled to millions of acres). We can see
that the West region has the highest median and largest variability, while the Northeast
region has the lowest median and smallest variability. Note that we can use the boxplot
function in the following code because an SRS is taken within each stratum (and, because
of proportional allocation, the sample is approximately self-weighting); for other designs,
one should incorporate the weights into the plot as shown in Chapter 7.

boxplot(acres92/10^6 ~ region, xlab = "Region", ylab = "Millions of Acres",

data = agstrat)

notice the large variability in western region

NC NE S W

0.
0

0.
5

1.
0

1.
5

2.
0

Region

M
ill

io
ns

 o
f A

cr
es

FIGURE 3.1: Boxplot of 1992 acreage by region (data agstrat)

Now let's calculate the estimates from the strati�ed random sample. We use function svy-
design to input the design information, and functions svymean and svytotal to calculate the
survey statistics. The following gives the code to �nd estimates for data agstrat, along with
the output of the statistics calculated. These estimates were given in Examples 3.2 and 3.6
of SDA.

First, we set up the information for the survey design.

create a variable containing population stratum sizes, for use in fpc (optional)

popsize_recode gives popsize for each stratum

popsize_recode <- c('NC' = 1054, 'NE' = 220, 'S' = 1382, 'W' = 422)

next statement substitutes 1054 for each 'NC', 220 for 'NE', etc.

agstrat$popsize <- popsize_recode[agstrat$region]

table(agstrat$popsize) #check the new variable

##

Computing Statistics from a Strati�ed Random Sample 33

220 422 1054 1382

21 41 103 135

input design information for agstrat

dstr <- svydesign(id = ~1, strata = ~region, weights = ~strwt, fpc = ~popsize,

data = agstrat)

dstr

Stratified Independent Sampling design

svydesign(id = ~1, strata = ~region, weights = ~strwt, fpc = ~popsize,

data = agstrat)

The syntax is similar to that for an SRS. The only di�erence is in the arguments to the
svydesign function. The arguments used for strati�cation are as follows:

id As for an SRS, we use id = �1 to indicate that there is no clustering.

strata The strata argument gives the variable name(s) containing the strati�cation infor-
mation (here, the strati�cation variable is region).

weights For strati�ed sampling, we use the weights associated with the selection probabil-
ities in each stratum. This example has a strati�ed sample with proportional allocation,
where the weights are almost identical for all strata. In samples with disproportion-
ate strati�cation, however, the weights will vary across strata and estimates calculated
without weights will be biased.

fpc The fpc argument speci�es the variable that contains information for calculating the
�nite population correction (fpc) in each stratum. The easiest way to do that is to
create a new variable in the data frame that contains the population stratum sizes.
Our code de�nes a variable popsize_recode that associates each stratum name with its
population size; alternatively, the variable popsize could be created with the merge or
match function or by assigning values separately to each region in a for loop.

If you omit the fpc argument (and still include the weights argument), the estimates
of means and totals are the same, but standard error estimates are without the �nite
population correction.

All of the work specifying the design information is done in the svydesign function; after
you have de�ned the design there, the svymean and svytotal functions are used exactly as
in Chapter 2 for an SRS.

calculate mean, SE and confidence interval

smean<-svymean(~acres92, dstr)

smean

mean SE

acres92 295561 16380

confint(smean, level=.95, df=degf(dstr)) #note that df =n-H = 300-4

2.5 % 97.5 %

acres92 263325 327796.5

calculate total, SE and CI

stotal<-svytotal(~acres92, dstr)

stotal

total SE

acres92 909736035 50417248

degf(dstr) # Show the degrees of freedom for the design

[1] 296

calculate confidence intervals using the degrees of freedom

confint(stotal, level=.95,df= degf(dstr))

2.5 % 97.5 %

34 Strati�ed Sampling

acres92 810514350 1008957721

The output is pretty self-explanatory. Note that 296 degrees of freedom (df = n −H) are
used for the con�dence intervals. The df can also be found by applying function degf to the
design object dstr, i.e., degf(dstr). If you want to calculate con�dence intervals that are
based on the normal distribution, simply omit the df argument in the con�nt function. If
the sample has few observations, however, we need to specify the degrees of freedom and
use the t distribution to calculate con�dence intervals.

Weights and fpc arguments. We supplied both weights and fpc arguments to the svydesign
function in this example, but for a strati�ed random sample with no nonresponse, the
svydesign function will calculate weights from the fpc information and the sample sizes in
the data set. The design object dstrfpc in the following code results in the same statistics as
the design object dstr (with the weights and fpc arguments) that we used earlier. Including
the weights argument but omitting the fpc argument results in standard errors that are
calculated without the fpc. (Do not omit both weights and fpc; then the svydesign function
will assume all weights are equal.)

Alternative design specifications

Get same result if omit weights argument since weight = popsize/n_h

dstrfpc <- svydesign(id = ~1, strata = ~region, fpc = ~popsize, data = agstrat)

svymean(~acres92, dstrfpc)

mean SE

acres92 295561 16380

If you include weights but not fpc, get SE without fpc factor

dstrwt <- svydesign(id = ~1, strata = ~region, weights = ~strwt, data = agstrat)

svymean(~acres92, dstrwt)

mean SE

acres92 295561 17241

Calculating stratum means and variances. Function svyby will calculate statistics and
their standard errors for subgroups of the data. Here we use it to calculate the stratum
means and totals. The �rst argument of svyby is the formula for the variable(s) for which
statistics are desired, and the second argument (by=) is the variable that de�nes the groups.
Then list the design object and the name of the function that calculates the statistics. Set
keep.var=TRUE to display the standard errors for the statistics.

calculate mean and se of acres92 by regions

svyby(~acres92, by=~region, dstr, svymean, keep.var = TRUE)

region acres92 se

NC NC 300504.16 16107.59

NE NE 97629.81 18149.49

S S 211315.04 18925.35

W W 662295.51 93403.65

calculate total and se of acres92 by regions

svyby(~acres92, ~region, dstr, svytotal, keep.var = TRUE)

region acres92 se

NC NC 316731380 16977399

NE NE 21478558 3992889

S S 292037391 26154840

W W 279488706 39416342

If you want to check the calculations by formula, you can also calculate summary statistics
directly for each stratum using the tapply function, and then use the formulas from SDA
to calculate the standard errors for each estimated stratum mean or total. The variances

Estimating Proportions from a Strati�ed Random Sample 35

of the stratum means are calculated with the formula (1−nh/Nh)s2h/nh, where nh and Nh
are the sample and population sizes, and s2h is the sample variance within stratum h.

formula calculations, using tapply

variables sampsize and popsize were calculated earlier in the chapter

calculate mean within each region

strmean<-tapply(agstrat$acres92,agstrat$region,mean)

strmean

NC NE S W

300504.16 97629.81 211315.04 662295.51

calculate variance within each region

strvar<-tapply(agstrat$acres92,agstrat$region,var)

strvar

NC NE S W

29618183543 7647472708 53587487856 396185950266

verify standard errors by direct formula

strse<- sqrt((1-sampsize/popsize)*strvar/sampsize)

same standard errors as from svyby

strse

##

NC NE S W

16107.59 18149.49 18925.35 93403.65

3.4 Estimating Proportions from a Strati�ed Random Sample

A proportion is a special case of a mean of a variable taking on values 1 and 0. As de�ned
in chapter 2, variable lt200k takes on value 1 if acres92 < 200,000 and takes on value 0
if acres92 ≥ 200,000. The mean of variable lt200k estimates the proportion of farms that
have fewer than 200,000 acres. The total of variable lt200k estimates the number of farms
that have fewer than 200,000 acres.

Create variable lt200k

agstrat$lt200k <- rep(0,nrow(agstrat))

agstrat$lt200k[agstrat$acres92 < 200000] <- 1

Rerun svydesign because the data set now has a new variable

dstr <- svydesign(id = ~1, strata = ~region, fpc = ~popsize,

weights = ~strwt, data = agstrat)

calculate proportion, SE and confidence interval

smeanp<-svymean(~lt200k, dstr)

smeanp

mean SE

lt200k 0.51391 0.0248

confint(smeanp, level=.95,df=degf(dstr))

2.5 % 97.5 %

lt200k 0.4651188 0.5627107

calculate total, SE and CI

stotalp<-svytotal(~lt200k, dstr)

stotalp

total SE

lt200k 1581.8 76.318

confint(stotalp, level=.95,df=degf(dstr))

2.5 % 97.5 %

lt200k 1431.636 1732.024

36 Strati�ed Sampling

You can also calculate proportions and totals of categorical variables by de�ning them to
be factors, either by declaring the variable to be a factor variable in the data set or in the
function call of svymean. Here we de�ne variable lt200kf to be a factor variable in the data
set.

Create a factor variable lt200kf

agstrat$lt200kf <- factor(agstrat$lt200k)

Rerun svydesign because the data set now has a new variable

dstr <- svydesign(id = ~1, strata = ~region, fpc = ~popsize,

weights = ~strwt, data = agstrat)

calculate proportion, SE and confidence interval

smeanp2<-svymean(~lt200kf, dstr)

smeanp2

mean SE

lt200kf0 0.48609 0.0248

lt200kf1 0.51391 0.0248

confint(smeanp2, level=.95,df=degf(dstr))

2.5 % 97.5 %

lt200kf0 0.4372893 0.5348812

lt200kf1 0.4651188 0.5627107

calculate total, SE and CI

stotalp2<-svytotal(~lt200kf, dstr)

stotalp2

total SE

lt200kf0 1496.2 76.318

lt200kf1 1581.8 76.318

confint(stotalp2, level=.95,df=degf(dstr))

2.5 % 97.5 %

lt200kf0 1345.976 1646.364

lt200kf1 1431.636 1732.024

Note that the svytotal function gives the estimated total for each category of variable lt200kf.

The survey package will also estimate asymmetric con�dence intervals for survey data
(Korn and Graubard, 1998), which may have more accurate coverage probabilities for pro-
portions that are near 0 or 1 than the symmetric con�dence intervals based on the normal
approximation. This is done with the svyciprop function, choosing method="beta" to ob-
tain a version of the Clopper-Pearson con�dence interval (the function will also compute
asymmetric con�dence intervals using other methods). We illustrate with binary variable
lt200k. Note that you need to list the formula as ~I(lt200k).

calculate proportion and confidence interval with svyciprop

svyciprop(~I(lt200k), dstr, method="beta")

2.5% 97.5%

I(lt200k) 0.514 0.464 0.56

3.5 Additional Code for Exercises

Some of the exercises in Chapter 3 ask you to �nd an ANOVA table. Here's how to do that
for agstrat using the lm function, which performs regression and analysis of variance. The
�rst argument of lm is the formula for the regression model, of the form y ∼ x. We specify
region to be a factor so that the function will treat it as a categorical variable. (We'll see

Summary, Tips, and Warnings 37

the regression procedure that analyzes survey data in Chapter 4, and it will have similar
structure.)

myfit <- lm(acres92~factor(region), data=agstrat)

anova(myfit)

Analysis of Variance Table

##

Response: acres92

Df Sum Sq Mean Sq F value Pr(>F)

factor(region) 3 7.2976e+12 2.4325e+12 27.48 1.048e-15 ***

Residuals 296 2.6202e+13 8.8521e+10

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

3.6 Summary, Tips, and Warnings

Table 3.2 lists the major functions used in this chapter to select or analyze data from an
strati�ed random sample.

Tips and Warnings

� When calculating optimal allocations, make sure that the variables containing the cost
and variance information are in the same order as the variable(s) containing the stratum
identi�ers.

� Sort the population data set by the strati�cation variable(s) before calling the strata
function to select a strati�ed sample.

� When calculating sampling weights for a strati�ed random sample, check that the sum
of the sampling weights for each stratum equals the population size for that stratum.

� When analyzing data from a strati�ed random sample, �rst create the design object in
the svydesign function, using the strata= argument. Then call the svymean and svytotal
function with that design object.

� Functions svymean, svytotal and svyby can be used to calculate statistics for two or
more variables simultaneously. For example, svymean(~acres92 + acres87, dstr) can
derive statistics of both variables acres92 and acres87.

38 Strati�ed Sampling

TABLE 3.2
Functions used for Chapter 3.

Function Package Usage

order base Give indices for data sorted according to the speci�ed
variable

sample base Select a simple random sample with or without replace-
ment

tapply base Apply a function to each group of values; groups are
de�ned by the second argument

con�nt stats Calculate con�dence intervals; add df for t con�dence
interval

lm stats Fit a linear model to a data set (not using survey meth-
ods)

anova stats Calculate an analysis of variance table from a model
object

boxplot graphics Draw boxplot of data (used to display strata in a strat-
i�ed random sample)

strata sampling Select a strati�ed random sample
getdata sampling Extract the sampled units from the population
svydesign survey Specify the survey design; add stratum information for

strati�ed random sample
degf survey Find degrees of freedom based on design information
svymean survey Calculate mean and standard error of mean (if the vari-

able is numeric), or proportion in each category (if vari-
able is categorical)

svytotal survey Calculate total and standard error of total
svyby survey Calculate survey statistics on subsets of a survey de-

�ned by factors
svyciprop survey Compute con�dence intervals for proportions using var-

ious methods (if estimated proportions are close to 0 or
1, sometimes an asymmetric con�dence interval is pre-
ferred to the symmetric con�dence interval produced
by svymean)

4

Ratio and Regression Estimation

Ratio and regression estimation both use auxiliary information to increase the precision
of survey estimates. This chapter shows how to incorporate that auxiliary information into
survey data analyses using R. The code in this chapter is in �le ch04.R on the book website.

4.1 Ratio Estimation

Examples 4.2 and 4.3 of SDA. The svyratio function in package survey (Lumley, 2020)
computes ratios from survey data. Let's see how it works for Examples 4.2 and 4.3 of SDA. As
the correlation coe�cient between variables acres87 and acres92 is 0.995806. acres87 would
be an excellent auxiliary variable for ratio estimation. The code and output to estimate the
ratio ȳU/x̄U , where ȳU is the population mean of acres92 and x̄U is the population mean of
acres87, are given in the following.

data(agsrs)

n<-nrow(agsrs) #300

agsrs$sampwt <- rep(3078/n,n)

agdsrs <- svydesign(id = ~1, weights=~sampwt, fpc=rep(3078,300), data = agsrs)

agdsrs

Independent Sampling design

svydesign(id = ~1, weights = ~sampwt, fpc = rep(3078, 300), data = agsrs)

correlatIon of acres87 and acres92

cor(agsrs$acres87,agsrs$acres92)

[1] 0.995806

estimate the ratio acres92/acres87

sratio<-svyratio(numerator = ~acres92, denominator = ~acres87,design = agdsrs)

sratio

Ratio estimator: svyratio.survey.design2(numerator = ~acres92,

denominator = ~acres87, design = agdsrs)

Ratios=

acres87

acres92 0.9865652

SEs=

acres87

acres92 0.005750473

confint(sratio, df=degf(agdsrs))

2.5 % 97.5 %

acres92/acres87 0.9752487 0.9978818

The sample in agsrs is an SRS, so we specify the survey design object in svydesign exactly
as we did in Chapter 2. The only new feature is the svyratio function, which calculates the
ratio B̂ = ȳ/x̄ and its standard error.

39

40 Ratio and Regression Estimation

Now that we have estimated the ratio from the data, we can use the predict function to
obtain the ratio estimates of the population mean and total of y. The population total of x is
tx = 964,470,625 and the population mean of x is x̄U = tx/N . Note that the value of tx came
from the o�cial U.S. Census of Agriculture statistics for 1987 (U.S. Bureau of the Census,
1995). This is greater than the sum of all x values in data set agpop because some counties
in the population have missing values for acres87, as we saw in Section 1.7.

provide the population total of x

xpoptotal <- 964470625

Ratio estimate of population total

predict(sratio,total=xpoptotal)

$total

acres87

acres92 951513191

##

$se

acres87

acres92 5546162

Ratio estimate of population mean

predict(sratio,total=xpoptotal/3078)

$total

acres87

acres92 309133.6

##

$se

acres87

acres92 1801.872

Examples 4.2 and 4.3 of SDA also explore the scatterplot of acres92 vs. acres87. Because
all of the weights are the same (=3078/300), we can use the base R function plot to display
the data in Figure 4.1 (see Chapter 7 for how to draw scatterplots for samples with unequal
weights).

We scale the x and y variables so that the plot shows millions of acres instead of acres, and
specify the axis labels in the xlab and ylab arguments. The function abline draws the line
through the origin with slope B̂.

par(las=1) # make tick mark labels horizontal (optional)

plot(x=agsrs$acres87/1e6,y=agsrs$acres92/1e6,

xlab="Millions of Acres Devoted to Farms (1987)",

ylab = "Millions of Acres Devoted to Farms (1992)",

main = "Acres Devoted to Farms in 1987 and 1992")

draw line through origin with slope Bhat

abline(0,coef(sratio))

Example 4.5 of SDA.Variables of interest in this example are the number of woody seedlings
in pig-protected areas under each of ten sampled oak trees in 1992 (seed92) and 1994
(seed94) on Santa Cruz Island, California. The code below draws the scatterplot (shown
in Figure 4.4 of SDA and not reproduced here) of seed94 vs. seed92. It also calculates the
correlation of the two variables.

#scatterplot of seed92 and seed94

data(santacruz)

plot(santacruz$seed92,santacruz$seed94,

main="Number of seedlings in 1994 and 1992",

xlab="Number of seedlings in 1992",ylab="Number of seedlings in 1994")

Ratio Estimation 41

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

Acres Devoted to Farms in 1987 and 1992

Millions of Acres Devoted to Farms (1987)

M
ill

io
ns

 o
f A

cr
es

 D
ev

ot
ed

 to
 F

ar
m

s
(1

99
2)

FIGURE 4.1: Scatterplot of Acres Devoted to Farms in 1987 and 1992 (data agsrs)

cor(santacruz$seed92,santacruz$seed94)

[1] 0.6106537

Now let's calculate the ratio of the number of seedlings in 1994 to the number of seedlings in
1992. Because the number of trees in the population is unknown, we de�ne sampwt to be 1
for each observation and we omit the fpc argument in the svydesign function (alternatively,
one could set the population size to be a large number for the weights and fpc).

nrow(santacruz) #10

[1] 10

santacruz$sampwt <- rep(1,nrow(santacruz))

design0405 <- svydesign(ids = ~1, weights = ~sampwt, data = santacruz)

design0405

Independent Sampling design (with replacement)

svydesign(ids = ~1, weights = ~sampwt, data = santacruz)

#Ratio estimation using number of seedlings of 1992 as auxiliary variable

42 Ratio and Regression Estimation

sratio3<-svyratio(~seed94, ~seed92,design = design0405)

sratio3

Ratio estimator: svyratio.survey.design2(~seed94, ~seed92, design = design0405)

Ratios=

seed92

seed94 0.2961165

SEs=

seed92

seed94 0.1152622

confint(sratio3, df=10-1)

2.5 % 97.5 %

seed94/seed92 0.03537532 0.5568577

4.2 Regression Estimation

Example 4.7 of SDA. Function svyglm calculates regression coe�cients and regression
estimators from survey data. It is the survey analogue of the R function glm, which �ts
generalized linear models.

data(deadtrees)

head(deadtrees)

photo field

1 10 15

2 12 14

3 7 9

4 13 14

5 13 8

6 6 5

nrow(deadtrees) # 25

[1] 25

Fit with survey regression

dtree<- svydesign(id = ~1, weight=rep(4,25), fpc=rep(100,25), data = deadtrees)

myfit1 <- svyglm(field~photo, design=dtree)

summary(myfit1) # displays regression coefficients

##

Call:

svyglm(formula = field ~ photo, design = dtree)

##

Survey design:

svydesign(id = ~1, weight = rep(4, 25), fpc = rep(100, 25), data = deadtrees)

##

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.0593 1.3930 3.632 0.0014 **

photo 0.6133 0.1259 4.870 6.44e-05 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

(Dispersion parameter for gaussian family taken to be 5.548341)

##

Number of Fisher Scoring iterations: 2

confint(myfit1,df=23) # df = 25-2

Regression Estimation 43

2.5 % 97.5 %

(Intercept) 2.3291420 7.7894421

photo 0.3664593 0.8600894

Regression estimate of population mean field trees

newdata <- data.frame(photo=11.3)

predict(myfit1, newdata)

link SE

1 11.989 0.418

confint(predict(myfit1, newdata),df=23)

2.5 % 97.5 %

1 11.12455 12.85404

Estimate total field tree, add population size in total= argument

newdata2 <- data.frame(photo=1130)

predict(myfit1, newdata2, total=100)

link SE

1 1198.9 41.802

confint(predict(myfit1, newdata2,total=100),df=23)

2.5 % 97.5 %

1 1112.455 1285.404

The regression estimation uses the following functions:

svydesign As before, use svydesign to describe design of the survey, which, in this case,
is an SRS with sample size n = 25 and population size N = 100. Each observation has
weight 100/25 = 4.

svyglm The function svyglm(field�photo, design=dtree) tells which variables to an-
alyze in the regression statement. The dependent (y) variable is before the � sign and
the independent (x) variables follow it. In this example, the dependent variable is �eld
and there is one independent variable, photo. The design argument tells the name of the
survey design object (here, dtree) to use in calculations.

summary The summary function gives the estimates of the regression coe�cients, their
associated standard errors, and the t statistic and p-value for testing whether each
regression parameter equals 0 (the standard errors and tests will be discussed in Chap-
ter 11).

con�nt As before, the con�nt function requests con�dence limits for the regression pa-
rameters. You can specify the degrees of freedom with the df argument if desired: here
the df equal the sample size minus 2: 25 − 2 = 23. If you omit the df argument, the
procedure uses the normal distribution to produce con�dence intervals.

predict The predict function allows you to obtain estimates for predicted values from the
estimated regression equation. For regression estimation of the mean, we �rst de�ne a
new data frame with photo = 11.3 because we want to calculate the predicted value
of the regression function at x̄U = 11.3. The statement predict(myfit1, newdata)

gives B̂0 ∗ (1) + B̂1 ∗ (11.3). Regression estimation of the total multiplies each of these
by the population size N (here, N = 100) by including the argument total=100 in the
predict function (called as predict(myfit1, newdata2, total=100)), which estimates
B̂0 ∗ (100) + B̂1 ∗ (1130), where tx = 1130.

Note that the output gives slightly di�erent standard errors and con�dence intervals for the
regression estimates of the mean and total than SDA because the R functions use a slightly
di�erent (although asymptotically equivalent) formula to calculate the standard error. See
Section 11.6 of SDA for a discussion of the two variance estimates used.

44 Ratio and Regression Estimation

4.3 Domain Estimation

A domain is a subset of the population for which estimates are desired. Because estimated
domain means and totals are ratio estimates, they can be calculated with the svyratio
function. It is usually easier, however, to compute them using subset or svyby.

The procedure to calculate estimates for domains is essentially the same as that to calculate
estimates for the full sample, but you need to rede�ne the design for the domain with the
subset function:
newdesign<-subset(original_design, domain)

This ensures that standard errors are calculated correctly.

Example 4.8 of SDA. The following code uses the subset function to request design in-
formation for each level of the variable farmcat, which is de�ned to equal �large� when
farms92 ≥ 600 and �small� otherwise.

agsrsnew<-agsrs #copy agsrs as agsrsnew, since we want to create a new column

we calculated sampwt in the first code in this chapter

define new variable farmcat

agsrsnew$farmcat<-rep("large",n)

agsrsnew$farmcat[agsrsnew$farms92 < 600] <- "small"

head(agsrsnew)

county state acres92 acres87 acres82 farms92 farms87 farms82

1 COFFEE COUNTY AL 175209 179311 194509 760 842 944

2 COLBERT COUNTY AL 138135 145104 161360 488 563 686

3 LAMAR COUNTY AL 56102 59861 72334 299 362 447

4 MARENGO COUNTY AL 199117 220526 231207 434 471 622

5 MARION COUNTY AL 89228 105586 113618 566 658 748

6 TUSCALOOSA COUNTY AL 96194 120542 134616 436 521 650

largef92 largef87 largef82 smallf92 smallf87 smallf82 region sampwt farmcat

1 29 28 21 57 47 66 S 10.26 large

2 37 41 42 12 44 47 S 10.26 small

3 4 4 3 16 20 30 S 10.26 small

4 48 66 62 14 11 28 S 10.26 small

5 7 9 9 11 23 27 S 10.26 small

6 20 17 23 18 32 29 S 10.26 small

dsrsnew <- svydesign(id = ~1, weights=~sampwt, fpc=rep(3078,300), data=agsrsnew)

domain estimation for large farmcat with subset statement

dsub1<-subset(dsrsnew,farmcat=='large') # design info for domain large farmcat

smean1<-svymean(~acres92,design=dsub1)

smean1

mean SE

acres92 316566 21553

df1<-sum(agsrsnew$farmcat=='large')-1 #calculate domain df if desired

df1

[1] 128

confint(smean1, level=.95,df=df1) # CI

2.5 % 97.5 %

acres92 273918.9 359212.4

stotal1<-svytotal(~acres92,design=dsub1)

stotal1

total SE

acres92 418987302 38938277

confint(stotal1, level=.95,df=df1)

Domain Estimation 45

2.5 % 97.5 %

acres92 341941269 496033335

domain estimation for small farmcat

dsub2<-subset(dsrsnew,farmcat=='small') # design info for domain small farmcat

smean2<-svymean(~acres92,design=dsub2)

smean2

mean SE

acres92 283814 28852

df2<-sum(agsrsnew$farmcat=='small')-1 #calculate domain df if desired

confint(smean2, level=.95,df=df2) #CI

2.5 % 97.5 %

acres92 226858.9 340768.5

stotal2<-svytotal(~acres92,design=dsub2)

stotal2

total SE

acres92 497939808 55919525

confint(stotal2, level=.95,df=df2)

2.5 % 97.5 %

acres92 387553732 608325884

You can also calculate statistics for all domains de�ned by a factor variable at the same
time, using the svyby function. Here, we estimate the population total and mean for both
domains de�ned by factor(farmcat). The �rst argument of svyby contains the variable(s)
to analyze, and the second argument is the factor variable that de�nes the domains. The
last argument gives the name of the function that is to be applied to each group in the by
argument.

bothtot<-svyby(~acres92,by=~factor(farmcat),design=dsrsnew,svytotal)

bothtot

factor(farmcat) acres92 se

large large 418987302 38938277

small small 497939808 55919525

confint(bothtot,level=.95)

2.5 % 97.5 %

large 342669682 495304922

small 388339553 607540062

bothmeans<-svyby(~acres92,by=~factor(farmcat),design=dsrsnew,svymean)

bothmeans

factor(farmcat) acres92 se

large large 316565.7 21553.21

small small 283813.7 28852.24

confint(bothmeans,level=.95)

2.5 % 97.5 %

large 274322.1 358809.2

small 227264.4 340363.1

Note that con�dence intervals here are slightly smaller than those given from the calculations
with the subset function and in Example 4.8 of SDA. Because we did not specify the df in
the con�nt function, it uses a normal distribution to calculate the intervals; the previous
code, using the subset function, calculated the con�dence intervals using a t distribution
having nd − 1 df, where nd is the sample size of domain d.

Warning. In SRSs, you can calculate domain means and their standard errors by �rst
forming a new, subsetted data set that consists of the observations in the domain and
then calculating statistics on the subsetted data set. In complex surveys, however, that

46 Ratio and Regression Estimation

method can result in incorrect standard errors (see Section 11.3 of SDA). To obtain correct
statistics for domains, �rst de�ne the survey design object using the function svydesign with
the entire data set. Then use the function subset or svyby with the survey design object to
obtain correct inferences for domains.

4.4 Poststrati�cation

Example 4.9 of SDA. The postStratify function computes poststrati�cation weights and
uses them to estimate population means and totals, along with standard errors (discussed
in Chapter 11 of SDA). Let's poststratify the SRS in agsrs by variable region.

data(agsrs)

dsrs <- svydesign(id = ~1, weights=rep(3078/300,300), fpc=rep(3078,300),

data = agsrs)

Create a data frame that gives the population totals for the poststrata

pop.region <- data.frame(region=c("NC","NE","S","W"), Freq=c(1054,220,1382,422))

create design information with poststratification

dsrsp<-postStratify(dsrs, ~region, pop.region)

summary(dsrsp)

Independent Sampling design

postStratify(dsrs, ~region, pop.region)

Probabilities:

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.09242 0.09407 0.09407 0.09771 0.10152 0.10909

Population size (PSUs): 3078

Data variables:

[1] "county" "state" "acres92" "acres87" "acres82" "farms92"

[7] "farms87" "farms82" "largef92" "largef87" "largef82" "smallf92"

[13] "smallf87" "smallf82" "region"

1/unique(dsrsp$prob) # See the poststratified weight for each region

[1] 10.630769 10.820513 9.850467 9.166667

svymean(~acres92, dsrsp)

mean SE

acres92 299778 17513

svytotal(~acres92, dsrsp)

total SE

acres92 922717031 53906392

The only new feature here is the postStratify function:

postStratify(design=dsrs, strata= region, population=pop.region)

The postStratify function tells R to construct poststrati�cation weights, using poststrata in
variable region. The third argument is the name of the data frame (here, pop.region) that
gives the population totals for the poststrata. The poststrati�ed estimates of the population
mean and total of acres92, when calculated with poststrati�ed design object dsrsp are
reported together with standard errors when the svymean or svytotal function is called.

Note that the standard errors reported by the survey package di�er slightly from those
in Example 4.9 of SDA, because a slightly di�erent (although asymptotically equivalent)
estimator for the variance is used (see Section 11.6 of SDA).

Ratio Estimation with Strati�ed Sampling 47

4.5 Ratio Estimation with Strati�ed Sampling

The svyratio function will compute either separate or combined ratio estimates. The default
is combined ratio estimation, which calculates the ratio ˆ̄y/ˆ̄x where ˆ̄y is the estimate of the
mean of y using the strati�ed design and ˆ̄x is the estimated mean of x. All we need to do
is to include the strati�cation information in the design structure formed by the svydesign
function.

Combined ratio estimator. The following shows how to compute the ratio of acres92 to
acres87 and the ratio estimator of the total for the strati�ed sample in agstrat, using the
combined ratio estimator.

data(agstrat)

popsize_recode <- c('NC' = 1054, 'NE' = 220, 'S' = 1382, 'W' = 422)

agstrat$popsize <- popsize_recode[agstrat$region]

input design information for agstrat

dstr <- svydesign(id = ~1, strata = ~region, fpc = ~popsize, weight = ~strwt,

data = agstrat)

now compute the combined estimator of the ratio

combined<-svyratio(~ acres92,~acres87,design = dstr)

combined

Ratio estimator: svyratio.survey.design2(~acres92, ~acres87, design = dstr)

Ratios=

acres87

acres92 0.9899971

SEs=

acres87

acres92 0.006187757

we can get the combined ratio estimator of the population total

with the predict function

predict(combined,total=964470625)

$total

acres87

acres92 954823130

##

$se

acres87

acres92 5967910

Separate ratio estimator. You can calculate ratios separately for each stratum by including
separate=TRUE in the svyratio function.

separate<-svyratio(~acres92,~acres87,design = dstr,separate=TRUE)

separate

Stratified ratio estimate: svyratio.survey.design2(~acres92, ~acres87,

design = dstr, separate = TRUE)

Ratio estimator: Stratum == "NC"

Ratios=

acres87

acres92 0.9750666

SEs=

acres87

acres92 0.005483458

Ratio estimator: Stratum == "NE"

48 Ratio and Regression Estimation

Ratios=

acres87

acres92 0.8956073

SEs=

acres87

acres92 0.008853011

Ratio estimator: Stratum == "S"

Ratios=

acres87

acres92 0.9935483

SEs=

acres87

acres92 0.01418835

Ratio estimator: Stratum == "W"

Ratios=

acres87

acres92 1.011974

SEs=

acres87

acres92 0.01169809

Define the stratum totals for acres87 as a list:

stratum.xtotals <- list(NC=350474227,NE=22033421,S=280631939,W=311331038)

predict(separate,stratum.xtotals)

$total

acres87

acres92 955349448

##

$se

acres87

acres92 5731438

4.6 Model-Based Ratio and Regression Estimation

This section is optional and need only be read if covering Section 4.6 of SDA.

Example 4.11 of SDA. A model-based analysis of data from an SRS uses the same tech-
niques taught in an introductory statistics class. Since the model-based analysis does not
make use of the sampling weights, the lm or glm functions, which �t linear and generalized
linear models for non-survey data, are used to �t the regression models and obtain the
residuals. Here we use the lm function.

The format for �tting a regression model with lm is similar to svyglm, but with one important
di�erence: the weights mean di�erent things in the two functions. In the svyglm function,
weights= tells how many population units are represented by each sample unit. In the lm
function, the weight variable contains relative weights for a weighted least squares �t.

The model used is Yi = Bxi + εi, with V (εi) = σ2xi. The model has variance proportional
to xi, so obtaining the best linear unbiased estimates under this model would use a weight
value proportional to the reciprocal of the variances. This is speci�ed by de�ning recacr87
= 1/acres87 when acres87 > 0 and recacr87 = NA when acres87 = 0 (to avoid division
by zero).

Model-Based Ratio and Regression Estimation 49

data(agsrs)

define weights to use for weighted least squares analysis

agsrs$recacr87<-agsrs$acres87

agsrs$recacr87[agsrs$acres87!=0] <- 1/agsrs$acres87[agsrs$acres87!=0]

agsrs$recacr87[agsrs$acres87==0] <- NA

fit weighted least squares model without intercept

fit<-lm(acres92~acres87-1,weights=recacr87,data=agsrs)

summary(fit)

##

Call:

lm(formula = acres92 ~ acres87 - 1, data = agsrs, weights = recacr87)

##

Weighted Residuals:

Min 1Q Median 3Q Max

-369.9 -22.2 -5.8 10.8 311.7

##

Coefficients:

Estimate Std. Error t value Pr(>|t|)

acres87 0.986565 0.004844 203.7 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

Residual standard error: 46.1 on 298 degrees of freedom

(1 observation deleted due to missingness)

Multiple R-squared: 0.9929,Adjusted R-squared: 0.9928

F-statistic: 4.149e+04 on 1 and 298 DF, p-value: < 2.2e-16

anova(fit)

Analysis of Variance Table

##

Response: acres92

Df Sum Sq Mean Sq F value Pr(>F)

acres87 1 88168461 88168461 41487 < 2.2e-16 ***

Residuals 298 633307 2125

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

find predicted value at population total for x

newdata3 <- data.frame(acres87=964470625)

predict(fit, newdata3, se.fit=TRUE)

$fit

1

951513191

##

$se.fit

[1] 4671509

##

$df

[1] 298

##

$residual.scale

[1] 46.0998

The weights option in lm speci�es that a weighted least squares analysis is performed with
weights recacr87, minimizing the weighted sum of squares

∑
i∈S(yi − βxi)2/xi. The �-1� in

lm(acres92~acres87-1) tells that the model is to be �t without an intercept. The summary
function displays the regression coe�cient β̂ = 0.986565 and the anova function displays

50 Ratio and Regression Estimation

the ANOVA table. The model is �t to the 299 observations that have acres87 > 0.

The predict function requests the predicted value from the regression model when acres87
takes on the value tx = 964,470,625, giving t̂yM = β̂tx = 951,513,191. The standard error,
without the fpc, is σtx/

√∑
i∈S xi = 4,671,509.

Note that the sum of squares for error in the ANOVA table, 633,307, is the sum of squares of
the weighted residuals, so the mean squared error in the ANOVA table gives σ̂2 = 2125.19.

The residuals produced by lm are ei = yi − ŷi. For a ratio model, the weighted residuals
eiw = ei/

√
xi should be plotted instead of ei, because if the model variance structure is

correct, the eiw should all have approximately equal variance and a plot of eiw vs. the
predicted values or xi will show no patterns.

plot weighted residual versus predicted values

wresid<-fit$residuals*sqrt(fit$weights)

par(las=1)

plot(fit$fitted.values, wresid,

main="Plot of weighted residuals versus predicted values",

xlab="Predicted value from regression model",

ylab="Weighted residuals")

0 500000 1000000 1500000 2000000

−300

−200

−100

0

100

200

300

Plot of weighted residuals versus predicted values

Predicted value from regression model

W
ei

gh
te

d
re

si
du

al
s

FIGURE 4.2: Plot of weighted residuals vs �tted values

Figure 4.2 shows a couple of potential outliers, but no other indications that the model is
inappropriate.

Example 4.12 of SDA. The lm function is also used to �t a regression model and to obtain
residuals for the dead tree data from Example 4.7 of SDA.

Model-Based Ratio and Regression Estimation 51

data(deadtrees)

Fit with lm

fit2 <- lm(field~photo, data=deadtrees)

summary(fit2)

##

Call:

lm(formula = field ~ photo, data = deadtrees)

##

Residuals:

Min 1Q Median 3Q Max

-5.0319 -1.8053 0.1947 1.4212 3.8080

##

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.0593 1.7635 2.869 0.008676 **

photo 0.6133 0.1601 3.832 0.000854 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

Residual standard error: 2.406 on 23 degrees of freedom

Multiple R-squared: 0.3896,Adjusted R-squared: 0.3631

F-statistic: 14.68 on 1 and 23 DF, p-value: 0.0008538

Estimate mean field trees

newdata <- data.frame(photo=11.3)

predict(fit2, newdata,se.fit=TRUE)

$fit

1

11.98929

##

$se.fit

[1] 0.4941007

##

$df

[1] 23

##

$residual.scale

[1] 2.406153

Because the regression model is �t under the assumption that V (εi) = σ2 for all observa-
tions, no weight argument is used in lm. The predict function gives the regression estimate
of the population mean β̂0 + β̂1x̄U = 11.9893, and its standard error (without fpc) of 0.494.
These are the values calculated in Example 4.12 of SDA. Typing summary(fit2) gives the
regression coe�cients, their standard errors, and other information about the �t.

We have applied both lm and svyglm to analyze the tree data from Example 4.7. Table 4.1
compares the estimates and standard errors from the two functions. All the point estimates
are the same, but the standard errors from svyglm di�er from those calculated by lm;
Sections 4.6 and 11.5 of SDA discuss why that occurs.

52 Ratio and Regression Estimation

TABLE 4.1
Comparison of the estimates and standard errors for model field � photo from
lm and svyglm functions

Intercept Slope Predicted value, x = 11.3

lm svyglm lm svyglm lm svyglm
Estimate 5.0593 5.0593 0.6133 0.6133 11.989 11.989
SE 1.7635 1.3930 0.1601 0.1259 0.494 0.418

Requesting plot(fit2) produces a collection of residual and diagnostic plots from the lm
model object. Figure 4.3 displays the plot of the residuals vs. photo (the x variable), which
shows no pattern.

plot residuals versus predicted values

plot(deadtrees$photo, fit2$residuals,

main="Plot of residuals versus photo values",

xlab="Photo values (x variable)",

ylab="Residuals")

6 8 10 12 14 16

−
4

−
2

0
2

4

Plot of residuals versus photo values

Photo values (x variable)

R
es

id
ua

ls

FIGURE 4.3: Plot of residuals versus x variable

4.7 Summary, Tips, and Warnings

Table 4.2 lists the major functions used in this chapter to compute ratio and regression
estimates, calculate statistics for domains, and create poststrati�cation weights.

To calculate a ratio or ratio estimator for an SRS or strati�ed sample, use the svyratio
function from the survey package. The function svyglm �ts regression models to survey data.

Summary, Tips, and Warnings 53

Tips and Warnings

� Draw a scatterplot of your data when �tting a ratio or regression model, so you can see
whether ratio or regression estimation is likely to improve e�ciency.

� For domain estimation, �rst de�ne a design object for the entire sample with the svyde-
sign function. Then use the subset function to de�ne a domain of interest, or calculate
statistics for all domains with the svyby function. It may be tempting to calculate statis-
tics for a subset of the sample by creating a data set containing only that subset, but
doing that can result in incorrect standard errors for domain statistics.

� Poststrati�cation can be done using the postStratify function.

TABLE 4.2
Functions used for Chapter 4.

Function Package Usage

subset base Work with a subset of a vector, matrix, or data frame
con�nt stats Calculate con�dence intervals
cor stats Calculate the correlation of vectors (not using survey

methods)
lm stats Fit a linear model to a data set (not using survey meth-

ods)
anova stats Compute an analysis of variance table from a model

object
predict stats Obtain predicted values from a model object
plot graphics Draw a scatterplot of data
abline graphics Add a straight line to a plot
svydesign survey Specify the survey design
svymean survey Calculate mean and standard error of mean
svyratio survey Calculate a ratio or ratio estimate from survey data
svyglm survey Fit a regression model to survey data. The coe�cients

may then be used to calculate regression estimates
svytotal survey Calculate total and standard error of total
svyby survey Calculate statistics for subsets of a survey de�ned by a

factor variable
postStratify survey Adjust the sampling weights using poststrati�cation

5

Cluster Sampling with Equal Probabilities

This chapter shows how to use R to compute estimates from one- and two-stage cluster
samples when an SRS is selected at each stage. Chapter 6 will tell how to select a one-stage
or two-stage cluster sample with equal or unequal probabilities�the syntax is similar for
both, and deferring the sample selection examples to Chapter 6 allows us to look at the
general case. The code in this chapter is in �le ch05.R on the book website.

5.1 Estimates from One-Stage Cluster Samples

Example 5.2 of SDA. The following code and output estimates the population mean and
total for the GPA data, using functions from the survey package (Lumley, 2020). Variable
suite identi�es the clusters in the data, and variable wt is the sampling weight for the
persons in the sample, de�ned as 100/5 = 20 for every person.

data(gpa)

#define one-stage cluster design

#note that id is suite instead of individual student as we take an SRS of suites

dgpa<-svydesign(id=~suite,weights=~wt,fpc=~rep(100,20),data=gpa)

dgpa

1 - level Cluster Sampling design

With (5) clusters.

svydesign(id = ~suite, weights = ~wt, fpc = ~rep(100, 20), data = gpa)

#estimate mean and se

gpamean<-svymean(~gpa,dgpa)

gpamean

mean SE

gpa 2.826 0.1637

degf(dgpa)

[1] 4

#n=5, t-approximation is suggested for CI

confint(gpamean,level=.95,df=4) #use t-approximation

2.5 % 97.5 %

gpa 2.371593 3.280407

#confint(gpamean,level=.95) #use normal approximation

#estimate total and se (if desired)

gpatotal<-svytotal(~gpa,dgpa)

gpatotal

total SE

gpa 1130.4 65.466

confint(gpatotal,level=.95,df=4)

2.5 % 97.5 %

gpa 948.6374 1312.163

54

Estimates from One-Stage Cluster Samples 55

The following features of the code and output deal with the cluster sampling:

� The id=�suite argument in svydesign tells all functions that use the design object
that variable suite is the primary sampling unit (psu). If you omit the psu variable and
instead use id=�, the data will be (incorrectly) analyzed as an SRS.

� The weights=�wt argument says that variable wt contains the sampling weights for
the observation units (here, the students). If weights= is omitted but fpc= is supplied,
selection probabilities are calculated from the population sizes assuming an SRS of
psus. That results in the same weights for this survey, but we recommend including
the weights= argument as routine practice because most surveys have some type of
adjustment that causes the �nal weights to di�er from the sampling weights. (There is
one exception, and that is for the without-replacement variance calculations discussed
in Section 5.2.)

� The fpc=�rep(100,20) argument indicates that the total number of psus in the pop-
ulation is 100. When the fpc is included, functions use the �nite population correction
(fpc) when calculating variances. Omit fpc= if you do not want an fpc (but then make
sure you include the weights= argument).

� Typing dgpa shows that this is a �1 - level Cluster Sampling design With (5) clusters�.
The svydesign function recognizes this as a one-stage design because one clustering
variable is included in the id argument. This is the only indication in the output that
the clustering was used in the analysis. Otherwise, the form of the statistics output is
the same as for simple random or strati�ed sampling. Always check that the number of
clusters in the output equals the number of psus in your sample.

� The degrees of freedom (df), from function degf, equals the number of psus minus 1.

� The svymean and svytotal functions produce standard errors (SEs) for estimated pop-
ulation means and totals that account for the clustering in the design.

You can verify the calculations using the formulas given in Section 5.2 of SDA if desired.

you can also calculate SEs by direct formula

suitesum<-tapply(gpagpa,gpasuite,sum) #sum gpa for each suite

variability comes from among the suites

st2<-var(suitesum)

st2

[1] 2.25568

SE of t-hat, formula (5.3) of SDA

vthat <-100^2*(1-5/100)*st2/5

sqrt(vthat)

[1] 65.46596

SE of ybar, formula (5.6) of SDA

sqrt(vthat)/(4*100)

[1] 0.1636649

The variability st2 is coming from the suite totals, and the fpc (1 − 5/100) is applied to
calculate the variance of t̂. The SE of t̂ is 65.46596, which is the same as calculated by
svytotal.

The procedure for calculating estimates from one-stage cluster samples is exactly the same
when the psus have unequal sizes.

Example 5.6 of SDA. Data algebra has 12 classes (clusters) with unequal sizes selected
from 187 classes. The syntax for analyzing the data with unequal-sized clusters is exactly

56 Cluster Sampling with Equal Probabilities

the same as for Example 5.2. Again, note that the df is the number of clusters minus 1 (=
11).

data(algebra)

algebra$sampwt<-rep(187/12,299)

define one-stage cluster design

dalg<-svydesign(id=~class,weights=~sampwt,fpc=~rep(187,299), data=algebra)

dalg

1 - level Cluster Sampling design

With (12) clusters.

svydesign(id = ~class, weights = ~sampwt, fpc = ~rep(187, 299),

data = algebra)

estimate mean and se

svymean(~score,dalg)

mean SE

score 62.569 1.4916

n=12, t-distribution is suggested for CI

degf(dalg)

[1] 11

confint(svymean(~score,dalg),level=.95,df=11) #use t-approximation

2.5 % 97.5 %

score 59.28562 65.8515

estimate total and se if desired

svytotal(~score,dalg)

total SE

score 291533 19893

confint(svytotal(~score,dalg),level=.95,df=11)

2.5 % 97.5 %

score 247749.4 335316.6

5.2 Estimates from Multi-Stage Cluster Samples

Calculating estimates from a multi-stage cluster sample is similar. The clustering structure
is speci�ed for the design object in the svydesign function, and then all functions called
with that design object account for the clustering in the variance calculations.

There are several ways to estimate variances using the survey package. Let's start with
Example 5.8 of SDA, where we calculate the with-replacement variance, and then discuss the
issues involved for calculating variances for without-replacement samples using the schools
data in Example 5.7 of SDA.

Example 5.8 of SDA. The coots data come from Arnold's (1991) work on egg size and
volume of American coot eggs in Minnedosa, Manitoba, with a sample of 184 clutches
(nests of eggs). Variable csize gives the number of eggs in the clutches. Two eggs (secondary
sampling unit, ssu) are randomly selected from each clutch (psu). Since we do not have
information on the total number of psus N , we use the relative weights relwt de�ned by
csize/2 to calculate the mean volume of eggs and its standard error.

data(coots)

Want to estimate the mean egg volume

nrow(coots) #368

[1] 368

Estimates from Multi-Stage Cluster Samples 57

coots$ssu<-rep(1:2,184) # index of ssu

coots$relwt<-coots$csize/2

head(coots)

clutch csize length breadth volume tmt ssu relwt

1 1 13 44.30 31.10 3.7957569 1 1 6.5

2 1 13 45.90 32.70 3.9328497 1 2 6.5

3 2 13 49.20 34.40 4.2156036 1 1 6.5

4 2 13 48.70 32.70 4.1727621 1 2 6.5

5 3 6 51.05 34.25 0.9317646 0 1 3.0

6 3 6 49.35 34.40 0.9007362 0 2 3.0

dcoots<-svydesign(id=~clutch+ssu,weights=~relwt,data=coots)

dcoots

2 - level Cluster Sampling design (with replacement)

With (184, 368) clusters.

svydesign(id = ~clutch + ssu, weights = ~relwt, data = coots)

svymean(~volume,dcoots) #ratio estimator

mean SE

volume 2.4908 0.061

confint(svymean(~volume,dcoots),level=.95,df=183)

2.5 % 97.5 %

volume 2.370423 2.611134

now only include psu information, results are the same

dcoots2<-svydesign(id=~clutch,weights=~relwt,data=coots)

dcoots2

1 - level Cluster Sampling design (with replacement)

With (184) clusters.

svydesign(id = ~clutch, weights = ~relwt, data = coots)

svymean(~volume,dcoots2)

mean SE

volume 2.4908 0.061

In svydesign, the two stages of the cluster sampling are given as id=~clutch+ssu. The formula
lists the psus �rst and then the ssus. When the with-replacement variance is calculated,
however, as is done here, you need only specify the psus�the point and variance estimates
are the same whether you specify just the psus or you specify all stages of sampling. The
weight argument must be included for this design because the weights are unequal.

Note that 183 df (number of psus minus 1) are used for the con�dence interval. Also note
that svydesign does not contain the fpc argument. This is because the total number of
clutches in the population, N , is unknown. As a result, the svymean does not use an fpc
when calculating estimates. In general, we recommend omitting the fpc argument for multi-
stage cluster sampling even when N is known, and the remainder of this section discusses
this issue.

Variance estimation for without-replacement two-stage cluster samples. Here are two
options for estimating the variance of estimated means and totals in without-replacement
two-stage sampling, where an SRS is selected at each stage.

Option 1. Calculate the with-replacement variance (recommended). As shown in
Sections 5.3 and 6.6 of SDA, the estimated variability among estimated psu totals, s2t
also includes variability from the subsequent stages of sampling. If you estimate the with-
replacement variance (at the psu level), the variance estimator incorporates all the vari-
ability from subsequent stages of sampling. The expected value of the with-replacement
variance estimator is larger than the true variance of the without-replacement sample,
but the di�erence is small if the sampling fraction at the psu level, n/N , is small. Chap-

58 Cluster Sampling with Equal Probabilities

ter 6 of SDA outlines additional bene�ts of ignoring the fpcs when the psus are selected
with unequal probabilities.

To estimate the with-replacement variance for a multi-stage cluster sample, simply call
the svydesign function as:

svydesign(id=�psuid,weights=�weightvariable,data=dataset)

where the id formula consists only of the variable giving the psu membership. Do not
include the fpc argument when calling svydesign. Then svytotal, svymean, and other
functions will calculate the with-replacement variance.

Option 2. Calculate the without-replacement variance. When an SRS or strati�ed
random sample is taken at all stages of sampling, you can specify all stages of sampling
in the svydesign function and calculate without-replacement variances. For a two-stage
sample, call the svydesign function as:

svydesign(id=�psuid+ssuid,fpc=�psufpc+ssufpc,data=dataset).

The id formula gives the variable identifying the psu membership followed by the variable
identifying the ssu membership. The fpc formula has psufpc, the variable giving the
population number of psus (= rep(N,nrow(dataset))), followed by ssufpc, the variable
giving the values of the psu size for each observation (= Mi for ssus in psu i).

No weights= argument is included. When the weights= argument is omitted, it is as-
sumed that an SRS is taken at both stages and the inclusion probabilities are calculated
from the population sizes given in fpc and the sample sizes in the data set. Thus, the
weights are assumed to be (NMi)/(nmi), where the values of n and mi are counted
from the data set and the values of N and Mi are given in the fpc arguments.

If there are more than two stages of sampling, and an exactly unbiased estimate of
the variance is desired, you need to include terms for all stages of sampling in the id
and fpc arguments of the svydesign function. If a survey has three stages, the without-
replacement variance estimate requires knowledge of the psu membership, population
size, and sample size; the ssu membership, population size, and sample size; and the
tertiary sampling unit membership, population size, and sample size.

It can be complicated to keep track of all this information. In addition, calculations
are done under the assumption that the �nal weights are the same as the sampling
weights (computed as the inverse of the inclusion probabilities)�that is, there are no
nonresponse adjustments or other modi�cations of the sampling weights.

Example 5.7 of SDA: With-replacement variance. Let's look at the with- and without-
replacement variance calculations for the schools data. The following code calculates the
with-replacement variance. Note that only the psu-level clustering is speci�ed in the id
argument and that the vector of student-level weights is provided. We can also estimate
the proportion and total number of students having mathlevel=2 by treating mathlevel as
a factor variable.

data(schools)

head(schools)

schoolid gender math reading mathlevel readlevel Mi finalwt

1 9 F 42 42 2 2 163 61.125

2 9 F 29 30 1 1 163 61.125

3 9 M 31 25 1 1 163 61.125

4 9 F 22 33 1 2 163 61.125

5 9 M 35 36 1 2 163 61.125

Estimates from Multi-Stage Cluster Samples 59

6 9 F 30 17 1 1 163 61.125

calculate with-replacement variance; no fpc argument

include psu variable in id; include weights

dschools<-svydesign(id=~schoolid,weights=~finalwt,data=schools)

dschools tells you this is treated as a with-replacement sample

dschools

1 - level Cluster Sampling design (with replacement)

With (10) clusters.

svydesign(id = ~schoolid, weights = ~finalwt, data = schools)

mathmean<-svymean(~math,dschools)

mathmean

mean SE

math 33.123 1.7599

degf(dschools)

[1] 9

use t distribution for confidence intervals because there are only 10 psus

confint(mathmean,df=degf(dschools))

2.5 % 97.5 %

math 29.14179 37.1041

estimate proportion and total number of students with mathlevel=2

svymean(~factor(mathlevel),dschools)

mean SE

factor(mathlevel)1 0.71231 0.0542

factor(mathlevel)2 0.28769 0.0542

svytotal(~factor(mathlevel),dschools)

total SE

factor(mathlevel)1 12303.4 2244.14

factor(mathlevel)2 4969.1 676.26

Example 5.7 of SDA: Without-replacement variance. The svymean function will calculate
without-replacement variances when simple or strati�ed random sampling is used at each
stage. (As of this writing it does not do so for all designs, and thus will not compute the
without-replacement variance for most of the unequal-probability samples that are discussed
in Chapter 6.) To use it with the schools data, put both stages of clustering in the id
argument and put both the psu and the ssu population sizes in the fpc argument. Do not
include the weights argument.

create a variable giving each student an id number

schools$studentid<-1:(nrow(schools))

calculate without-replacement variance using svymean

specify both stages of the sample in the id argument

give both sets of population sizes in the fpc argument

do not include the weight argument

dschoolwor<-svydesign(id=~schoolid+studentid,fpc=~rep(75,nrow(schools))+Mi,

data=schools)

dschoolwor

2 - level Cluster Sampling design

With (10, 200) clusters.

svydesign(id = ~schoolid + studentid, fpc = ~rep(75, nrow(schools)) +

Mi, data = schools)

mathmeanwor<-svymean(~math,dschoolwor)

mathmeanwor

mean SE

math 33.123 1.6605

confint(mathmeanwor,df=degf(dschoolwor))

2.5 % 97.5 %

60 Cluster Sampling with Equal Probabilities

math 29.36667 36.87923

estimate proportion and total number of students with mathlevel=2

svymean(~factor(mathlevel),dschoolwor)

mean SE

factor(mathlevel)1 0.71231 0.0516

factor(mathlevel)2 0.28769 0.0516

svytotal(~factor(mathlevel),dschoolwor)

total SE

factor(mathlevel)1 12303.4 2097.83

factor(mathlevel)2 4969.1 657.69

In the schools data, variable Mi gives the population number of students in each school.
This information must be available in the data set to be able to calculate the without-
replacement variance. The design object dschoolwor repeats that this is a �2-level Cluster
Sampling Design� with 10 psus and 200 ssus.

Even with the relatively large sampling fractions in this example, the with- and without-
replacement standard errors are similar. For variable math, the with-replacement standard
error is 1.76 and the without-replacement standard error is 1.66.

In general, we recommend calculating the with-replacement variance (omitting the fpc argu-
ment) for multi-stage cluster sampling. It produces a variance estimate whose expectation
is slightly larger than the true variance but if n/N is small the di�erence is negligible. If
given a choice, most statisticians would prefer to present a standard error that is slightly
too large rather than one that is known to be too small�the latter choice leads to claiming
that estimates are more precise than they really are.

The most important thing to keep in mind for computing standard errors for cluster samples
is that ssus in the same psu are usually more homogeneous than randomly selected ssus
from the population. Thus, the essential feature for calculating standard errors is to capture
that homogeneity by including the id=�psuid argument in svydesign. The issue of �to fpc
or not to fpc� is minor compared with the e�ect of clustering.

5.3 Model-Based Design and Analysis for Cluster Samples

We often use models when designing a cluster sample, as shown in Section 5.4 of SDA. Data
from a previous survey or pilot sample may be used to estimate the optimal subsampling
or psu size. This often involves estimating the value of R2 or R2

a, which can be obtained
from an Analysis of Variance (ANOVA) table.

Example 5.12 of SDA. The following shows how to derive an ANOVA table for the schools
data.

run lm with schoolid as a factor

fit5.12<-lm(math~factor(schoolid), data=schools)

print ANOVA table

anova(fit5.12)

Analysis of Variance Table

##

Response: math

Df Sum Sq Mean Sq F value Pr(>F)

factor(schoolid) 9 7018.5 779.83 7.5834 1.785e-09 ***

Model-Based Design and Analysis for Cluster Samples 61

Residuals 190 19538.4 102.83

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

extract the value of R-squared and adjusted R-squared

summary(fit5.12)$r.squared

[1] 0.264281

summary(fit5.12)$adj.r.squared

[1] 0.2294312

Example 5.14 of SDA. This example employs a random e�ects model, in which the school
means are assumed to be normally distributed random variables with mean µ. In packages
nlme (Pinheiro et al., 2021) and lme4 (Bates et al., 2015, 2020), the lme (short for linear
mixed e�ects) and lmer functions, respectively, calculate estimates from random e�ects
models.

We use function lme for this example. For the one-way random e�ects model, the only �xed
e�ect is the mean, so the �xed formula is fixed=math~1. Random e�ects are speci�ed in the
random argument so factor(schoolid), the factor variable describing the psu membership, is
placed behind the vertical bar in the random argument.

library(nlme)

fit5.14 <- lme(fixed=math~1,random=~1|factor(schoolid),data=schools)

summary(fit5.14)

Linear mixed-effects model fit by REML

Data: schools

AIC BIC logLik

1516.259 1526.139 -755.1295

##

Random effects:

Formula: ~1 | factor(schoolid)

(Intercept) Residual

StdDev: 5.818064 10.14069

##

Fixed effects: math ~ 1

Value Std.Error DF t-value p-value

(Intercept) 34.66 1.974628 190 17.55267 0

##

Standardized Within-Group Residuals:

Min Q1 Med Q3 Max

-2.26713655 -0.74262324 -0.09451607 0.79142521 2.18576500

##

Number of Observations: 200

Number of Groups: 10

extract the variance components

VarCorr(fit5.14)

factor(schoolid) = pdLogChol(1)

Variance StdDev

(Intercept) 33.84987 5.818064

Residual 102.83368 10.140694

A model-based analysis predicts the values of observations that are not observed in the
data. For this data set, the unobserved values are the students who are not measured in the
sampled schools, as well as all of the unsampled schools in the population. The estimated
mean 34.66 from the output under �Fixed effects: math � 1" does not account for the
population sizes of the di�erent schools, and gives a di�erent estimate than in Example 5.7

62 Cluster Sampling with Equal Probabilities

of SDA.

The residuals and predicted values from the model can be obtained by requesting
resid(fit5.14) and predict(fit5.14). You can also type plot(fit5.14) to obtain a
plot of standardized residuals versus �tted values.

5.4 Additional Code for Exercises

Exercise 40 of SDA. The exercise uses the function intervals_ex40, available from the book
website and R package SDAResources. To run the function, load the package SDAResources
and type

intervals_ex40(groupcorr=0, numintervals=100, groupsize=5, sampgroups=10,

popgroups=5000, mu=0, sigma=1)

using the desired values for the arguments. The function call given above uses the default
values of the arguments and will give the same results as running intervals().

The arguments of function intervals_ex40 are given in Table 5.1.

TABLE 5.1
Arguments of the intervals_ex40 function.

Argument Description

groupcorr Desired intraclass correlation coe�cient, must be between 0 and 1
(default is 0).

numintervals Number of con�dence intervals to be generated (default is 100).
groupsize Number of observations, M , in each population cluster (default

is 5).
sampgroups Number of clusters to be sampled (default is 10).
popgroups Number of clusters in population (default is 5000). This should be

set to be at least 200 times as large as the value of sampgroups so
that the fpc is negligible.

mu Population mean (default is 0).
sigma Population standard deviation (default is 1).

For the exercise, you are asked to generate 100 intervals of 50 observations each, taken in
10 clusters of size 5. This uses the default values of all arguments except for ICC. When
running the function, you only need to specify the arguments that di�er from the default
values, so that you can generate 100 intervals with ICC = 0.3 by running the function with
argument groupcorr=0.3.

set.seed(9231)

generate intervals for cluster sample with groupcorr = 0.3

intervals_ex40(groupcorr = 0.3) #leave other parameters unchanged

Number_of_intervals SRS_cover_prob Cluster_cover_prob

100.0000000 0.8000000 0.9500000

SRS_mean_CI_width Cluter_mean_CI_width

0.5556272 0.9111856

Replicate mu sample_mean srs_lci srs_uci in_srs_ci SRS_CI_width

[1,] 1 0 -0.07311322 -0.35806539 0.21183894 1 0.5699043

[2,] 2 0 0.25038517 -0.05127437 0.55204471 1 0.6033191

Additional Code for Exercises 63

[3,] 3 0 0.03499401 -0.27232646 0.34231448 1 0.6146409

[4,] 4 0 -0.18948478 -0.45038074 0.07141119 1 0.5217919

[5,] 5 0 0.14058713 -0.08585203 0.36702629 1 0.4528783

clus_lci clus_uci in_clu_ci clus_CI_width

[1,] -0.6526766 0.5064502 1 1.1591268

[2,] -0.2716028 0.7723731 1 1.0439759

[3,] -0.4941334 0.5641214 1 1.0582548

[4,] -0.5814274 0.2024579 1 0.7838853

[5,] -0.2344528 0.5156271 1 0.7500799

2 4 6 8 10

−
2

−
1

0
1

2

Data values from sample 100

group number

x

−2 −1 0 1 2

0
20

40
60

80
10

0

assuming SRS

in
te

rv
al

−2 −1 0 1 2

0
20

40
60

80
10

0

using sampling design

in
te

rv
al

FIGURE 5.1: Interval estimates created assuming SRS and using clustering formulas

We initialized the random number seed so that we could reproduce the intervals later, but
if you are repeating the exercise you may want to let the computer generate your starting
seed (otherwise, you may get the same set of samples each time).

� Function intervals_ex40 calculates two sets of interval estimates: a set that uses SRS
formulas and hence has coverage probability (proportion of intervals that include the
true population mean 0) SRS_cover_prob of 0.80 that is less than 0.95, and a second set
that calculates the correct con�dence intervals using the formulas for one-stage cluster
sampling with coverage probability Cluster_cover_prob of 0.95.

� It also prints the average width of the interval estimates for the two methods: SRS_mean
_CI_width of 0.5556272 which is less than Cluster_mean_CI_width of 0.9111856.

� The �rst �ve replicates and their summary statistics are printed, where srs_lci is the
lower limit, and srs_uci is the upper limit from SRS estimate. Similarly, clus_lci and
clus_uci are the lower and upper con�dence limits from the estimate calculated using

64 Cluster Sampling with Equal Probabilities

the clustering. If desired, the function can be modi�ed so that information from all
replicates is stored in a data set.

� Three graphs are produced, similar to those in Figure 5.1. The �rst graph shows a scat-
ter plot of the last simulated sample, the second graph shows the interval estimates
produced for each sample if analyzed as an SRS, and the third shows the interval es-
timates produced for each sample when analyzed as a cluster sample. When the graph
is produced in color, intervals that include the true value of the population mean are
black, and those that do not include the true value are red.

The estimated coverage probability for each procedure is the proportion of intervals that
include the true population mean. In Figure 5.1, the estimated coverage probability of
the procedure that (incorrectly) treats the data as an SRS is 0.80�substantially smaller
than the nominal 0.95 probability of a con�dence interval.

5.5 Summary, Tips, and Warnings

Table 5.2 lists the main R functions used in this chapter. We have seen most of these before;
the main di�erence is how the survey design is speci�ed in the svydesign function to indicate
the clustering.

TABLE 5.2
Functions used for Chapter 5.

Function Package Usage

tapply base Apply a function to each group of values; groups are
de�ned by the second argument

con�nt stats Calculate con�dence intervals, add df for t con�dence
interval

lm stats Fit a linear model to a data set (not using survey meth-
ods)

lme nlme Fit a random-e�ects or mixed-e�ects model to a data
set (not using survey methods)

svydesign survey Specify the survey design
svymean survey Calculate mean and standard error of mean
svytotal survey Calculate total and standard error of total
intervals_ex40 SDAResources Show di�erences between (incorrect) SRS formulas and

(correct) cluster formulas applied to cluster samples

In the survey package, clusters are identi�ed in the id= argument of the svydesign func-
tion. The general form of the svydesign function for a one-stage cluster sample (without
strati�cation) is:

svydesign(id=�psuvar,weights=�weightvar,fpc=rep(N,nobs),data=dataset)

where psuvar is the name of the variable in dataset containing the psu identi�ers. The
variable weightvar contains the weights for the observation units in the data. If an fpc is
desired (and often it is not), N is the number of psus in the population, and nobs is the
number of psus in the sample.

Summary, Tips, and Warnings 65

For multi-stage cluster sampling (again without strati�cation), the following form of the
svydesign function will calculate point estimates with the weights in weightvar and with-
replacement standard errors (note the absence of the fpc argument):

svydesign(id=�psuvar,weights=�weightvar,data=dataset).

After specifying the survey design, the svymean and svytotal functions are used exactly as
in other chapters. The only di�erence for cluster sampling is that you must list the cluster
variable(s) in the svydesign function.

Tips and Warnings

� Use the id argument to specify the clustering, and check that the number of clusters
listed when you print the survey design object equals the number of psus in your sample.

� When calculating estimates for one-stage cluster samples, or for two-stage cluster sam-
ples using with-replacement variance estimates, include the weights argument when
specifying the survey design. The weight variable should contain the �nal weights at the
observation level. Check that the sum of the weights approximately equals the number
of observation units in the population.

� In general, we recommend calculating with-replacement variances, but the survey pack-
age functions will also calculate without-replacement variances for the designs discussed
in this chapter, where an SRS is taken at each stage of sampling. If you calculate the
without-replacement variances for a two-stage cluster design, it is useful to check these
by also calculating the with-replacement variance (they should be close).

6

Sampling with Unequal Probabilities

In this chapter, we discuss how to select a sample with equal or unequal probabilities, and
how to compute estimates from an unequal probability sample. The code is in �le ch06.R

on the book website.

Let's start with sample selection. Section 6.1 tells how to select a one-stage cluster sample
with equal or unequal probabilities, and Section 6.2 presents two methods for selecting
a two-stage sample. We'll look at code for computing estimates for unequal-probability
samples in Section 6.3.

6.1 Selecting a Sample with Unequal Probabilities

This section shows how to select a sample of primary sampling units (psus) with unequal
probabilities with the sample function and with functions from the sampling package (Tillé
and Matei, 2021). Subsampling all secondary sampling units (ssus) in the selected psus will
give a one-stage cluster sample.

6.1.1 Sampling With Replacement

Example 6.2 of SDA. In Chapters 2 through 5, units, whether observation units or clusters,
were selected with equal probabilities. In Example 6.2, 5 classes are sampled from 15 classes
with probability proportional to size (pps) and with replacement.

Section 2.1 showed how to use the sample function to select a simple random sample, with or
without replacement. It can also be used to select a with-replacement sample with unequal
probabilities by including the optional prob argument. Call the function as

sample(1:N,n,replace=TRUE,prob=probvar)

where N is the number of psus in the population, n is the desired sample size of psus, and
probvar is a vector of length N that gives the size measures or selection probabilities for
the psus. In this example, psus are classes, and class_size gives the number of students in
the class.

data(classes)

classes[1:2,]

class class_size

1 1 44

2 2 33

N<-nrow(classes)

set.seed(78065)

select 5 classes with probability proportional to class size and with replacement

sample_units<-sample(1:N,5,replace=TRUE,prob=classes$class_size)

66

Selecting a Sample with Unequal Probabilities 67

sample_units

[1] 5 14 6 14 6

mysample<-classes[sample_units,]

mysample

class class_size

5 5 76

14 14 100

6 6 63

14.1 14 100

6.1 6 63

calculate ExpectedHits and sampling weights

mysample$ExpectedHits<-5*mysample$class_size/sum(classes$class_size)

mysample$SamplingWeight<-1/mysample$ExpectedHits

mysample$psuid<-row.names(mysample)

mysample

class class_size ExpectedHits SamplingWeight psuid

5 5 76 0.5873261 1.702632 5

14 14 100 0.7727975 1.294000 14

6 6 63 0.4868624 2.053968 6

14.1 14 100 0.7727975 1.294000 14.1

6.1 6 63 0.4868624 2.053968 6.1

check sum of sampling weights

sum(mysample$SamplingWeight)

[1] 8.398568

� Note that classes 6 and 14 both appear twice in the sample. When collecting data
in one stage, each student within class 6 and 14 must be included twice. Otherwise
estimates will be biased. If collecting data in two stages, you would take two independent
subsamples from class 6 and two independent subsamples from class 14.

When analyzing the data, make sure you use di�erent psu names for the multiple in-
stances of psus that appear more than once. For this example, you might want to use
row.names(mysample) as the psu identi�er, since it gives a unique name to each sampled
psu.

� After selecting the sample, we need to calculate the sampling weights. The ExpectedHits
variable gives nψi, where n is the sample size and ψi is the draw-by-draw selection
probability that is proportional to class_size (note that the values of ψi sum to 1).
This is the number of times we expect the unit to be in the sample. For example, class
5 has ExpectedHits = 5*76/647 = 0.5873261.

Then, the SamplingWeight is 1/ExpectedHits = 1/(nψi) for with-replacement sampling.

� The sum of the sampling weights for the sample is an unbiased estimator N . For this
small sample, however, the weight sum does not equal N (see Exercise 6.45 of SDA).

6.1.2 Sampling Without Replacement

There are several functions in the sampling package that will select unequal-probability
samples without replacement. When the list of units in the sampling frame is in random
order, systematic sampling is likely to produce a sample that behaves like an SRS with-
out replacement. The cluster function in package sampling can select a pps sample using
systematic sampling.

The following code shows how the cluster function is called.

68 Sampling with Unequal Probabilities

set.seed(330582)

cluster(data=classes, clustername=c("class"), size=5, method="systematic",

pik=classes$class_size,description=TRUE)

Number of selected clusters: 5

Number of units in the population and number of selected units: 15 5

class ID_unit Prob

1 1 1 0.3400309

2 5 5 0.5873261

3 8 8 0.3400309

4 11 11 0.3554869

5 14 14 0.7727975

The following arguments of the cluster function are used:

� pik is the vector of inclusion probabilities (or a vector of relative unit sizes that can
be used to compute the probabilities). In this example, pik is class_size, the auxiliary
variable that gives the size of each class.

� size=5 requests a sample of 5 units.

� method="systematic" describes the method used to select the sample. The cluster
function can also be called with methods "srswor" (simple random sampling with-
out replacement), "srswr" (simple random sampling with replacement), or "poisson"
(Poisson sampling). The pik argument is not needed with methods srswor and srswr.

� description=TRUE asks the function to print the number of population and sampled
units.

The cluster function creates variable Prob that includes the �nal inclusion probabilities for
the units in the sample. You can compute sampling weights as 1/Prob.

Other functions are also available for selecting unequal-probability samples. Table 6.1 lists
sample selection functions in the sampling package that correspond to methods discussed
in Chapters 5 and 6 of SDA. Tillé (2006) describes these and additional methods in the
sampling package (the functions that select unequal-probability samples have names that
begin with UP) for selecting samples. Another resource is the pps package (Gambino, 2021),
which contains several functions for selecting unequal-probability samples.

You may also want to consider writing your own function or using a di�erent software
package for selecting samples, if none of the methods implemented in R meet your needs.
The SURVEYSELECT procedure in SAS software provides additional options for selecting
without-replacement probability samples, including the Hanurav�Vijayan method (Hanu-
rav, 1967; Vijayan, 1968) which gives correct inclusion probabilities and sampling weights;
see SAS Institute Inc. (2021) and Lohr (2022) for details.

6.2 Selecting a Two-stage Cluster Sample

There are several ways to select a two-stage cluster sample in R. The mstage function from
the sampling package will select both stages at once, if the methods used for selection are
simple random, systematic, or Poisson sampling. Alternatively, you can select the units at
each stage separately: First select the psus, then select a sample of secondary sampling units
(ssus) from the selected psus.

Selecting a Two-stage Cluster Sample 69

TABLE 6.1
Some functions for selecting a probability sample in the sampling package.

Function Description

UPbrewer(pik) Select an unequal-probability sample without replacement
containing 2 psus per stratum using Brewer's (1963; 1975)
method. The pik argument contains the desired inclusion prob-
abilities πi. Note that there is no argument for the sample size.
For all of the UP sample selection methods, the sample size is
assumed to be implicit in the pik vector because

∑N
k=1 πk = n.

The function
inclusionprobabilities(size,n)

will compute pik from a vector size of positive numbers and
desired sample size n.

UPpoisson(pik) Select a sample (of variable size) using Poisson sampling. The
pik argument contains the desired inclusion probabilities πk
for each unit, and these should be between 0 and 1.

UPsystematic(pik) Select an unequal-probability sample via systematic sampling.
UPsampford(pik) Select an unequal-probability sample using Sampford's (1967)

method, an extension of Brewer's method that allows drawing
more than 2 psus per stratum.

srswor(n,N) Select an SRS of size n without replacement from a population
of size N .

srswr(n,N) Select an SRS of size n with replacement from a population of
size N .

Example 6.11 of SDA: Selection with mstage function. In Chapter 1, we expanded data
classes to a long format that includes student information. Let's redo that here.

create data frame classeslong

data(classes)

classeslong<-classes[rep(1:nrow(classes),times=classes$class_size),]

classeslong$studentid <- sequence(classes$class_size)

nrow(classeslong)

[1] 647

table(classeslong$class) # check class sizes

##

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

44 33 26 22 76 63 20 44 54 34 46 24 46 100 15

head(classeslong)

class class_size studentid

1 1 44 1

1.1 1 44 2

1.2 1 44 3

1.3 1 44 4

1.4 1 44 5

1.5 1 44 6

We now use the mstage function to select a pps systematic sample of 5 classes, and take
an SRS without replacement of 4 students from each class. Each class in the psu sample
can therefore be considered as a stratum for sample selection purposes, and an independent
sample of size 4 is taken from each stratum. We call the function as

70 Sampling with Unequal Probabilities

mstage(classeslong,stage=list("cluster","stratified"),

varnames=list("class","studentid"),

size=numberselect, method=list("systematic","srswor"),pik=prob)

In the function mstage, sampling speci�cations for the di�erent stages are given in list
objects. Lists in R allow you to combine structures of di�erent type; here, the lists consist
of vectors that have di�erent lengths. If there are four stages of sampling, each list will have
four components, each in the order of the stages of sampling. This example is for two-stage
sampling, so each list has two components.

� The two stages are denoted by stage=list("cluster","stratified"), and the
corresponding list naming the strati�cation or clustering variables at the stages is
varnames=list("classid","studentid").

For this example, a cluster sample of psus, identi�ed by classid, is desired for the �rst
stage of sampling. After the psus are selected, the frame for the second stage of sampling
consists of the listing of ssus for the sample of 5 psus. An SRS is selected from each of
those 5 psus, so the method used is "stratified".

� The desired sample sizes are given in the size argument as a list containing two levels.
Here, we set size equal to the list numberselect<-list(5,rep(4,5)). We want to select
a sample of 5 psus and then a subsample of 4 ssus from each sampled psu.

� The sampling methods at the two stages, systematic and simple random sampling re-
spectively, are denoted by method=list("systematic","srswor").

� The selection probabilities are given in pik=prob, where

prob<-list(classes$class_size/647,4/classeslong$class_size)

or

prob<-list(classes$class_size/647)

srswor is with probability of 4/classeslong$class_size by default

since ssu sample size of 4 is supplied in numberselect argument

As always, you can set the seed to any integer you like; this allows you to re-create the
sample later. Note that the sample in this book has di�erent psus than the sample in SDA,
which was selected using SAS software (SAS Institute Inc., 2021).

select a two-stage cluster sample, psu: class, ssu: studentid

number of psus selected: n = 5 (pps systematic)

number of students selected: m_i = 4 (srs without replacement)

problist<-list(classes$class_size/647) # same results as next command

problist<-list(classes$class_size/647,4/classeslong$class_size) #selection prob

problist[[1]] # extract the first object in the list. This is pps, size M_i/M

[1] 0.06800618 0.05100464 0.04018547 0.03400309 0.11746522 0.09737249

[7] 0.03091190 0.06800618 0.08346213 0.05255023 0.07109737 0.03709428

[13] 0.07109737 0.15455951 0.02318393

problist[[2]][1:5] # first 5 values in second object in list

[1] 0.09090909 0.09090909 0.09090909 0.09090909 0.09090909

number of psus and ssus

n<-5

numberselect<-list(n,rep(4,n))

numberselect

[[1]]

[1] 5

##

[[2]]

Selecting a Two-stage Cluster Sample 71

[1] 4 4 4 4 4

two-stage sampling

set.seed(75745)

tempid<-mstage(classeslong,stage=list("cluster","stratified"),

varnames=list("class","studentid"),

size=numberselect, method=list("systematic","srswor"),pik=problist)

The output tempid contains two objects

sample1<-getdata(classeslong,tempid)[[1]]

sample2<-getdata(classeslong,tempid)[[2]].

Here, sample1 contains the classes selected at stage 1 along with the selection probabilities
Prob_ 1 _stage, and sample2 contains the selected ssus and the second-stage sampling
probabilities, as well as the �nal selection probabilities Prob (which equals the product of
Prob_ 1 _stage and Prob_ 2 _stage). We only need sample2 but also show sample1 so
you can see the stage-1 probabilities.

get data

sample1<-getdata(classeslong,tempid)[[1]]

sample 1 contains the ssus of the 5 psus chosen at the first stage

Prob_ 1 _stage has the first-stage selection probabilities

head(sample1)

class_size studentid class ID_unit Prob_ 1 _stage

4.21 22 22 4 125 0.1700155

4.20 22 21 4 124 0.1700155

4.6 22 7 4 110 0.1700155

4 22 1 4 104 0.1700155

4.7 22 8 4 111 0.1700155

4.8 22 9 4 112 0.1700155

nrow(sample1)

[1] 285

table(sample1$class) # lists the psus selected in the first stage

##

4 6 9 13 14

22 63 54 46 100

sample2<-getdata(classeslong,tempid)[[2]]

sample 2 contains the final sample

Prob_ 2 _stage has the second-stage selection probabilities

Prob has the final selection probabilities

head(sample2)

class class_size studentid ID_unit Prob_ 2 _stage Prob

4.21 4 22 22 125 0.18181818 0.0309119

4.7 4 22 8 111 0.18181818 0.0309119

4.5 4 22 6 109 0.18181818 0.0309119

4.19 4 22 20 123 0.18181818 0.0309119

6.48 6 63 49 250 0.06349206 0.0309119

6.53 6 63 54 255 0.06349206 0.0309119

nrow(sample2) # sample of 20 ssus altogether

[1] 20

table(sample2$class) # 4 ssus selected from each psu

##

4 6 9 13 14

4 4 4 4 4

calculate final weight = 1/Prob

sample2$finalweight<-1/sample2$Prob

72 Sampling with Unequal Probabilities

check that sum of final sampling weight equals population size

sum(sample2$finalweight)

[1] 647

sample2[,c(1,2,3,6,7)] # print variables from final sample

class class_size studentid Prob finalweight

4.21 4 22 22 0.0309119 32.35

4.7 4 22 8 0.0309119 32.35

4.5 4 22 6 0.0309119 32.35

4.19 4 22 20 0.0309119 32.35

6.48 6 63 49 0.0309119 32.35

6.53 6 63 54 0.0309119 32.35

6.23 6 63 24 0.0309119 32.35

6.33 6 63 34 0.0309119 32.35

9.50 9 54 51 0.0309119 32.35

9.29 9 54 30 0.0309119 32.35

9.31 9 54 32 0.0309119 32.35

9.36 9 54 37 0.0309119 32.35

13.10 13 46 11 0.0309119 32.35

13 13 46 1 0.0309119 32.35

13.45 13 46 46 0.0309119 32.35

13.39 13 46 40 0.0309119 32.35

14.4 14 100 5 0.0309119 32.35

14.78 14 100 79 0.0309119 32.35

14.98 14 100 99 0.0309119 32.35

14.63 14 100 64 0.0309119 32.35

The �nal sampling weight �nalweight is the reciprocal of �nal selection probability. The
psus were selected with probabilities 5Mi/647 and the ssus for psu i were selected with
probability 4/Mi, so the �nal weight is [647/(5Mi)](Mi/4) = 647/20 = 32.35 for each ssu
in the sample.

Example 6.11 of SDA: Selection in two steps. Another option, if you want to use a
method other than systematic sampling to select the psus with unequal probabilities, is
to select the �rst-stage units and the second-stage units in separate steps. This is often
more convenient for populations where the psu sizes Mi are known only for units in the
sample. For example, if nursing homes are psus, you may have to �nd out the value of Mi

directly from each home and thus would know these values only after the �rst-stage sample
is selected.

Let's select a sample from data set classes in two stages. In this example we use function
UPsampford (see Table 6.1) instead of systematic sampling to select 5 classes (psus) at the
�rst stage of sample selection. We call

UPsampford(pik)

where pik is a vector of length N containing the desired inclusion probabilities. The func-
tion has no argument for the sample size; it is assumed that sum(pik)=n. The function
inclusionprobabilities will compute pik, having sum n, from the desired sample size and a
vector of positive numbers that gives the relative sizes of the units.

select a cluster sample in two stages, psu: class, ssu: studentid

number of psu selected n =5 (Sampford's method)

first, convert the measure of size to a vector of probabilities

classes$stage1prob<-inclusionprobabilities(classes$class_size,5)

sum(classes$stage1prob) # inclusion probabilities sum to n

[1] 5

Selecting a Two-stage Cluster Sample 73

select the psus

set.seed(29385739)

stage1.units<-UPsampford(classes$stage1prob)

stage1.sample<-getdata(classes,stage1.units)

stage1.sample

ID_unit class class_size stage1prob

1 1 1 44 0.3400309

3 3 3 26 0.2009274

7 7 7 20 0.1545595

13 13 13 46 0.3554869

14 14 14 100 0.7727975

The data frame stage1.sample contains the psus (classes) for the sample. Variable stage1prob
contains the �rst-stage selection probabilities that we computed from the class_size vari-
able. Now we can use the function to select the second-stage units. Since we have already
formed the data frame stage1.sample that consists only of the sampled psus, and want to
select an SRS from each sampled psu, the strata function provides a convenient way of doing
that.

To draw an SRS of students from each sampled psu, we �rst create data frame stage1.long
with a data record for each student in the sampled classes, and then take an SRS of 4
students from each class.

first-stage units are in stage1.sample

now select the second-stage units (students)

convert the psus in the sample to long format and assign student ids

npsu<-nrow(stage1.sample)

stage1.long<-stage1.sample[rep(1:npsu,times=stage1.sample$class_size),]

stage1.long$studentid<-sequence(stage1.sample$class_size)

head(stage1.long)

ID_unit class class_size stage1prob studentid

1 1 1 44 0.3400309 1

1.1 1 1 44 0.3400309 2

1.2 1 1 44 0.3400309 3

1.3 1 1 44 0.3400309 4

1.4 1 1 44 0.3400309 5

1.5 1 1 44 0.3400309 6

use strata function to select 4 ssus from each psu

stage2.units<-strata(stage1.long, stratanames=c("class"),

size=rep(4,5), method="srswor")

nrow(stage2.units)

[1] 20

get the data for the second-stage sample

ssusample<-getdata(stage1.long,stage2.units)

head(ssusample)

class_size stage1prob studentid class ID_unit Prob Stratum

1.3 44 0.3400309 4 1 4 0.09090909 1

1.13 44 0.3400309 14 1 14 0.09090909 1

1.21 44 0.3400309 22 1 22 0.09090909 1

1.26 44 0.3400309 27 1 27 0.09090909 1

3.11 26 0.2009274 12 3 56 0.15384615 2

3.18 26 0.2009274 19 3 63 0.15384615 2

The last step is computing the �nal selection probability, accounting for both stages of sam-
pling, and the �nal sampling weight. In data frame ssusample, variable stage1prob contains
the psu-level sampling probability (we de�ned this variable earlier and used it to select the

74 Sampling with Unequal Probabilities

psus) and variable Prob contains the ssu-level sampling probability (this is computed by the
strata function and for this example equals 4/Mi). Thus, the selection probability for each
student in the sample is the product stage1prob × Prob. The �nal weight is the reciprocal
of the �nal selection probability, which for this example equals 32.35 for all students in the
sample because the �rst-stage sample was selected with probability proportional to Mi and
the same subsample size (here, mi = 4) was selected from each psu.

compute the sampling weights

stage1prob contains stage 1 sampling probability;

Prob has stage 2 sampling probability

ssusample$finalprob<- ssusample$stage1prob*ssusample$Prob

ssusample$finalwt<-1/ssusample$finalprob

sum(ssusample$finalwt) # check sum of weights

[1] 647

print selected columns of ssusample

print(ssusample[,c(1,2,3,4,6,8,9)],digits=4)

class_size stage1prob studentid class Prob finalprob finalwt

1.3 44 0.3400 4 1 0.09091 0.03091 32.35

1.13 44 0.3400 14 1 0.09091 0.03091 32.35

1.21 44 0.3400 22 1 0.09091 0.03091 32.35

1.26 44 0.3400 27 1 0.09091 0.03091 32.35

3.11 26 0.2009 12 3 0.15385 0.03091 32.35

3.18 26 0.2009 19 3 0.15385 0.03091 32.35

3.19 26 0.2009 20 3 0.15385 0.03091 32.35

3.24 26 0.2009 25 3 0.15385 0.03091 32.35

7.11 20 0.1546 12 7 0.20000 0.03091 32.35

7.13 20 0.1546 14 7 0.20000 0.03091 32.35

7.18 20 0.1546 19 7 0.20000 0.03091 32.35

7.19 20 0.1546 20 7 0.20000 0.03091 32.35

13.16 46 0.3555 17 13 0.08696 0.03091 32.35

13.31 46 0.3555 32 13 0.08696 0.03091 32.35

13.34 46 0.3555 35 13 0.08696 0.03091 32.35

13.42 46 0.3555 43 13 0.08696 0.03091 32.35

14.1 100 0.7728 2 14 0.04000 0.03091 32.35

14.20 100 0.7728 21 14 0.04000 0.03091 32.35

14.35 100 0.7728 36 14 0.04000 0.03091 32.35

14.68 100 0.7728 69 14 0.04000 0.03091 32.35

6.3 Computing Estimates from an Unequal-Probability Sample

The syntax used to compute estimates from an unequal-probability cluster sample is largely
the same as that used in Chapter 5 for equal-probability cluster samples. The svymean
and svytotal calculate estimates of means, totals, and proportions by using the formulas
with survey weights. When the fpc= argument is omitted from the svydesign function
call, standard errors are calculated with the formulas for the with-replacement variance in
Section 6.4 of SDA.

6.3.1 Estimates from With-Replacement Samples

Example 6.4 of SDA. This example shows how to calculate estimates when the cluster
total ti has already been found for each psu (or when the psus are also the observation units,

Computing Estimates from an Unequal-Probability Sample 75

i.e., Mi = 1 for all psus). Since the summary statistic has already been calculated for each
psu, the svydesign function is called with id=�1. We need only specify the unequal weights
using the weights argument to calculate the estimates. Class 14 appears twice in the data
since it was selected twice for the sample�we call it class 141 for the �rst appearance and
class 142 for the second to distinguish them.

The mean calculated from svymean estimates t̄U , the population mean of the cluster totals ti,
which for this example is the total amount of time spent studying by students in class i. The

average amount of time spent studying per student is estimated by the ratio ˆ̄yψ = ˆ̄tψ/
ˆ̄Mψ.

The svyratio function can give the estimate ˆ̄yψ. (If the data set consists of the individual
values yij instead of the summary statistics, then the mean ˆ̄yψ can be estimated directly
from svymean, as seen in the code below for Example 6.6 of SDA).

studystat <- data.frame(class = c(12, 141, 142, 5, 1),

Mi = c(24, 100, 100, 76, 44),

tothours=c(75,203,203,191,168))

studystat$wt<-647/(studystat$Mi*5)

sum(studystat$wt) # check weight sum, which estimates N=15 psus

[1] 12.62321

design for with-replacement sample, no fpc argument

d0604 <- svydesign(id = ~1, weights=~wt, data = studystat)

d0604

Independent Sampling design (with replacement)

svydesign(id = ~1, weights = ~wt, data = studystat)

Ratio estimation using Mi as auxiliary variable

ratio0604<-svyratio(~tothours, ~Mi,design = d0604)

ratio0604

Ratio estimator: svyratio.survey.design2(~tothours, ~Mi, design = d0604)

Ratios=

Mi

tothours 2.703268

SEs=

Mi

tothours 0.3437741

confint(ratio0604, level=.95,df=4)

2.5 % 97.5 %

tothours/Mi 1.748798 3.657738

Can also estimate total hours studied for all students in population

svytotal(~tothours,d0604)

total SE

tothours 1749 222.42

The average amount of time a student spent studying statistics is estimated as 2.70 hours
with estimated standard error of 0.34 hours, and a 95% con�dence interval of [1.74, 3.66].
Note that 4 degrees of freedom (1 less than the number of psus) are used for the con�dence
interval.

Example 6.6 of SDA. The estimates for a two-stage cluster sample with replacement are
calculated exactly the same way as a one-stage sample. For this example, we have data for
the individual students in the psus so we enter those for each student.

Class 14 appears twice in the sample of psus in Example 6.6. An independent set of students
is selected for each appearance. To enable correct variance calculations, the �rst occurrence
of class 14 is relabeled as class 141, and the second occurrence as class 142. These are counted
as two separate psus in the estimation. If you labeled both as 14, then the id argument of
svydesign would treat that as one psu with mi = 10 instead of two psus of size 5.

76 Sampling with Unequal Probabilities

The weight studentwt is calculated as the �rst-stage weight M0/(nMi) times the second-
stage weightMi/mi. The sample is self-weighting and the weight for each student simpli�es
to 647/25. For many problems, de�ning the weights is the trickiest part and it is also the
most important. Always check that the sum of the weights approximately (or exactly, in
this case) equals the population size.

students <- data.frame(class = rep(studystat$class,each=5),

popMi = rep(studystat$Mi,each=5),

sampmi=rep(5,25),

hours=c(2,3,2.5,3,1.5,2.5,2,3,0,0.5,3,0.5,1.5,2,3,1,2.5,3,5,2.5,4,4.5,3,2,5))

The 'with' function allows us to calculate using variables from a data frame

without having to type the data frame name for all of them

students$studentwt <- with(students,(647/(popMi*5)) * (popMi/sampmi))

check the sum of the weights

sum(students$studentwt)

[1] 647

create the design object

d0606 <- svydesign(id = ~class, weights=~studentwt, data = students)

d0606

1 - level Cluster Sampling design (with replacement)

With (5) clusters.

svydesign(id = ~class, weights = ~studentwt, data = students)

estimate mean and SE

svymean(~hours,d0606)

mean SE

hours 2.5 0.3606

degf(d0606)

[1] 4

confint(svymean(~hours,d0606),level=.95,df=4) #use t-approximation

2.5 % 97.5 %

hours 1.498938 3.501062

estimate total and SE

svytotal(~hours,d0606)

total SE

hours 1617.5 233.28

confint(svytotal(~hours,d0606),level=.95,df=4)

2.5 % 97.5 %

hours 969.8132 2265.187

In the svydesign function, we supply the weights (which for this example are the same for
all students) but no fpc argument. We specify the psu membership in the id argument. This
means that the variability is calculated at the �rst stage level using the pps with-replacement
formulas, i.e. the variability among t̂i/ψi. Note that 4 df (1 less than the number of psus)
are used for the con�dence interval.

6.3.2 Estimates from Without-Replacement Samples

Even when an unequal-probability sample was selected without replacement, the with-
replacement variance is commonly calculated for simplicity and stability. Use the weights ar-
gument to provide the sampling weights at the observation-unit level, and use the id=�psuid
argument to provide the information on psu membership (recall that only the psu member-
ship is needed to calculate the with-replacement variance).

Example 6.11 of SDA. This example analyzes the without-replacement unequal-probability
sample the same way as for the sample in Example 6.6. Even though the sample was selected

Computing Estimates from an Unequal-Probability Sample 77

without replacement, the with-replacement variance is calculated.

data(classpps)

nrow(classpps)

[1] 20

head(classpps)

class class_size finalweight hours

1 4 22 32.35 5.0

2 4 22 32.35 4.5

3 4 22 32.35 5.5

4 4 22 32.35 5.0

5 10 34 32.35 2.0

6 10 34 32.35 4.0

d0611 <- svydesign(ids = ~class, weights=~classpps$finalweight, data = classpps)

d0611

1 - level Cluster Sampling design (with replacement)

With (5) clusters.

svydesign(ids = ~class, weights = ~classpps$finalweight, data = classpps)

estimate mean and SE

svymean(~hours,d0611)

mean SE

hours 3.45 0.4819

confint(svymean(~hours,d0611),level=.95,df=4) #use t-approximation

2.5 % 97.5 %

hours 2.112147 4.787853

estimate total and SE

svytotal(~hours,d0611)

total SE

hours 2232.2 311.76

confint(svytotal(~hours,d0611),level=.95,df=4)

2.5 % 97.5 %

hours 1366.559 3097.741

Calculating the without-replacement variance for a one-stage sample. In general, we
recommend calculating the with-replacement variance estimate and omitting the fpc argu-
ment from svydesign when unequal-probability sampling is used. Most of the replication
methods for calculating variances in Chapter 9 also calculate with-replacement variances.
You can skip the remainder of this section if the with-replacement variances work for your
applications.

Functions in the survey package will calculate the without-replacement variance for some
one-stage designs if you specify the inclusion probabilities in the fpc argument. (As of
this writing, the package will not yet calculate without-replacement variances for two-stage
designs�the situation where unequal-probability sampling is most commonly used.) The
formulas for calculating the Horvitz-Thompson (HT), Sen-Yates-Grundy (SYG), and other
without-replacement variance estimates require knowledge of the joint inclusion probabili-
ties, so you must also supply those to the svydesign function.

Let's calculate some joint inclusion probabilities �rst and then use them in the svydesign
function. Functions in the sampling package will calculate joint inclusion probabilities for
some of the sample-selection methods; for example, function UPsampfordpi2 will calculate
the joint inclusion probabilities for a sample selected using Sampford's method. For some
other sample-selection methods, however, the joint inclusion probabilities must be calculated
directly.

78 Sampling with Unequal Probabilities

Example 6.8 of SDA. We use the supermarket example to illustrate the calculation of
joint inclusion probabilities when the sample size is 2. We �rst create a data frame of the
supermarket population with store id, area of store, and revenue.

supermarket<-data.frame(store=c('A','B','C','D'),area=c(100,200,300,1000),

ti=c(11,20,24,245))

supermarket

store area ti

1 A 100 11

2 B 200 20

3 C 300 24

4 D 1000 245

The draw-by-draw method was used to select two supermarkets for the sample, where the
selection probability for draw 1 was proportional to store area. We can use that information
to calculate πi, the probability of store i being included in the sample, and πik, the joint
probability that stores i and k are both included in the sample.

Here, we use matrix operations to calculate the probabilities by applying the formulas in
Example 6.8 of SDA, noting that if a and b are two vectors, the (i, j) entry of abT is aibj .
The apply function sums the entries in each column.

supermarket$psi<-supermarket$area/sum(supermarket$area)

psii<-supermarket$area/sum(supermarket$area)

piik<- psii %*% t(psii/(1-psii)) + (psii/(1-psii)) %*% t(psii)

diag(piik)<-rep(0,4) # set the diagonal entries of the matrix equal to zero

piik # joint inclusion probabilities

[,1] [,2] [,3] [,4]

[1,] 0.00000000 0.01726190 0.02692308 0.1458333

[2,] 0.01726190 0.00000000 0.05563187 0.2976190

[3,] 0.02692308 0.05563187 0.00000000 0.4567308

[4,] 0.14583333 0.29761905 0.45673077 0.0000000

pii<-apply(piik,2,sum)

pii # inclusion probabilities

[1] 0.1900183 0.3705128 0.5392857 0.9001832

The results show that π1 = 0.19, π2 = 0.37, π3 = 0.539, and π4 = 0.90. The joint inclusion
probabilities are given in piik : for example, π12 = 0.01726. These are the numbers shown
in Table 6.6 of SDA.

Now let's use the values of πi and πik to calculate the HT and SYG variance estimates.
Of course, since the supermarket sample has only two units, neither estimate will be very
accurate, but it will serve to illustrate the methods.

Example 6.9 of SDA. Suppose supermarkets C and D were selected from the population
in Example 6.8 of SDA. We will calculate the Horvitz�Thompson (HT) estimate for total
revenue and the without-replacement HT and SYG variance estimates.

As always, we specify all the information about the design in the svydesign function. We
tell the function that this is an unequal-probability sample without replacement through
the fpc argument. Instead of giving the population sizes in the fpc argument, however, for
pps sampling without replacement we specify fpc=~pii, the inclusion probability for each
sampled unit.

We also use two other arguments to the svydesign function that we have not seen before. The
variance= argument tells whether to calculate the HT or SYG (the function calls this �YG�)
formula for the variance. We supply the joint inclusion probabilities in the pps argument,

Computing Estimates from an Unequal-Probability Sample 79

after �rst placing πi on the diagonal elements of the joint probabilities matrix and using
the function ppsmat to get the joint probabilities in the form required by svydesign.

supermarket2<-supermarket[3:4,]

supermarket2$pii <- pii[3:4] # these are the unit inclusion probs when n=2

jointprob<-piik[3:4,3:4] # joint prob matrix for stores C and D

diag(jointprob)<-supermarket2$pii # set diagonal entries equal to pii

jointprob

[,1] [,2]

[1,] 0.5392857 0.4567308

[2,] 0.4567308 0.9001832

Horvitz-Thompson type

dht<- svydesign(id=~1, fpc=~pii, data=supermarket2,

pps=ppsmat(jointprob),variance="HT")

dht

Sparse-matrix design object:

svydesign(id = ~1, fpc = ~pii, data = supermarket2, pps = ppsmat(jointprob),

variance = "HT")

svytotal(~ti,dht)

total SE

ti 316.67 82.358

Sen-Yates-Grundy type

dsyg<- svydesign(id=~1, fpc=~pii, data=supermarket2,

pps=ppsmat(jointprob),variance="YG")

dsyg

Sparse-matrix design object:

svydesign(id = ~1, fpc = ~pii, data = supermarket2, pps = ppsmat(jointprob),

variance = "YG")

svytotal(~ti,dsyg)

total SE

ti 316.67 57.094

We can compare the variance estimates from the two methods with the true without-
replacement variance V (t̂HT) = 4383.6 in SDA (which is known for this small example
where the full population is known), with V̂HT(t̂HT) = (82.358)2 = 6782.8, and V̂SYG(t̂HT) =
(57.094)2 = 3259.8. In most situations, the SYG variance estimate is preferred because it is
more stable.

The svydesign function also provides some approximation methods to calculate without-
replacement variance estimates for one-stage samples. Option pps=HR(sum(piisq)/n),
where piisq is the vector of squared inclusion probabilities and n is the number of psus
selected, gives the Hartley and Rao (1962; see Exercise 36 of Chapter 6 in SDA) approxi-
mation to the variance.

Example 6.10 of SDA. Let's do one more example, to compare the with-replacement, HT,
and SYG variance estimates calculated for the unequal-probability sample in data agpps,
as well as the Hartley�Rao approximation. We would expect the with-replacement variance
estimate to work well here because n = 15 is small relative to N = 3078.

data(agpps)

jtprobag<-as.matrix(agpps[,20:34])

diag(jtprobag)<-agpps$SelectionProb

Horvitz-Thompson type

dhtag<- svydesign(id=~1, fpc=~SelectionProb, data=agpps,

pps=ppsmat(jtprobag),variance="HT")

svytotal(~acres92,dhtag)

80 Sampling with Unequal Probabilities

total SE

acres92 936291172 70466858

Sen-Yates-Grundy type

dsygag<- svydesign(id=~1, fpc=~SelectionProb, data=agpps,

pps=ppsmat(jtprobag),variance="YG")

svytotal(~acres92,dsygag)

total SE

acres92 936291172 11715201

Hartley-Rao approximation

sumsqprob<-sum(agpps$SelectionProb^2)/nrow(agpps)

dHRag<-svydesign(id=~1, fpc=~SelectionProb, data=agpps,

pps=HR(sumsqprob),variance="YG")

svytotal(~acres92,dHRag)

total SE

acres92 936291172 12148234

With-replacement variance

dwrag<-svydesign(id=~1, weights=~SamplingWeight, data=agpps)

svytotal(~acres92,dwrag)

total SE

acres92 936291172 12293009

Note that the with-replacement (12293009), SYG (11715201), and Hartley�Rao (12148234)
standard errors are all similar to each other. The HT standard error (70466858) is larger
and often less stable; in general, we recommend one of the other methods.

6.4 Summary, Tips, and Warnings

Several functions in the sampling package will select equal- and unequal-probability cluster
samples; some of these are listed in Table 6.1. The sample function can be used to select
with-replacement unequal-probability samples.

Table 6.2 lists the major R functions used in this chapter.

Tips and Warnings

� When selecting an unequal-probability sample, check the calculation of the selection
probabilities to make sure these are roughly proportional to the unit sizes.

� The more complex the sampling plan, the more complicated the weight calculations.
Check that the sum of the weights given by the survey analysis procedure approximately
equals the population size.

� For unequal-probability sampling, omitting the fpc argument in the svydesign function
gives the with-replacement variance. In general, this is the approach that we recommend.
If the without-replacement variance is desired, use the Sen-Yates-Grundy formula di-
rectly.

Summary, Tips, and Warnings 81

TABLE 6.2
Functions used for Chapter 6.

Function Package Usage

sample base Select a with-replacement sample with unequal proba-
bilities

con�nt stats Calculate con�dence intervals, add df for t con�dence
interval

apply base Apply a function to the rows or columns of a matrix
cluster sampling Select a cluster sample
strata sampling Select a strati�ed random sample (here used to select

ssus from the sampled psus)
mstage sampling Select a multi-stage cluster sample
UPsampford sampling Select an unequal-probability sample of units using

Sampford's method
inclusionprobabilities

sampling Convert a vector of positive size measures to selection
probabilities, for use in the UP selection functions

getdata sampling Extract the data after selecting a sample
svydesign survey Specify the survey design
svymean survey Calculate mean and standard error of mean
svyratio survey Calculate ratio and standard error of ratio
svytotal survey Calculate total and standard error of total

7

Complex Surveys

We have already seen most of the components needed for selecting and computing estimates
from a strati�ed multistage sample. Now let's put them all together. Section 7.1 tells how to
select a strati�ed two-stage sample, and Section 7.3 tells how to compute estimates, using
data from the National Health and Nutrition Examination Survey (NHANES).

The new features considered in this chapter are how to estimate quantiles (Section 7.2) and
how to graph survey data (Sections 7.4 and 7.5). The code is in �le ch07.R on the book
website.

7.1 Selecting a Strati�ed Two-Stage Sample

The following example selects a sample of classes from the small population considered in
Section 6.2 of SDA, after �rst dividing the classes into three strata based on their sizes.
Stratum 1 contains the two large classes, stratum 2 contains six medium-sized classes,
and stratum 3 contains the seven smallest classes. The code speci�es drawing two primary
sampling units (psus) without replacement (srswor) from each stratum, and drawing three
students without replacement from each selected class. Of course other allocations of psus
to strata can be used, as described in Chapter 3. The psus are arranged in strata, so the
only new feature here is to add the strati�cation information in the function mstage from
the sampling package (Tillé and Matei, 2021).

We use the classeslong data frame that we created in Section 1.5, where variable class gives
the psu number and variable studentid gives the student identi�er (numbered from 1 to
class_size) within each class.
data(classeslong)

define strata

classeslong$strat<-rep(3,nrow(classeslong))

classeslong$strat[classeslong$class_size > 40]<-2

classeslong$strat[classeslong$class_size > 70]<-1

table(classeslong$class,classeslong$strat)

order data by stratum

classeslong2<-classeslong[order(classeslong$strat),]

check the stratum construction

table(classeslong2$strat,classeslong2$class_size)

##

15 20 22 24 26 33 34 44 46 54 63 76 100

1 0 0 0 0 0 0 0 0 0 0 0 76 100

2 0 0 0 0 0 0 0 88 92 54 63 0 0

3 15 20 22 24 26 33 34 0 0 0 0 0 0

nrow(classeslong2) # number of students in population

[1] 647

82

Selecting a Strati�ed Two-Stage Sample 83

To select a strati�ed cluster sample using mstage, we �rst de�ne numberselect consisting of
information on stratum sizes, number of psus selected from each stratum, and number of
ssus (students) selected within each sampled psu as follows:

numberselect<-list(table(classeslong2$strat),rep(2,3),rep(3,6))

Next, use the mstage function to select a strati�ed two-stage cluster sample.

mstage(classeslong2,stage=list("stratified","cluster","stratified"),

varnames=list("strat","class","studentid"),

size=numberselect, method=list("","srswor","srswor"))

The stage argument for this example is a list with three components. The �rst component,
"stratified", de�nes the strati�cation for the psus, but nothing is selected at this stage
(the �rst component of method is blank). Then, an SRS of psus (variable class) is selected
within each stratum (this is described by the second components of stage, varnames, and
method). At this point, the sample consists of the selected psus from the 3 strata. We then
use "stratified" again to select an SRS of students from each sampled psu.

The result from mstage is a list with three components corresponding to the components of
stage in the function argument. The third component is the �nal sample, saved in sample3.
The variable Prob, computed by function mstage, is the �nal selection probability, and we
calculate �nalweight as its reciprocal.

select a stratified two stage cluster sample,

stratum: strat

psu: class

ssu: studentid

number of psus selected n =2, size=rep(n=2,3 strata) (srswor)

number of students selected m_i =3 size=rep(m_i= 3,6 classes) (srswor)

numberselect<-list(table(classeslong2$strat),rep(2,3),rep(3,6))

numberselect

[[1]]

##

1 2 3

176 297 174

##

[[2]]

[1] 2 2 2

##

[[3]]

[1] 3 3 3 3 3 3

select a stratified two-stage cluster sample

set.seed(75745)

tempid<-mstage(classeslong2,stage=list("stratified","cluster","stratified"),

varnames=list("strat","class","studentid"),

size=numberselect, method=list("","srswor","srswor"))

get data

sample3<-getdata(classeslong2,tempid)[[3]] #3rd stage

sample3$finalweight<-1/sample3$Prob

check sum of weights, should be close to number of students in population

(but not exactly equal, since psus not selected with prob proportional to M_i)

sum(sample3$finalweight)

[1] 624

sample3 # print the sample

class class_size studentid strat ID_unit Prob_ 3 _stage Prob

5.31 5 76 32 1 32 0.03947368 0.03947368

84 Complex Surveys

5.42 5 76 43 1 43 0.03947368 0.03947368

5.61 5 76 62 1 62 0.03947368 0.03947368

14.9 14 100 10 1 86 0.03000000 0.03000000

14.37 14 100 38 1 114 0.03000000 0.03000000

14.79 14 100 80 1 156 0.03000000 0.03000000

8.34 8 44 35 2 318 0.06818182 0.02272727

8.39 8 44 40 2 323 0.06818182 0.02272727

8.28 8 44 29 2 312 0.06818182 0.02272727

9.26 9 54 27 2 354 0.05555556 0.01851852

9.28 9 54 29 2 356 0.05555556 0.01851852

9.38 9 54 39 2 366 0.05555556 0.01851852

7.17 7 20 18 3 572 0.15000000 0.04285714

7.5 7 20 6 3 560 0.15000000 0.04285714

7.10 7 20 11 3 565 0.15000000 0.04285714

12.6 12 24 7 3 615 0.12500000 0.03571429

12.9 12 24 10 3 618 0.12500000 0.03571429

12.16 12 24 17 3 625 0.12500000 0.03571429

finalweight

5.31 25.33333

5.42 25.33333

5.61 25.33333

14.9 33.33333

14.37 33.33333

14.79 33.33333

8.34 44.00000

8.39 44.00000

8.28 44.00000

9.26 54.00000

9.28 54.00000

9.38 54.00000

7.17 23.33333

7.5 23.33333

7.10 23.33333

12.6 28.00000

12.9 28.00000

12.16 28.00000

You can also look at the selection probabilities for each stage if desired. The following
extracts the other stages in sample1 and sample2. The �rst stage de�nes the strati�cation,
so Prob_ 1 _stage is 1. Stratum 1 contains two psus, so the procedure selects each with
certainty. Classes are selected from stratum 2 with probability of 2/6, and classes are selected
from stratum 3 with probability of 2/7. These are reported as Prob_ 2 _stage of sample2.
At the third stage, Prob_ 3 _stage is calculated as 3/class_size. The �nal probability Prob
is calculated as 1*Prob_ 2 _stage*Prob_ 3 _stage.

sample1<-getdata(classeslong2,tempid)[[1]] #1st stage

sample2<-getdata(classeslong2,tempid)[[2]] #2nd stage

names(sample1)

[1] "class" "class_size" "studentid" "strat"

[5] "ID_unit" "Prob_ 1 _stage" "Stratum"

table(sample1$`Prob_ 1 _stage`)

##

1

647

table(sample2$strat,sample2$`Prob_ 2 _stage`) # Selection probs for psus in strata

Estimating Quantiles 85

##

0.285714285714286 0.333333333333333 1

1 0 0 176

2 0 98 0

3 44 0 0

table(sample3$class,sample3$`Prob_ 3 _stage`) # Selection probs for ssus in psus

##

0.03 0.0394736842105263 0.0555555555555556 0.0681818181818182 0.125 0.15

5 0 3 0 0 0 0

7 0 0 0 0 0 3

8 0 0 0 3 0 0

9 0 0 3 0 0 0

12 0 0 0 0 3 0

14 3 0 0 0 0 0

For more complicated designs, you may want to select the sample at each stage separately,
as illustrated in Section 6.2. For example, you can use function UPsampford to select a
sample of psus from each stratum, then select the sample at the subsequent stages.

7.2 Estimating Quantiles

Quantiles are estimated using the empirical cumulative distribution function (cdf) F̂ (y),
which is the sum of the weights for all sample observations having yi ≤ y. Because F̂ (y) has
jumps at the distinct values of y in the sample, however, for many values of q there is no
value of y in the sample that has F̂ (y) exactly equal to q. Multiple de�nitions for population
and sample quantiles have been proposed (Hyndman and Fan, 1996; Wang, 2021).

The svyquantile function in the survey package (Lumley, 2020) will provide several di�erent
estimates of quantiles and their standard errors. With ties="discrete", the empirical
cumulative distribution function (cdf) F̂ is used directly, with jumps at the values of y in
the sample. With ties="rounded" an interpolated cdf is used (see Exercise 7.19 of SDA).
We usually prefer interpolated quantiles, as they smooth out an empirical cdf that has large
jumps.

The quantiles θ̃q are calculated by requesting the desired quantile values in the svyquantile
statement. Request the 0.25, 0.5, 0.75, and 0.90 quantiles, for example, by typing quantiles
=c(0.25, 0.50, 0.75, 0.90).

Example 7.6 of SDA. The following code requests quantiles and CIs for the height values
in the SRS htsrs. Of course, for a complex design one would include strati�cation and
clustering information in the svydesign function.

data(htsrs)

dhtsrs<-svydesign(id = ~1,weights=rep(2000/200,200),fpc=rep(2000,200), data=htsrs)

cdf treated as step function, gives values in Table 7.1 of SDA

svyquantile(~height, dhtsrs, quantiles=c(0.25,0.5,0.75,0.9), ties = "discrete")

0.25 0.5 0.75 0.9

height 160 169 176 184

interpolated quantiles (usually preferred method)

svyquantile(~height, dhtsrs, quantiles=c(0.25,0.5,0.75,0.9), ties = "rounded")

0.25 0.5 0.75 0.9

height 159.7 168.75 176 183.4

86 Complex Surveys

The svyquantile function will also calculate con�dence intervals for quantiles if you request
ci=TRUE. The default method is interval.type="Wald", which calculates the Woodru�
(1952) interval presented in Section 9.5 of SDA.

Examples 7.6 and 9.12 of SDA. Here we calculate con�dence intervals for the interpolated
quantiles in the htstrat data.

data(htstrat)

popsize_recode <- c('F' = 1000, 'M' = 1000)

create a new variable popsize for population size

htstrat$popsize<-popsize_recode[htstrat$gender]

head(as.data.frame(htstrat))

rn height gender popsize

1 201 166 F 1000

2 965 163 F 1000

3 490 166 F 1000

4 249 155 F 1000

5 260 154 F 1000

6 324 160 F 1000

design object

svydesign calculates the weights here from the fpc argument

dhtstrat<-svydesign(id = ~1, strata = ~gender, fpc = ~popsize,

data = htstrat)

ties = "discrete" gives values in Table 7.1 of SDA

svyquantile(~height, dhtstrat, c(0.25,0.5,0.75,0.9), ties = "discrete")

0.25 0.5 0.75 0.9

height 161 168 177 182

ties = "rounded" gives values in Example 9.12 of SDA

svyquantile(~height, dhtstrat, c(0.25,0.5,0.75,0.9), ties = "rounded",

ci=TRUE, interval.type = "Wald")

$quantiles

0.25 0.5 0.75 0.9

height 160.7143 167.5556 176.625 181.5

##

$CIs

, , height

##

0.25 0.5 0.75 0.9

(lower 159.3556 165.8078 173.3572 178.7176

upper) 162.0247 170.0942 178.5439 190.1679

7.3 Computing Estimates from Strati�ed Multistage Samples

We have seen all the building blocks for computing the estimates from any survey. Now
let's put them all together using the data from the National Health and Nutrition Exami-
nation Survey (NHANES, Centers for Disease Control and Prevention, 2017). The Centers
for Disease Control and Prevention produce online tutorials for analyzing NHANES data.
These, and sample code and tips for analyzing NHANES data using R, can be found at
https://wwwn.cdc.gov/nchs/nhanes/tutorials/.

https://wwwn.cdc.gov/nchs/nhanes/tutorials/

Computing Estimates from Strati�ed Multistage Samples 87

Example 7.9 of SDA. In this example, we look at statistics about body mass index (BMI,
variable bmxbmi) for adults age 20 and over. We will compute these estimates using svymean
and svyquantile.

One of the statistics to be calculated is the proportion of adults having BMI greater than
30, so we de�ne categorical variable bmi30 to equal 1 if the person's BMI is greater than
30 and 0 if it is less than or equal to 30. Note that the variable bmxbmi has missing values,
so we set bmi30 to be missing if bmxbmi is missing. In the data �le nhanes.csv, missing
values are coded by −9. We coded all the missing values −9 as �NA� in the R data set
nhanes in the SDAResources package.

We also need to de�ne a variable giving the domain of interest to be analyzed: adults age
20 and over who have data for bmxbmi. We de�ne age20d=1 if ridageyr≥ 20 and bmxbmi is
not missing, and 0 otherwise. This excludes the observations with missing values from the
domain of interest, and ensures that standard errors for the domain are calculated correctly.

data(nhanes)

nrow(nhanes) #9971

[1] 9971

names(nhanes)

[1] "sdmvstra" "sdmvpsu" "wtint2yr" "wtmec2yr" "ridstatr" "ridageyr"

[7] "ridagemn" "riagendr" "ridreth3" "dmdeduc2" "dmdfmsiz" "indfmpir"

[13] "bmxwt" "bmxht" "bmxbmi" "bmxwaist" "bmxleg" "bmxarml"

[19] "bmxarmc" "bmdavsad" "lbxtc" "bpxpls" "sbp" "dbp"

[25] "bpread"

count number of observations with missing value for ridageyr, bmxbmi

sum(is.na(nhanes$ridageyr)) # ridageyr gives age in years

[1] 0

sum(is.na(nhanes$bmxbmi)) # bmxbmi gives BMI

[1] 1215

define age20d and bmi30

nhanes$age20d<-rep(0,nrow(nhanes))

nhanes$age20d[nhanes$ridageyr >=20 & !is.na(nhanes$bmxbmi)]<-1

nhanes$bmi30<-nhanes$bmxbmi

nhanes$bmi30[nhanes$bmxbmi>30]<-1

nhanes$bmi30[nhanes$bmxbmi<=30]<-0

nhanes$bmi30<-factor(nhanes$bmi30) # set bmi30 as a categorical variable

check missing value counts for new variables

sum(is.na(nhanes$age20d))

[1] 0

sum(is.na(nhanes$bmi30))

[1] 1215

sum(nhanes$age20d) # how many records in domain?

[1] 5406

head(nhanes)

sdmvstra sdmvpsu wtint2yr wtmec2yr ridstatr ridageyr ridagemn riagendr

1 125 1 134671.37 135629.51 2 62 NA 1

2 125 1 24328.56 25282.43 2 53 NA 1

3 131 1 12400.01 12575.84 2 78 NA 1

4 131 1 102718.00 102078.63 2 56 NA 2

5 126 2 17627.67 18234.74 2 42 NA 2

6 128 1 11252.31 10878.68 2 72 NA 2

ridreth3 dmdeduc2 dmdfmsiz indfmpir bmxwt bmxht bmxbmi bmxwaist bmxleg

1 3 5 2 4.39 94.8 184.5 27.8 101.1 43.3

2 3 3 1 1.32 90.4 171.4 30.8 107.9 38.0

88 Complex Surveys

3 3 3 2 1.51 83.4 170.1 28.8 116.5 35.6

4 3 5 1 5.00 109.8 160.9 42.4 110.1 38.5

5 4 4 5 1.23 55.2 164.9 20.3 80.4 37.4

6 1 2 5 2.82 64.4 150.0 28.6 92.9 34.4

bmxarml bmxarmc bmdavsad lbxtc bpxpls sbp dbp bpread age20d bmi30

1 43.6 35.9 22.8 173 76 120 63 2 1 0

2 40.0 33.2 27.3 265 72 137 85 2 1 1

3 37.0 31.0 26.6 229 56 134 45 2 1 0

4 37.7 38.3 25.1 174 78 135 69 2 1 1

5 36.0 27.2 NA 204 76 106 55 2 1 0

6 33.5 31.4 23.1 190 64 121 59 2 1 0

Next, we use svydesign to describe the design information, and use subset to select the
domain of adults with data for BMI for analysis.

stratified cluster design

d0709 <- svydesign(id = ~sdmvpsu, strata=~sdmvstra, weights=~wtmec2yr,

nest=TRUE, data = nhanes)

domain estimation, age20+

d0709sub<-subset(d0709, age20d ==1)

d0709sub

Stratified 1 - level Cluster Sampling design (with replacement)

With (30) clusters.

subset(d0709, age20d == 1)

Let's look at the features used in the svydesign function to describe the design.

� The weights argument in svydesign speci�es the variable containing the �nal weights.
The data set contains two weight variables: wtint2yr gives the weight for the set of
persons with interview data, and wtmec2yr gives the weight for the subset of interviewed
persons who had a medical examination. BMI is measured in the medical examination,
so the appropriate weight variable to use is wtmec2yr.

� The strata and id arguments are used exactly as in Chapters 3 and 5, except now
we include both of them. The strata=�sdmvstra argument says that sdmvstra is the
variable giving the stratum membership. The psus speci�ed in id=�sdmvpsu are the
�rst-stage sampling units.

� In the NHANES data, the two psus in each strata are labeled as `1' and `2'. The
nest=TRUE argument says that psu labels are nested within strata�that is, multiple
strata have the same psu labels. Typing nest=TRUE ensures that psu 1 in stratum 1 is
recognized as being a di�erent psu than psu 1 in stratum 2.

When there is one stratum, the results are the same if you have nest=TRUE, nest=FALSE,
or simply omit the nest argument.

� No fpc argument is included in svydesign. With complex samples such as NHANES, we
usually want to calculate the with-replacement variance, which requires only psu-level
information.

The subset function to de�ne domains has been discussed in Chapter 4. This speci�es that
estimates are desired for the domain of persons age 20 and older having data for BMI (with
age20d=1), and carries the strati�cation and clustering information from the full design
over for analyzing the subset. If you just created a subset of the data consisting of the
observations having ridageyr ≥ 20, in some instances (for example, when some psus have

Univariate Plots from Complex Surveys 89

no members of the domain), the standard errors would be incorrect; by using the subset
function, the correct standard errors are calculated.

Note that we exclude adults with missing values of bmxbmi from the domain of interest
with age20d=1. The estimates are computed from the adults who have data. If the domain
contained missing values, we would need to include option na.rm=TRUE in the svymean
function to be able to calculate statistics.

Functions svymean and svyquantile are then applied to calculate the estimated mean and
quantiles of BMI and the proportion in each category of bmi30. The con�dence intervals
for quantiles di�er slightly from those in SDA, which were calculated using SAS software
under a slightly di�erent algorithm. Adding deff=TRUE to svymean requests the design
e�ect (de�) for each statistic.

Request means and design effects

nhmeans<-svymean(~bmxbmi+bmi30, d0709sub, deff=TRUE)

degf(d0709sub)

[1] 15

nhmeans

mean SE DEff

bmxbmi 29.389101 0.253197 7.1248

bmi300 0.607775 0.015856 5.7003

bmi301 0.392225 0.015856 5.7003

confint(nhmeans,df=degf(d0709sub))

2.5 % 97.5 %

bmxbmi 28.8494243 29.9287768

bmi300 0.5739798 0.6415707

bmi301 0.3584293 0.4260202

Find quantiles

svyquantile(~bmxbmi, d0709sub, quantiles=c(0.05,0.25,0.5,0.75,0.95),

ties = "rounded",ci=TRUE, interval.type="Wald")

$quantiles

0.05 0.25 0.5 0.75 0.95

bmxbmi 20.29893 24.35349 28.2349 33.06615 42.64092

##

$CIs

, , bmxbmi

##

0.05 0.25 0.5 0.75 0.95

(lower 19.83403 23.92667 27.55465 32.35400 41.91584

upper) 20.70609 24.84391 28.91359 33.64129 43.47766

The mean BMI for adults age 20 and over is 29.389 (using design object d0709sub), with
95% con�dence interval [28.849, 29.929]. The estimated proportion of adults age 20 and
over who have BMI > 30 (bmi30=1) is 0.392225 with 95% con�dence interval [0.3584293,
0.4260202]. The con�dence interval is calculated using a t distribution with 15 degrees of
freedom (number of psus minus number of strata).

7.4 Univariate Plots from Complex Surveys

The svyhist and svyboxplot functions, along with svydesign, produce histograms and box-
plots that incorporate the weights, as described in Chapter 7 of SDA.

90 Complex Surveys

Examples 7.10, 7.11, 7.12 of SDA. These examples consider data in htstrat, a dispropor-
tional strati�ed sample of 160 women and 40 men.

Histograms and smoothed density estimates. Figure 7.1 shows the di�erence between a
histogram constructed without the weights (left panel) and one constructed with the weights
(right panel). Each histogram is overlaid with a smoothed density estimate.

data(htstrat)

set graphics parameters, 1*2 plots, axis labels horizontal

par(mfrow=c(1,2),las=1,mar=c(2.1,4.1,2.1,0.3))

Histogram overlaid with kernel density curve (without weight information)

Displays the sample values, but does not estimate population histogram

freq=FALSE changes the vertical axis to density

breaks tell how many breakpoints to use

hist(htstrat$height,main="Without weights", xlab = "Height (cm)",

breaks = 10, col="gray90", freq=FALSE, xlim=c(140,200), ylim=c(0,0.045))

overlaid with kernel density curve

lines(density(htstrat$height),lty=1,lwd=2)

Histogram (with weight information)

create survey design object, weights calculated from fpc here

d0710 <- svydesign(id = ~1, strata = ~gender, fpc = c(rep(1000,160),rep(1000,40)),

data = htstrat)

d0710

Stratified Independent Sampling design

svydesign(id = ~1, strata = ~gender, fpc = c(rep(1000, 160),

rep(1000, 40)), data = htstrat)

svyhist(~height,d0710, main="With weights",xlab = "Height (cm)",

breaks = 10, col="gray90", freq=FALSE,xlim=c(140,200), ylim=c(0,0.045))

dens1<-svysmooth(~height,d0710,bandwidth=5)

lines(dens1,lwd=2) # draw the density line

Without weights

D
en

si
ty

140 150 160 170 180 190 200

0.00

0.01

0.02

0.03

0.04

With weights

D
en

si
ty

140 150 160 170 180 190 200

0.00

0.01

0.02

0.03

0.04

FIGURE 7.1: Histograms constructed without and with weights.

Univariate Plots from Complex Surveys 91

We call svydesign and svyhist to create a histogram that uses the survey information. The
only di�erence between svyhist and hist is that svyhist includes the design object so that
the histogram accounts for the weights.

svyhist(~height, design object, main=" ", xlab = " ", ylab= "")

In hist and svyhist, the breaks option controls the number of bins, and freq=FALSE changes
the vertical axis to density instead of frequency. Function density calculates kernel density
curve for unweighted data, and svysmooth performs density estimation using the weighted
data. We allowed the bandwidth to be chosen automatically by the density function and
speci�ed a bandwidth of 5 in the svysmooth function (if you omit the bandwidth argument,
it will be chosen automatically).

In Figure 7.1, the unweighted plot on the left displays the values in the sample but, because
this is a disproportionally allocated sample, it does not estimate the histogram that would
be obtained if we measured everyone in the population. The distribution appears skewed,
re�ecting the underrepresentation of men (who have greater average height) in the sample.
The histogram and density estimate in the plot on the right incorporate the survey weights
and thus can be interpreted as estimates of the histogram and densities that would be
obtained if the entire population were measured.

Boxplots. Similarly to boxplot, the svyboxplot function creates boxplots, but including the
weights. Figure 7.2 displays boxplots for the full sample and separately for each gender.

par(mfrow=c(1,2),las=1,mar=c(2.1,4.1,2.1,0.3))

boxplot (with weight information)

svyboxplot(height~1,d0710,ylab="Height",xlab=" ", main="Full sample")

svyboxplot(height~gender,d0710,ylab="Height",xlab="Gender",

main="Separately by gender")

140

150

160

170

180

190

200

Full sample

H
ei

gh
t

F M

140

150

160

170

180

190

200

Separately by gender

H
ei

gh
t

FIGURE 7.2: Boxplots of height for full sample, and separately by gender

92 Complex Surveys

Histograms for domains. What if you want to draw a histogram for just one domain from
a complex survey? You can do that by using the subset function to rede�ne the object from
svydesign. Figure 7.3 gives a histogram of BMI for adults age 20 and over, using the survey
weights in the nhanes data. The smoothed density function is superimposed.

Restore graphics settings

par(mfrow=c(1,1),las=1,mar=c(5.1, 4.1, 4.1, 2.1))

svyhist(~bmxbmi,d0709sub, main="Histogram of body mass index for adults age 20+",

breaks = 30, col="gray90",xlab = "Body Mass Index (kg/m^2)")

dens2<-svysmooth(~bmxbmi,d0709sub)

lines(dens2,lwd=2)

Histogram of body mass index for adults age 20+

Body Mass Index (kg/m^2)

D
en

si
ty

20 30 40 50 60 70

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

FIGURE 7.3: Histogram and density estimate for adults aged 20 and over

7.5 Scatterplots from Complex Surveys

Most of the plot types described in Section 7.6 of SDA can be drawn using functions plot,
svyplot, svyboxplot, or svycdf.

Unweighted plots. The R functions plot, hist and boxplot functions draw scatterplots,
histograms, boxplots, and more. They do not incorporate the survey weights. In general,
extra data preparation is needed to persuade these functions to draw graphs that estimate
the population.

In some instances, however, you may want to examine the unweighted data. You may want
to see how the weights a�ect the regression relationship between x and y, or to identify
unusual observations in the data. For that reason, we include an unweighted scatterplot of
the NHANES data.

Scatterplots from Complex Surveys 93

The following shows the code to produce the unweighted scatterplot of y variable body
mass index (bmxbmi) vs. x variable age (ridageyr) shown in Figure 7.4. This plot is for all
ages, not just the subset of adults for which we computed summary statistics in Section 7.3.
Numerous options are available for customizing the plot; we chose to use the default setting
type="p" for the points and used plotting symbol `+' (pch=3), making the symbols small
so more of them are displayed on the plot (cex=0.5). The optional xlab and ylab arguments
allow customizing the axis labels. You can also set the minimum and maximum values for
each axis using xlim and ylim.

scatterplot without weights

par(las=1) # make tick mark labels horizontal

plot(nhanes$ridageyr,nhanes$bmxbmi,xlab="Age (years)",ylab="Body Mass Index",

main="Scatterplot without weights",pch=3,cex=0.5,

ylim=c(10,70),xlim=c(0,80))

0 20 40 60 80

10

20

30

40

50

60

70

Scatterplot without weights

Age (years)

B
od

y
M

as
s

In
de

x

FIGURE 7.4: Scatterplot of BMI versus age (unweighted)

The unweighted scatterplot shows the relationship between x and y in the sample. If the
sample is self-weighting, this scatterplot also estimates the relationship between x and y in
the population. If the sample is not self-weighting, however, the relationship between x and
y in the population may be di�erent and one of the other plots in this section should be
used if you want to visualize the relationship between x and y in the population.

Although we do not recommend unweighted plots for non-self-weighting samples in general,
sometimes for small data sets it is useful for seeing whether the relationship between x and
y is the same with and without the weights (see Section 11.4 of SDA). The NHANES data,
however, have so many data points that it is di�cult to see patterns from the unweighted
scatterplot in Figure 7.4.

94 Complex Surveys

Plot subsample of data. We can also select a subsample of the data that is approximately
self-weighting, and draw the scatterplot of that subsample using the plot function. The
plot of the subsample, displayed in Figure 7.5 then estimates the scatterplot that would be
drawn from the population.

This subsample was selected with probability proportional to the weights and with replace-
ment, using the sample function. Any method that will select a sample with probability
proportional to the weights can be used, however, including the UP functions described in
Table 6.1. If desired, you can draw multiple plots with di�erent subsamples.

select subsample with probability proportional to weights

set.seed(2847654)

subsamp<-sample(1:nrow(nhanes),500,replace=TRUE,prob=nhanes$wtmec2yr)

par(las=1) # make tick mark labels horizontal

plot(nhanes$ridageyr[subsamp],nhanes$bmxbmi[subsamp],

xlab="Age (years)",ylab="Body Mass Index",

main="Scatterplot of pps subsample",pch=3,cex=0.5,

ylim=c(10,70),xlim=c(0,80))

0 20 40 60 80

10

20

30

40

50

60

70

Scatterplot of pps subsample

Age (years)

B
od

y
M

as
s

In
de

x

FIGURE 7.5: Scatterplot of BMI versus age (self-weighting subsample)

Scatterplots from Complex Surveys 95

Bubble plots. If the sample is not self-weighting, a bubble plot displays the estimated shape
of the population data. Bubble plots can be constructed using individual (x, y) values, or
using bins. We will show how to use svyplot to create bubble plots of the individual (x, y)
values.

The svyplot function is essentially the same as the plot function, except it adds the survey
design object d0709 so that the weights are incorporated into the plots. You can use the
same arguments to label the axes (xlab, ylab), set the extent of the plotting region (xlim,
ylim), title the plot (main), and perform other formatting as in the plot function.

The svyplot function will construct a variety of types of plots that incorporate the weights,
including bubble plots, �transparent� plots where the opacity of points is proportional to
their weights, and binned hexagonal scatterplots.

Figure 7.6 shows a bubble plot for the NHANES data. The inches argument scales the
bubbles; you may need to try several values until you �nd one that looks nice.

par(las=1) # make tick mark labels horizontal

svyplot(bmxbmi~ridageyr, design=d0709, style="bubble", inches=0.03,

xlab="Age(years)",ylab="Body Mass Index",xlim=c(0,80),ylim=c(10,70),

main="Weighted bubble plot of BMI vs age")

0 20 40 60 80

10

20

30

40

50

60

70

Weighted bubble plot of BMI vs age

Age(years)

B
od

y
M

as
s

In
de

x

FIGURE 7.6: Bubble plot of BMI versus age (weighted)

96 Complex Surveys

Plot data for a domain. If we want to draw a plot for sample members in a speci�c domain,
we can use the subset function to de�ne a design object for the domain and then use svyplot
with the subset design object.

Figure 7.7 shows a bubble plot of BMI versus age for the domain of non-Hispanic Asian
Americans (having ridreth3=6).

define subset

d0709subA<-subset(d0709, ridreth3==6)

par(las=1) # make tick mark labels horizontal

svyplot(bmxbmi~ridageyr, design=d0709subA, style="bubble",inches = 0.03,

xlab="Age(years)",ylab="Body Mass Index",xlim=c(0,80),ylim=c(10,70),

main="Weighted bubble plot of BMI vs age for Asian Americans")

0 20 40 60 80

10

20

30

40

50

60

70

Weighted bubble plot of BMI vs age for Asian Americans

Age(years)

B
od

y
M

as
s

In
de

x

FIGURE 7.7: Bubble plot of BMI vs age for Asian Americans

Note that for purposes of graphing data, it is also acceptable to consider just the subset of
observations being graphed. This is because the scatterplots use only the weights, and no
other features of the survey design. Thus, if producing a subsampled graph for a domain
that is similar to that in Figure 7.5, you could �rst create a subset of data consisting of the
domain of interest, then select plots to point with probabilities proportional to the weights,
and then use the plot function to draw the scatterplot. With the svyplot function, however,
it is easiest to create a subset design object for the domain being graphed.

Scatterplots from Complex Surveys 97

Side-by-side boxplots. Boxplots will display the distributions of subgroups of the data.
Figure 7.2 showed their use to display the distribution of height, separately for males and
females.

They can also be used to display the bivariate relationship between two continuous variables.
Simply partition the x variable into a categorical variable that de�nes di�erent ranges of the
variable. You can use the round function to round the x variable to the nearest multiple of
a number, or use the cut function to divide the range of x into intervals with user-supplied
cutpoints, and code each value x by the interval that contains it.

The easiest way to obtain side-by-side boxplots for survey data is through the svyboxplot
procedure. Figure 7.8 shows boxplots of BMI by age groups that are formed by rounding
the values of ridageyr to the nearest multiple of 5.

include agegroup in the data frame

nhanes$agegroup<-5*round(nhanes$ridageyr/5)

d0709 <- svydesign(id = ~sdmvpsu, strata = ~ sdmvstra, nest=TRUE,

weights=~wtmec2yr, data = nhanes)

par(las=1) # make tick mark labels horizontal

svyboxplot(bmxbmi~factor(agegroup),d0709,ylab="Body mass index",xlab="Age Group",

ylim=c(10,70),main="Side-by-side boxplots of BMI for age groups")

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

10

20

30

40

50

60

70

Side−by−side boxplots of BMI for age groups

Age Group

B
od

y
m

as
s

in
de

x

FIGURE 7.8: Boxplots of BMI by age group

98 Complex Surveys

Smoothed trend line for mean. The svysmooth function can request scatterplot smoothing
and density estimation for weighted data. For the default method "locpoly", the extra
arguments are passed to locpoly from the KernSmooth package (Wand et al., 2020), which
implements the smoothing methods described in Wand and Jones (1995). The default is
local linear smoothing for the mean. If desired, the bandwidth argument can be included for
user-speci�ed bandwidth.

Figure 7.9 shows the smoothed curve superimposed on the bubble plot in Figure 7.6. The
color of the bubbles is changed to light gray for better visibility of the trend line.

plot data bmxbmi~ridageyr

par(las=1) # make tick mark labels horizontal

svyplot(bmxbmi~ridageyr, design=d0709, style="bubble",basecol="gray",inches=0.03,

xlab="Age(years)",ylab="Body Mass Index",xlim=c(0,80),ylim=c(10,70),

main="Smoothed trend line with bubble plot of BMI vs age")

plot smoothing trend line

library(KernSmooth) # install and load the package if not already done

smth<-svysmooth(bmxbmi~ridageyr,d0709)

lines(smth,lwd=2)

0 20 40 60 80

10

20

30

40

50

60

70

Smoothed trend line with bubble plot of BMI vs age

Age(years)

B
od

y
M

as
s

In
de

x

FIGURE 7.9: Smoothed trend line with scatterplot of BMI versus age

Other smoothing methods may also be used to estimate trend lines. Figure 7.14 in SDA
was created by calculating a survey-weighted spline estimates (Zhang et al., 2015) of the
trend line for a grid of x points, and then connecting the dots with the lines function.

Scatterplots from Complex Surveys 99

Smoothed trend lines for quantiles. To �t a smooth line for quantiles, change to
method="quantreg" in svysmooth. This smooths the regression quantiles from package
quantreg (Koenker et al., 2021). Instead of �tting smoothed lines to the means of di�erent
groups, separate lines are drawn that estimate each conditional quantile (Koenker, 2005)
speci�ed in the quantile argument. You can think of this as �connecting the dots� of the
quantiles shown in the side-by-side boxplots in Figure 7.8. We requested the quantiles corre-
sponding to probabilities 0.05, 0.25, 0.5, 0.75, and 0.95, i.e. taus=c(.05,.25,.5,.75,.95),
a range of quantiles that gives a good picture of the center (median) of the data, as well as
the large and small values. Figure 7.10 includes the predictor variable x and the smoothed
line for each quantile.

library(quantreg)) # install and load the package if not already done

plot data bmxbmi~ridageyr

par(las=1) # make tick mark labels horizontal

svyplot(bmxbmi~ridageyr, design=d0709, style="bubble",basecol="gray",inches=0.03,

xlab="Age (years)",ylab="Body Mass Index",xlim=c(0,80),ylim=c(10,70),

main="Smoothed quantile trend lines")

plot smoothed trend lines for quantiles

taus<-c(.05,.25,.5,.75,.95)

for (i in 1:length(taus)) {

qsmth<-svysmooth(bmxbmi~ridageyr,d0709, quantile=taus[i],method="quantreg")

lines(qsmth,lwd=1.2)

}

0 20 40 60 80

10

20

30

40

50

60

70

Smoothed quantile trend lines

Age (years)

B
od

y
M

as
s

In
de

x

FIGURE 7.10: Smoothed quantile trend lines with bubble plot of BMI vs age

Customizing graphs. Users who want to be able to do more customization of the graphs may
want to write their own code. The graphs in SDA were produced with custom-written code
(not using the svyplot function), and the �le ch07.R includes code for using the ggplot2

graphics visualization package (Wickham et al., 2020) to create more types of scatterplots
with survey data.

100 Complex Surveys

7.6 Additional Code for Exercises

Some of the exercises in Chapter 7 of SDA ask you to construct an empirical cumulative
distribution function (ecdf) or an empirical probability mass function (epmf). Any popu-
lation characteristic can be estimated using these functions. There are functions in R that
calculate commonly requested statistics such as means, totals, quantiles, and regression co-
e�cients from survey data, so the survey analyst typically does not calculate or graph the
ecdf. For continuous variables, it is usually more informative to create a histogram or a
smoothed density estimate than to view the epmf, which may contain a large number of
spikes.

The ecdf and epmf are useful concepts for learning about how survey weights work, however,
because they illustrate how the sample is used to create a reconstruction of the population.
And both are easy to calculate in R.

Example 7.5 of SDA. Function emppmf from package SDAResources calculates the em-
pirical probability mass function for a variable with associated weights. Call the function
as

emppmf(y,sampling.weight)

to return a list with component vectors vals, the distinct values of y, and epmf, the value
of the epmf corresponding to each y value in vals.

Here we look at the strati�ed sample of heights in htstrat, where each female has sampling
weight 1000/160 and each male has sampling weight 1000/40. It produces the estimated
population proportion for each of the distinct values of height ; the estimated proportion for
value y is the sum of the weights for observations having height = y divided by the sum
of all the weights in the sample. Figure 7.11 plots the epmf for height, using type="h" to
draw vertical lines.

Empirical pmf for stratified sample of heights

define sampling weight

htstrat$sampwt <- 1000/sum(htstrat$gender=="F")

htstrat$sampwt[htstrat$gender=="M"] <- 1000/sum(htstrat$gender=="M")

use function emppmf to calculate pmf

strresult <- emppmf(htstrat$height,htstrat$sampwt)

plot

par(las=1)

plot(strresult$vals, strresult$epmf,type="h",xlab="Height Value, y (cm)",

ylab="Empirical pdf",lwd=1.2,

main="Empirical pdf for stratified sample of heights (weighted)")

Additional Code for Exercises 101

140 150 160 170 180 190 200

0.01

0.02

0.03

0.04

0.05

0.06

Empirical pdf for stratified sample of heights (weighted)

Height Value, y (cm)

E
m

pi
ric

al
 p

df

FIGURE 7.11: Empirical pmf for strati�ed sample of heights, using weights

Function ecdf in base R will estimate the empirical cdf without weights, and function
svycdf from the survey package will estimate the empirical cdf by incorporating survey
weights. In contrast to svyquantile, svycdf does not do any interpolation, but produces a
right-continuous step function. Figure 7.12 shows the cdf of the population htpop (thick
black) with the ecdf of sample htstrat without incorporating weights (red), and the ecdf
of sample htstrat with weights (thin purple). We see that the red line is quite far o� from
the population cdf, while the purple line with weights is close to the population cdf.

data(htstrat)

Recall that

d0710 <- svydesign(id = ~1, strata = ~gender, fpc = c(rep(1000,160),rep(1000,40)),

data = htstrat)

cdf.weighted<-svycdf(~height, d0710)

cdf.weighted

Weighted ECDFs: svycdf(~height, d0710)

evaluate the function for height 144

cdf.weighted[[1]](144)

[1] 0.00625

compare to population and unweighted sample ecdfs.

cdf.pop<-ecdf(htpop$height) # ecdf for population

cdf.samp<-ecdf(htstrat$height) # unweighted ecdf of sample

par(las=1,mar=c(5.1,4.1,2.1,2.1))

plot(cdf.pop, do.points = FALSE,

xlab="Height value y",ylab="Empirical cdf",xlim=c(135,205),lwd=2,

main="Empirical cdfs for population and sample")

lines(cdf.samp, col="red", do.points = FALSE, lwd=1.5)

lines(cdf.weighted[[1]], do.points = FALSE, col ="purple",lwd=1)

legend("topleft", legend=c("Population", "Sample unweighted", "Sample weighted"),

col=c("black", "red", "purple"),lwd=c(2,1.5,1),cex=0.8,bty="n")

102 Complex Surveys

140 150 160 170 180 190 200

0.0

0.2

0.4

0.6

0.8

1.0

Empirical cdfs for population and sample

Height value y

E
m

pi
ric

al
 c

df
Population
Sample unweighted
Sample weighted

FIGURE 7.12: Empirical cdf of height for data htpop, and for data htstrat with and
without weights

7.7 Summary, Tips, and Warnings

Table 7.1 lists the major R functions used in this chapter.

Tips and Warnings

� For strati�ed multistage surveys, put the strati�cation variable in the strata argument
of svydesign, and put the �rst-stage clustering variable in the id argument. Include
the weight argument and do not include fpc. This will calculate the with-replacement
variance approximations.

� If you want separate statistics for domains, �rst create the design object for the entire
sample using the svydesign function, then use the subset or svyby function to calculate
statistics for the domain of interest. This will ensure that standard errors for the domains
statistics are calculated correctly. Do not subset the data �rst and then run svydesign�
this can lead to incorrect standard error calculations.

� Incorporate the survey weights when constructing graphs if you want them to estimate
the graphs that would be constructed if you had data from the entire population,

Summary, Tips, and Warnings 103

TABLE 7.1
Functions used for Chapter 7.

Function Package Usage

sample base Select a with-replacement sample with unequal proba-
bilities

subset base Work with a subset of a vector, matrix, or data frame
con�nt stats Calculate con�dence intervals, add df for t con�dence

interval
density stats Compute a kernel density estimate for self-weighting

data
ecdf stats Calculate empirical cdf from self-weighting sample
par graphics Set graphics parameters
hist graphics Draw a histogram without weights
boxplot graphics Draw a boxplot without weights
plot graphics Draw a scatterplot without weights
mstage sampling Select a strati�ed multistage sample
svydesign survey Specify the survey design
svymean survey Calculate mean and standard error of mean
svyquantile survey Calculate quantiles and their con�dence intervals
svyhist survey Draw a histogram of survey, incorporating the weights
svyboxplot survey Draw boxplot of survey data, incorporating the weights
svyplot survey Draw scatterplot of survey data, incorporating the

weights
svysmooth survey Estimate a smoothed density estimate or trend line

from survey data
svycdf survey Calculate the empirical cdf from survey data
emppmf SDAResources Calculate the empirical probability mass function from

survey data

8

Nonresponse

We have already seen most of the features needed to select survey samples and to compute
estimates of means, totals, and quantiles using the sampling weights and survey design.

Nonresponse a�ects almost all surveys, however. Even samples of inanimate objects such as
audit records may have missing accounts or missing items for accounts. This chapter looks
at how R deals with missing data, and lists some resources for R packages that will perform
imputation. The code is in �le ch08.R on the book website.

8.1 How R Functions Treat Missing Data

We saw in Section 1.7 that R uses the value NA to denote missing data. If a data set uses
a di�erent code for missing values, such as −99, these must be converted to NA before
analyzing the data so that R recognizes the values as missing. Otherwise, functions will
treat these observations as though y = −99 and include them in calculations, sometimes
with embarrassing results as when the estimated mean age is a negative number.

Example 8.10 of SDA. Data set impute.csv contains the data from Table 8.4 of SDA; it
codes the missing values by −99. In the R data set impute in the SDAResources package,
these missing values have been converted to NA. Variables education, crime, and violcrime
all have missing values.

Most functions in R have a default method for how missing values are treated. The mean
function, for example, returns NA if you attempt to �nd the mean of a vector that has
missing values; if you want it to calculate the mean of the non-missing values, include
argument na.rm=TRUE. The following shows how some of the base R functions and the
svymean function treat the missing data in variables crime and violcrime, which take on
values 1, 0, and NA.

data(impute)

impute$crime

[1] 0 1 0 1 1 0 1 0 0 NA 0 0 1 1 0 0 0 0 NA 0

is.na(impute$crime) # vector with TRUE for missing values

[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE

[13] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

identify the rows with no missing values in columns 5-6

impute$cc<-complete.cases(impute[,5:6])

impute$cc

[1] TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE FALSE FALSE TRUE TRUE

[13] FALSE TRUE TRUE TRUE TRUE TRUE FALSE TRUE

mean(impute$crime) # returns NA

[1] NA

104

Poststrati�cation and Raking 105

mean(impute$crime,na.rm=TRUE) # calculates mean of non-missing values

[1] 0.3333333

table(impute$crime,impute$violcrime) # excludes values missing in either variable

##

0 1

0 11 0

1 1 3

table(impute$crime,impute$violcrime,useNA="ifany") # counts NAs as category in table

##

0 1 <NA>

0 11 0 1

1 1 3 2

<NA> 1 0 1

input design information, use relative weights of 1 for comparison with above

dimpute <- svydesign(id = ~1, weights = rep(1,20), data = impute)

dimpute

Independent Sampling design (with replacement)

svydesign(id = ~1, weights = rep(1, 20), data = impute)

calculate survey mean and se

svymean(~crime,dimpute) # returns NA

mean SE

crime NA NA

svymean(~crime, dimpute, na.rm=TRUE)

mean SE

crime 0.33333 0.114

svytable(~violcrime+crime,dimpute)

crime

violcrime 0 1

0 11 1

1 0 3

With the option na.rm=TRUE, the mean and svymean functions estimate the mean using
the observations having non-missing values.

In a complex survey, however, omitting the missing values can a�ect the standard error
calculations. A better option, for complex surveys where the missing values are not imputed,
is to use the subset function to de�ne the subset of observations with non-missing values
on which the analysis is to be performed�treating the non-missing values as a domain, as
seen in Section 7.3. Remember, though, that an analysis on complete cases alone can be
subject to nonresponse bias.

8.2 Poststrati�cation and Raking

Unit nonresponse occurs when a unit selected for the sample provides no data. In some data
sets, the nonrespondent unit may be represented in the data set, but with missing values
for all survey responses. In others, nonrespondent units are missing entirely from the data
set.

The most common method for trying to compensate for potential e�ects of nonresponse
is to weight the data. The sampling frame may contain information that can be used in

106 Nonresponse

weighting class adjustments, or information known about the population from an external
source may be used to poststratify or rake the data as described in Section 8.6 of SDA.

We have already seen the postStratify function from the survey package (Lumley, 2020)
in Chapter 4. The package also has a function to rake the weights to marginal counts in a
table. It takes the form

rake(design.object, sample.margins, population.margins)

where sample.margins is a list of formulas describing the sample margins and popula-
tion.margins is a list giving the population counts for each raking variable.

Here is a simple example, using the data in Section 8.6.2 of SDA. The entries in the data
frame rakewtsum are the sums of weights for persons in the sample falling into each cross-
classi�cation of gender by race. For this example, we assume that the data are from a sample
of size 500 where each person has weight 6 and construct data frame rakedf that has 500
records listing the race and gender of each person (in most applications of raking, you will
already have the data frame and will not need this step).

Function rake is then used to do raking adjustment on design object drake according to the
population marginal totals of gender (pop.gender) and race (pop.race).

rakewtsum <- data.frame(gender=rep(c("F","M"),each=5),

race=rep(c("Black","White","Asian","NatAm","Other"),times=2),

wtsum=c(300,1200,60,30,30,150,1080,90,30,30))

rakewtsum # check data entry

gender race wtsum

1 F Black 300

2 F White 1200

3 F Asian 60

4 F NatAm 30

5 F Other 30

6 M Black 150

7 M White 1080

8 M Asian 90

9 M NatAm 30

10 M Other 30

Need data frame with individual records to use rake function

rakedf <- rakewtsum[rep(row.names(rakewtsum), rakewtsum[,3]/6), 1:2]

dim(rakedf)

[1] 500 2

rakedf$wt <- rep(6,nrow(rakedf))

Create the survey design object

drake <- svydesign(id=~1, weights=~wt, data=rakedf)

Create data frames containing the marginal counts

pop.gender <- data.frame(gender=c("F","M"), Freq=c(1510,1490))

pop.race <- data.frame(race=c("Black","White","Asian","NatAm","Other"),

Freq=c(600,2120,150,100,30))

Now create survey design object with raked weights

drake2 <- rake(drake, list(~gender,~race), list(pop.gender, pop.race))

drake2 # describes SRS with replacement

Independent Sampling design (with replacement)

rake(drake, list(~gender, ~race), list(pop.gender, pop.race))

Look at first 10 entries in vector of raked weights

weights(drake2)[1:10]

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

7.511886 7.511886 7.511886 7.511886 7.511886 7.511886 7.511886 7.511886

Imputation 107

1.8 1.9

7.511886 7.511886

Look at sum of raked weights for raking cells

svytable(~gender+race, drake2)

race

gender Asian Black NatAm Other White

F 53.71714 375.59431 45.55940 13.66782 1021.46870

M 96.28286 224.40569 54.44060 16.33218 1098.53130

Look at sum of raked weights for margins

svytotal(~factor(gender),drake2)

total SE

factor(gender)F 1510 0.0028

factor(gender)M 1490 0.0028

svytotal(~factor(race),drake2)

total SE

factor(race)Asian 150 0

factor(race)Black 600 0

factor(race)NatAm 100 0

factor(race)Other 30 0

factor(race)White 2120 0

After raking, the standard errors for the population counts for the raking categories equal 0
(approximately 0 for gender since the raking procedure stops when a preset tolerance is
reached; you can change that tolerance if desired). After raking, there is no longer any
sampling variability for the estimated population counts for each race category�the raking
process has forced them to equal the population counts from the external source, which are
assumed to be known exactly.

You can also see the raking iterations, if desired, by typing

rake(drake, list(~gender,~race), list(pop.gender, pop.race),

control=list(verbose=TRUE)).

Other R functions for nonresponse weight adjustments. The survey package has several
other functions for nonresponse weight adjustments. The calibrate function will perform
calibration with general auxiliary information, as described in Section 11.6 of SDA. The
trimWeights function will trim weights that are outside of user-de�ned bounds for the
weights, and redistribute the trimmings among the untrimmed observations (this keeps
the sum of the weights the same). Valliant et al. (2018) describe additional resources for
nonresponse weight adjustments using R.

8.3 Imputation

Many data sets have item nonresponse in addition to unit nonresponse. Item nonresponse
occurs when a unit has responses for some of the items on the survey but missing values for
other items. A person may answer questions about age, race, gender, and health outcomes,
but decline to answer questions about income. Or the data editing process may uncover
logical inconsistencies in the data such as a 6-year-old who is listed as being married. If the
discrepancy cannot be resolved, both age and marital status may be recoded as missing for
that person. In this section, we assume that the imputation is limited to missing items.

108 Nonresponse

Example 8.9 of SDA. It is easy to perform simple imputation methods such as cell mean
or regression imputation in R. We do not recommend these methods for most applications,
since they do not preserve multivariate relationships and do not provide a means of account-
ing for the imputation when calculating standard errors. But they may be useful when there
are, say, a handful of missing items in one of the weighting variables or if it is desired to have
an initial imputation before moving on to one of the more advanced imputation methods.

Cell mean imputation is a special case of regression imputation, where the explanatory
variables are the factors de�ning the cells. For cell mean imputation, we �rst de�ne the cells
that cross-classify the observations by gender and age group, then use the tapply function to
calculate the mean age for the non-missing values in each cell. Note that we also calculate
a matrix impute.cm�ag that tells which observations were imputed.

cell mean imputation

impute$education

[1] 16 NA 11 NA 12 NA 20 12 13 10 12 12 11 16 14 11 14 10 12 10

impute.cm<-impute

define matrix giving imputation flags, TRUE for each missing value

impute.flag<-is.na(impute)

fit two-way model with interaction, omit NAs from model-fitting

edmodel<-lm(education~factor(gender)*factor(age>=35),

data=impute.cm,na.action=na.omit)

replace missing values with imputations from model

newdata<- impute[is.na(impute$education),]

impute.cm$education[is.na(impute$education)] <- predict(edmodel,newdata)

impute.cm$education

[1] 16.00 12.25 11.00 11.25 12.00 12.25 20.00 12.00 13.00 10.00 12.00 12.00

[13] 11.00 16.00 14.00 11.00 14.00 10.00 12.00 10.00

The other variables can be imputed similarly. Although this simple method might su�ce if
there are only a handful of missing items to be imputed, it will not preserve multivariate
relationships. If you want to perform multivariate analyses of imputed data, the imputa-
tion model must include the relationships you will be studying in the analysis model. This
requires a much more complicated procedure than a simple cell mean or regression model.
The imputer must decide on an imputation method and model(s), and decide how to incor-
porate survey design features into the imputation (see Little and Vartivarian, 2003; Reiter
et al., 2006; Kott, 2012, for discussions of this issue).

For most applications, we recommend using one of the many contributed packages for R
that perform imputation for survey data. We brie�y describe four of them here; Yadav and
Roychoudhury (2018) review additional packages.

� The Hmisc package (Harrell, 2021) contains functions for single and multiple imputation
using additive regression and predictive mean matching.

� The VIM package (Kowarik and Templ, 2016; Templ et al., 2021) performs model-based,
hot-deck, and nearest-neighbor imputations. The package also provides tools for explor-
ing the missing data patterns and imputations through visualization.

� The FHDI package (Im et al., 2018; Cho et al., 2020) imputes multivariate missing data
using the fractional hot deck imputation method described by Kim and Fuller (2004);
Kim (2011). In this method, multiple donors contribute to each imputation.

� The mice package (van Buuren et al., 2021) performs multivariate imputation by chained
equations. This method relies on a sequence of regression models that predict the missing
values for each response variable in turn. This is the package that we usually use when

Summary, Tips, and Warnings 109

imputing data. Azur et al. (2011) and van Buuren (2018) describe how to perform
imputations using this method.

8.4 Summary, Tips, and Warnings

The survey package has functions for raking and poststrati�cation that can be used to
perform simple nonresponse adjustments of the weights.

Table 8.1 lists the major R functions used in this chapter.

TABLE 8.1
Functions used for Chapter 8.

Function Package Usage

is.na base Indicate which values are missing; the function returns
TRUE if the value is missing and FALSE otherwise

subset base Work with a subset of a vector, matrix, or data frame
complete.cases stats Indicate which records have complete data; the func-

tion returns a vector with the value TRUE if the record
has no missing values and FALSE if at least one item
is missing

lm stats Fit a linear model to a data set (not using survey meth-
ods)

predict stats Obtain predicted values from a model object
svydesign survey Specify the survey design
svymean survey Calculate mean and standard error of mean
svytotal survey Calculate total and standard error of total
postStratify survey Adjust the sampling weights using poststrati�cation
rake survey Carry out poststrati�cation to table margins using rak-

ing

Tips and Warnings

� Check how missing values are coded before analyzing your data set, and recode the
missing values to NA.

� The functions postStratify and rake in the survey package will perform poststrati�cation
adjustments to the weights.

� If the survey has item nonresponse and imputation is not used to �ll in missing values,
treat the observations with non-missing values as a domain using the subset function.

� Several R packages are available that perform imputation. Be aware, though, that im-
puted values are only as good as the model that produces them. Performing a good
imputation requires a lot of expertise; the references in the For Further Reading section
of Chapter 8 of SDA can help you get started. See Haziza (2009) for a summary of
approaches.

9

Variance Estimation in Complex Surveys

In this chapter, we discuss variance estimation in complex surveys. We have already seen
the use of linearization methods to calculate variances in functions such as svymean and
svytotal in the survey package (Lumley, 2020). This chapter will focus on the other methods
for calculating variances�random groups, balanced repeated replication (BRR), jackknife,
and bootstrap. The code is in �le ch09.R on the book website.

9.1 Replicate Samples and Random Groups

The random group methods in Section 9.3 of SDA are seldom used in practice. But they
are of interest because they motivate how replication methods work in general, and they
can be useful for providing quick-and-easy variance estimates for a complex survey design.
The methods require three steps:

1. Select the replicate samples from the population, or divide the probability sample among
the random groups.

2. Calculate the statistic of interest from each replicate, using the survey weights.

3. Use the estimated statistics from the replicates to calculate the standard error.

Example 9.3 of SDA. In this example, we consider estimating the variance of the ratio
of out-of-state tuition fee (tuitionfee_out) and in-state tuition fee (tuitionfee_in) for a
population of public colleges using replicate samples. Data public_college, created below,
consists of 500 public colleges and universities from the college data. This data set serves
as the population from which we draw replicate samples.

For Step 1, we use a loop and the srswor function (package sampling, Tillé and Matei, 2021)
to select 5 independent replicate SRSs, each of size 10, from public_college (one could also
write a function to do this). We print the values of the selected variables for the colleges
in the 5th replicate sample. Note that the weights for each replicate sample sum to the
population size, 500. The replicate samples in this book di�er from those in SDA, which
were selected using SAS software.

For Step 2, compute the statistic of interest from each replicate sample. We calculate the ra-
tio of average out-of-state tuition ybar [i] to average in-state tuition xbar [i] for each replicate
sample i by running the svymean procedure.

Variable thetahat contains the values of θ̂i for the 5 replicate samples. These values are the
only part of the output used in Step 3; The standard errors given by the svymean function
are ignored�only the point estimates of the means are used.

110

Replicate Samples and Random Groups 111

For Step 3, treat the 5 estimated ratios in thetahat as independent and identically distributed
observations, and calculate their mean θ̃. We also calculate a 95% con�dence interval, which
can be done either by formula or with the t.test function.

data(college)

define population with public colleges and universities

public_college<-college[college$control==1,]

N<-nrow(public_college) #500

select five SRSs and calculate means

xbar<-rep(NA,5)

ybar<-rep(NA,5)

set.seed(8126834)

for(i in 1:5){

index <- srswor(10,N)

replicate <- public_college[(1:N)[index==1],]

save replicate in a data frame if you want to keep it for later analyses

define design object (since SRS, weights are computed from fpc)

dcollege<-svydesign(id = ~1, fpc = ~rep(500,10), data = replicate)

calculate mean of in-state and out-of-state tuition fees

xbar[i]<-coef(svymean(~tuitionfee_in, dcollege))

ybar[i]<-coef(svymean(~tuitionfee_out,dcollege))

}

print the 5th replicate sample

replicate[,c(2,24:25)]

instnm tuitionfee_in tuitionfee_out

459 Coppin State University 8873 15144

474 Towson University 9940 23208

556 University of Michigan-Flint 11304 22065

674 University of Nevada-Reno 7599 22236

735 CUNY Brooklyn College 7240 14910

853 University of North Carolina at Greensboro 7331 22490

1024 Millersville University of Pennsylvania 12226 22196

1030 Pennsylvania State University-Main Campus 18454 34858

1359 Texas A&M University-San Antonio 8656 21159

1368 University of North Texas at Dallas 9139 21589

calculate and print the five ratio estimates

thetahat<-ybar/xbar

thetahat

[1] 2.172545 2.055528 2.107828 2.213799 2.181924

calculate mean of the five ratio estimates, and SE

thetatilde<-mean(thetahat)

thetatilde

[1] 2.146325

setheta<-sqrt(var(thetahat)/5)

calculate confidence interval by direct formula using t distribution

c(thetatilde- qt(.975, 4)*setheta, thetatilde+ qt(.975, 4)*setheta)

[1] 2.067224 2.225426

easier: use t.test function to calculate mean and confidence interval

t.test(thetahat)

##

One Sample t-test

##

data: thetahat

t = 75.336, df = 4, p-value = 1.861e-07

alternative hypothesis: true mean is not equal to 0

112 Variance Estimation in Complex Surveys

95 percent confidence interval:

2.067224 2.225426

sample estimates:

mean of x

2.146325

The output shows that the mean of the ratios estimated from the �ve replicate samples
is 2.146 and the 95% con�dence interval for the population ratio is [2.067, 2.225]. The
95% con�dence interval is calculated as θ̃ ± t SE(θ̃), where t is the critical value from a t
distribution with 4 (number of replicates minus one) degrees of freedom (df). This critical
value is 2.78, giving a wider interval than would be obtained from a variance estimate with
more df.

In Example 9.3, the survey weights are the only design feature used for the calculations.
Even if a replicate sample has strati�cation or clustering, that information is not needed to
calculate the point estimate of the parameter of interest θ for the replicates. The e�ect of
the strati�cation or clustering on the variance is incorporated in the variability among the
θ̂i's. For example, if clustering decreases the precision for θ̂i, then the estimates θ̂i will vary
more from replicate to replicate, and the decreased precision will show up in a large value
of the sample variance for the replicate values θ̂i.

We illustrated the method for estimating a ratio, but the same method can be used for
any statistic you would like to estimate. The method can also be applied to statistics that
are not calculated by the survey analysis functions. All you need to do is to calculate the
statistic of interest for each replicate using the survey weights, then apply t con�dence
interval methods to the statistics calculated from the replicates.

Random groups. After dividing the survey data into R random groups, the procedure
for calculating the estimator and variance is exactly the same as Steps 1 to 3 for replicate
sample methods. Note that if you are estimating population totals, you need to scale the
weights for each random group so they sum to the population size.

Example 9.4 of SDA. This example illustrates the random group method with the Survey
of Youth in Custody (syc) data. The whole sample is divided into seven random groups
by variable randgrp. The svyby function computes the mean of variable age using svymean
separately for each random group. Each is calculated using the survey weight �nalwt.

Only the point estimates for age, printed in repmean, are needed to calculate the mean
and con�dence interval. The standard errors are not used. Thus, although the survey has
strati�cation and clustering, we do not need to include that information in the svydesign
function when calculating variances with the random groups method�the estimated means
of each group depend only on the weights in �nalwt.

data(syc)

dsyc<-svydesign(id = ~1, weights = ~finalwt, data = syc)

repmean<-svyby(~age, ~randgrp, dsyc, svymean)

repmean # we use only the means, not the SEs

randgrp age se

1 1 16.54947 0.1171541

2 2 16.66331 0.1133751

3 3 16.82544 0.1242695

4 4 16.05688 0.1240046

5 5 16.31776 0.1160307

6 6 17.02798 0.1181861

7 7 17.26605 0.1110258

Constructing Replicate Weights 113

Let θ̂r be the estimate from the rth replicate sample, r = 1, 2, · · · , 7, θ̃ be the mean of the 7
random group means, and θ̂ be the estimated mean age using the whole data set syc. We
can calculate two variance estimates: SEthetatilde calculates the square root of

V̂1(θ̃) =
1

R

1

R− 1

R∑
r=1

(
θ̂r − θ̃

)2
(9.1)

and SEthetahat calculates the square root of

V̂2(θ̂) =
1

R

1

R− 1

R∑
r=1

(
θ̂r − θ̂

)2
. (9.2)

Estimate and SE 1 (could also use t.test function)

thetatilde<-mean(repmean$age)

SEthetatilde<- sqrt((1/7)*var(repmean$age))

Estimate and SE 2

thetahat<-coef(svymean(~age,dsyc))

SEthetahat<- sqrt((1/7)*(1/6)*sum((repmean$age-thetahat)^2))

#calculate confidence interval by direct formula using t distribution

Mean_CI1 <- c(thetatilde, SEthetatilde, thetatilde- qt(.975, 7-1)*SEthetatilde,

thetatilde+ qt(.975, 7-1)*SEthetatilde)

names(Mean_CI1) <- c("thetatilde","SE","lower CL", "upper CL")

Mean_CI1

thetatilde SE lower CL upper CL

16.6724103 0.1559995 16.2906932 17.0541274

Mean_CI2 <- c(thetahat,SEthetahat, thetahat- qt(.975, 7-1)*SEthetahat,

thetahat+ qt(.975, 7-1)*SEthetahat)

names(Mean_CI2) <- c("thetahat","SE","lower CL", "upper CL")

Mean_CI2

thetahat SE lower CL upper CL

16.6392931 0.1565843 16.2561452 17.0224411

The estimated mean of age using thetatilde is 16.67241 with a con�dence interval of
[16.29069, 17.05413]. The estimated mean of age using thetahat is 16.63929 with a con�-
dence interval of [16.25615, 17.02244]. The df is equal to the number of random groups
minus 1, which is 6. Again, though, with few random groups, the con�dence interval is
wider than it would be if a variance estimation method having more df were used. We
discuss such methods in the next section.

9.2 Constructing Replicate Weights

Replicate weights for balanced repeated replication (BRR), jackknife, and bootstrap meth-
ods can be created with the as.svrepdesign function in the survey package (Lumley, 2020).
It creates a replicate-weights survey design object from a survey design object that contains
strati�cation and clustering information.

The basic function call, shown here for BRR, is

as.svrepdesign(design.object, type = "BRR")

114 Variance Estimation in Complex Surveys

where design.object is a design object that has been created using svydesign (containing
the strati�cation and clustering information) and type speci�es the replication method to
be used.

9.2.1 Balanced Repeated Replication

Example 9.5 of SDA. This example shows how to use BRR to calculate variances for the
small data set in Table 9.2 of SDA. Here, we assume that N = 10, 000. Variable wt contains
the sampling weight, which is Nh/2 for this sample with nh = 2 sampled observations per
stratum and is obtained by N(Nh/N)/nh = (N)(strfrac)/2. We request type="BRR" in the
as.svrepdesign function.

The procedure creates 8 replicate weights because that is the smallest multiple of 4 that is
larger than 7, the number of strata.

brrex<-data.frame(strat = c(1,1,2,2,3,3,4,4,5,5,6,6,7,7),

strfrac =c(0.3,0.3,0.1,0.1,0.05,0.05,0.1,0.1,0.2,0.2,0.05,0.05,0.2,0.2),

y =c(2000,1792,4525,4735,9550,14060,800,1250,9300,7264,13286,12840,2106,2070)

)

brrex$wt <- 10000*brrex$strfrac/2

brrex

strat strfrac y wt

1 1 0.30 2000 1500

2 1 0.30 1792 1500

3 2 0.10 4525 500

4 2 0.10 4735 500

5 3 0.05 9550 250

6 3 0.05 14060 250

7 4 0.10 800 500

8 4 0.10 1250 500

9 5 0.20 9300 1000

10 5 0.20 7264 1000

11 6 0.05 13286 250

12 6 0.05 12840 250

13 7 0.20 2106 1000

14 7 0.20 2070 1000

dbrrex<-svydesign(id=~1, strata=~strat,weights=~wt,data=brrex)

dbrrex # stratified random sample

Stratified Independent Sampling design (with replacement)

svydesign(id = ~1, strata = ~strat, weights = ~wt, data = brrex)

convert to BRR replicate weights

dbrrexbrr <- as.svrepdesign(dbrrex, type="BRR")

dbrrexbrr # identifies as BRR

Call: as.svrepdesign(dbrrex, type = "BRR")

Balanced Repeated Replicates with 8 replicates.

now use the replicate weights to calculate the mean and confidence interval

svymean(~y,dbrrexbrr)

mean SE

y 4451.7 236.42

degf(dbrrexbrr)

[1] 7

confint(svymean(~y,dbrrexbrr),df=7)

2.5 % 97.5 %

y 3892.664 5010.736

Constructing Replicate Weights 115

The estimated mean value of y is 4451.7 with a standard error of 236.42, and a con�dence
interval of [3892.664, 5010.736].

You can also look at the replicate weights multiplier if desired. Note that the two observa-
tions in each stratum have complementary patterns.

can look at replicate weight multiplier if desired

this is to illustrate weight structure; it is not needed for data analysis

dbrrexbrr$repweights$weights

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

[1,] 2 0 2 0 2 0 2 0

[2,] 0 2 0 2 0 2 0 2

[3,] 2 2 0 0 2 2 0 0

[4,] 0 0 2 2 0 0 2 2

[5,] 2 0 0 2 2 0 0 2

[6,] 0 2 2 0 0 2 2 0

[7,] 2 2 2 2 0 0 0 0

[8,] 0 0 0 0 2 2 2 2

[9,] 2 0 2 0 0 2 0 2

[10,] 0 2 0 2 2 0 2 0

[11,] 2 2 0 0 0 0 2 2

[12,] 0 0 2 2 2 2 0 0

[13,] 2 0 0 2 0 2 2 0

[14,] 0 2 2 0 2 0 0 2

Fay's method for BRR. The as.svrepdesign function will also construct replicate weights
using Fay's variation of BRR (Dippo et al., 1984; Judkins, 1990). Simply specify type="Fay"
instead of type="BRR". To set ε for Fay's method equal to 0.5, add the argument fay.rho
= 0.5. This results in weight multipliers 1.5 and 0.5, instead of the multipliers 0 and 2 for
the BRR example above.

dbrrexfay <- as.svrepdesign(dbrrex, type="Fay",fay.rho=0.5)

svymean(~y,dbrrexfay)

mean SE

y 4451.7 236.42

confint(svymean(~y,dbrrexfay),df=7)

2.5 % 97.5 %

y 3892.664 5010.736

look at rep weights for contrast with regular BRR

note values for replicate weight multiplier are now 1.5 and 0.5

dbrrexfay$repweights$weights

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

[1,] 1.5 0.5 1.5 0.5 1.5 0.5 1.5 0.5

[2,] 0.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5

[3,] 1.5 1.5 0.5 0.5 1.5 1.5 0.5 0.5

[4,] 0.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5

[5,] 1.5 0.5 0.5 1.5 1.5 0.5 0.5 1.5

[6,] 0.5 1.5 1.5 0.5 0.5 1.5 1.5 0.5

[7,] 1.5 1.5 1.5 1.5 0.5 0.5 0.5 0.5

[8,] 0.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5

[9,] 1.5 0.5 1.5 0.5 0.5 1.5 0.5 1.5

[10,] 0.5 1.5 0.5 1.5 1.5 0.5 1.5 0.5

[11,] 1.5 1.5 0.5 0.5 0.5 0.5 1.5 1.5

[12,] 0.5 0.5 1.5 1.5 1.5 1.5 0.5 0.5

[13,] 1.5 0.5 0.5 1.5 0.5 1.5 1.5 0.5

[14,] 0.5 1.5 1.5 0.5 1.5 0.5 0.5 1.5

116 Variance Estimation in Complex Surveys

Example 9.6 of SDA. Now let's create BRR weights for a data set with strati�cation
and clustering: the NHANES data. First, use svydesign to include primary sampling unit
(psu) sdmvpsu, stratum sdmvstra and weight wtmec2yr information, and then use the
as.svrepdesign function to construct replicate weights using BRR by adding type="BRR". By
specifying the strati�cation and clustering information through svydesign, you ensure that
observations in the same psu are kept together during the replicate weight construction.

This analysis �nds summary statistics of body mass index (BMI, in variable bmxbmi) for
adults age 20 and over, so the subset function is also used. Note that the df for the subset
is the same as for the full sample�there are members from this domain in each psu, so the
df equals (number of psus − number of strata).

data(nhanes)

nhanes$age20d<-rep(0,nrow(nhanes))

nhanes$age20d[nhanes$ridageyr >=20 & !is.na(nhanes$bmxbmi)]<-1

dnhanes<-svydesign(id=~sdmvpsu, strata=~sdmvstra,nest=TRUE,

weights=~wtmec2yr,data=nhanes)

dnhanesbrr <- as.svrepdesign(dnhanes, type="BRR")

look at subset of adults age 20+

dnhanesbrrsub<-subset(dnhanesbrr, age20d =='1')

degf(dnhanes)

[1] 15

degf(dnhanesbrrsub) # same df

[1] 15

calculate mean

bmimean<-svymean(~bmxbmi, dnhanesbrrsub)

bmimean

mean SE

bmxbmi 29.389 0.261

confint(bmimean,df=15)

2.5 % 97.5 %

bmxbmi 28.83279 29.94541

calculate quantiles

svyquantile(~bmxbmi, dnhanesbrrsub, quantiles=c(0.25,0.5,0.75,0.95),

ties = "rounded")

Statistic:

bmxbmi

q0.25 24.35349

q0.5 28.23490

q0.75 33.06615

q0.95 42.64092

SE:

bmxbmi

q0.25 0.2215986

q0.5 0.3241246

q0.75 0.3139102

q0.95 0.3436826

The mean and quantiles are estimated using the full sample weights, and the replicate
weights are used to calculate the standard errors. The estimated mean BMI for adults is
29.389 with standard error of 0.261, and a 95% con�dence interval of [28.833, 29.945]. You
can also include optional argument return.replicates=TRUE in the svymean statement in
case you want to look at the statistics calculated for each replicate.

Note that these replicate weights, constructed from the NHANES �nal weights available on
the public-use data �le, do not account the e�ects of poststrati�cation on the variances. See

Constructing Replicate Weights 117

Section 9.2.4 for how to calculate replicate weights so that the variance estimates include
the e�ects of weighting adjustments.

Domain estimates with replicate weights. We carried out this analysis on the subset
of observations with age20d=1. The subset function is used exactly the same way with a
replicate-weight design object as with a strata/cluster design object. Make sure, though,
that you de�ne the replicate-weight design object on the full data set �rst, and then use the
subset function to de�ne the domain. This ensures that the full design information is used
to calculate standard errors.

9.2.2 Jackknife

The survey package will create replicate weights for two types of jackknife: JK1 and JKn.
These are described in detail by Brick et al. (2000) and Chapter 15 of Valliant et al. (2018).
Brie�y, JKn is the jackknife for strati�ed multistage sampling described in Chapter 9 of
SDA. If there are nh psus in stratum h and observation i has weight wi, then the JKn
jackknife weights are de�ned as follows:

wi(hj) =

wi if observation unit i is not in stratum h
0 if observation unit i is in psu j of stratum h
nh

nh − 1
wi if observation unit i is in stratum h but not in psu j.

(9.3)

The weights wi(hj) are used to calculate θ̂(hj) for each replicate, and

V̂JKn(θ̂) =

H∑
h=1

nh − 1

nh

nh∑
j=1

(
θ̂(hj) − θ̂

)2
. (9.4)

Jackknife JK1 is a special case of JKn where there is one stratum.

Jackknife weights for an SRS. Let's start by looking at how the as.svrepdesign function
works using jackknife variance estimation for an SRS, then move on to complex sample
designs.

Example 9.7 of SDA. Data collegerg shows the values of in-state and out-of-state tuition
for 5 replicate samples with size 10 each (these samples were selected with SAS software, and
di�er from the replicate samples selected earlier in this chapter). We de�ne data collegerg1
as the replicate sample 1 (having repgroup = 1).

For comparison purposes, we �rst look at the linearization (Taylor series) variance estimate
of the mean in-state tuition, mean out-of-state tuition, and the ratio of mean out-of-state
tuition to mean in-state tuition. Note that in svydesign, we did not include the fpc argument,
so the with-replacement variance is calculated.

data(collegerg)

collegerg1<-collegerg[collegerg$repgroup==1,]

collegerg1$sampwt<-rep(500/10,10)

calculate SEs of means and ratio using linearization

dcollegerg1<-svydesign(id=~1, weights=~sampwt,data=collegerg1)

means.lin<-svymean(~tuitionfee_in+tuitionfee_out, dcollegerg1)

means.lin

mean SE

tuitionfee_in 8913.3 454.46

tuitionfee_out 21614.7 2325.15

118 Variance Estimation in Complex Surveys

confint(means.lin,df=degf(dcollegerg1))

2.5 % 97.5 %

tuitionfee_in 7885.247 9941.353

tuitionfee_out 16354.843 26874.557

ratio.lin<-svyratio(~tuitionfee_out,~tuitionfee_in,dcollegerg1)

ratio.lin

Ratio estimator: svyratio.survey.design2(~tuitionfee_out, ~tuitionfee_in,

dcollegerg1)

Ratios=

tuitionfee_in

tuitionfee_out 2.424994

SEs=

tuitionfee_in

tuitionfee_out 0.2311776

confint(ratio.lin,df=degf(dcollegerg1))

2.5 % 97.5 %

tuitionfee_out/tuitionfee_in 1.902034 2.947954

Now let's calculate the jackknife variance by omitting observation j in replicate j. We use
function as.svrepdesign with type="JK1" to create jackknife weights for this SRS of size 10.
We then use svymean and svyratio to calculate the standard errors of the estimated means
and ratio with the jackknife weights.

define jackknife replicate weights design object

dcollegerg1jk <- as.svrepdesign(dcollegerg1, type="JK1")

dcollegerg1jk

Call: as.svrepdesign(dcollegerg1, type = "JK1")

Unstratified cluster jacknife (JK1) with 10 replicates.

now look at jackknife SE for means

these are same as linearization since SRS and statistic = mean

svymean(~tuitionfee_in + tuitionfee_out, dcollegerg1jk)

mean SE

tuitionfee_in 8913.3 454.46

tuitionfee_out 21614.7 2325.15

jackknife SE for ratio

svyratio(~tuitionfee_out, ~tuitionfee_in, design = dcollegerg1jk)

Ratio estimator: svyratio.svyrep.design(~tuitionfee_out, ~tuitionfee_in,

design = dcollegerg1jk)

Ratios=

tuitionfee_in

tuitionfee_out 2.424994

SEs=

[,1]

[1,] 0.2314828

The above output shows the statistics produced by the svymean and svyratio functions using
linearization and jackkinfe methods. Typing dcollegerg1jk shows that this unstrati�ed
jackknife (JK1) has 10 replicates. The jackknife standard errors for the estimated means
of tuitionfee_in and tuitionfee_out are 454.46 and 2325.15, respectively. These are the
same as the linearization standard errors because V̂JK(ȳ) = s2y/n for an SRS, as shown in
Section 9.3 of SDA. The jackknife standard error for the nonlinear statistic of the ratio,
0.231483, di�ers slightly from the linearization standard error of 0.231178. These values are
extremely close�after all, the linearization variance and the jackknife variance are both
consistent estimators for V (B̂)�but are not exactly the same. The df used to calculate the
con�dence interval are n− 1 = 9.

Constructing Replicate Weights 119

For an SRS such as this, the jackknife weights are calculated by setting the weight of
observation j to zero and assigning weight wi×n/(n− 1) = 500/10 ∗ 10/9 = 55.555 to each
of the other observations. You can print the replicate weight multipliers for each observation
if you want (although you typically do not need to do this when carrying out a data analysis).

can look at replicate weight multipliers if desired

note that observation being omitted for replicate has weight 0

weight multiplier for other observations is 10/9 = 1.11111

round(dcollegerg1jk$repweights$weights,digits=4)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 0.0000 1.1111 1.1111 1.1111 1.1111 1.1111 1.1111 1.1111 1.1111 1.1111

[2,] 1.1111 0.0000 1.1111 1.1111 1.1111 1.1111 1.1111 1.1111 1.1111 1.1111

[3,] 1.1111 1.1111 0.0000 1.1111 1.1111 1.1111 1.1111 1.1111 1.1111 1.1111

[4,] 1.1111 1.1111 1.1111 0.0000 1.1111 1.1111 1.1111 1.1111 1.1111 1.1111

[5,] 1.1111 1.1111 1.1111 1.1111 0.0000 1.1111 1.1111 1.1111 1.1111 1.1111

[6,] 1.1111 1.1111 1.1111 1.1111 1.1111 0.0000 1.1111 1.1111 1.1111 1.1111

[7,] 1.1111 1.1111 1.1111 1.1111 1.1111 1.1111 0.0000 1.1111 1.1111 1.1111

[8,] 1.1111 1.1111 1.1111 1.1111 1.1111 1.1111 1.1111 0.0000 1.1111 1.1111

[9,] 1.1111 1.1111 1.1111 1.1111 1.1111 1.1111 1.1111 1.1111 0.0000 1.1111

[10,] 1.1111 1.1111 1.1111 1.1111 1.1111 1.1111 1.1111 1.1111 1.1111 0.0000

Jackknife weights for a complex survey. For a survey with strati�cation and clustering,
you need to include the stratum and cluster information in the svydesign function. The
replicate weights are then constructed by deleting one psu at a time from each stratum.

Example 9.8 of SDA. In this example, we consider a two stage cluster sampling. Because
clutch is the primary sampling unit (psu), the procedure deletes one clutch at a time,
rather than one observation at a time.

The sampling weight relwt is de�ned as Mi/mi = csize/2, the number of eggs in the clutch
divided by the number of eggs selected from the clutch for measurement. The as.svrepdesign
function sets the replicate weight variable equal to 0 for all observations from the psu being
deleted in that replicate. This design has one stratum, so we use type="JK1"; if your survey
has strati�cation, use type="JKn".

data(coots)

coots$relwt<-coots$csize/2

dcoots<-svydesign(id=~clutch,weights=~relwt,data=coots)

dcootsjk <- as.svrepdesign(dcoots, type="JK1")

svymean(~volume,dcootsjk)

mean SE

volume 2.4908 0.061

confint(svymean(~volume,dcootsjk),df=degf(dcootsjk))

2.5 % 97.5 %

volume 2.370354 2.611203

The estimated mean volume is 2.49 with a standard error of 0.061 by jackknife method. The
con�dence interval for the mean volume is [2.370354, 2.611203] with a degrees of freedom of
183 , which is the number of psus 184 minus 1.

9.2.3 Bootstrap

Example 9.9 of SDA. This example looks at creating bootstrap weights using the method
in Rao et al. (1992) to estimate the population distribution of height from the SRS in data
set htsrs. The number of replicates used is speci�ed by replicates = 1000 in the function

120 Variance Estimation in Complex Surveys

as.svrepdesign with type = "subbootstrap". You will need to use set.seed to be able to
reconstruct the same set of bootstrap weights later.

The weight variable wt equals 10 for each observation. In each replicate, if observation i is
selected m times; the weight in the replicate for that observation is, using the formula in
Section 9.3 of SDA, 10× (200/199)×m. The df with bootstrap method is the sample size
minus one, which is 200 − 1 = 199, not the number of bootstrap replicates, which can be
set to any value.

data(htsrs)

nrow(htsrs)

[1] 200

wt<-rep(10,nrow(htsrs))

dhtsrs<-svydesign(id=~1, weights=~wt,data=htsrs)

set.seed(9231)

dhtsrsboot <- as.svrepdesign(dhtsrs, type="subbootstrap",replicates=1000)

svymean(~height,dhtsrsboot)

mean SE

height 168.94 0.7978

degf(dhtsrsboot) # 199 = n - 1

[1] 199

confint(svymean(~height,dhtsrsboot),df=degf(dhtsrsboot))

2.5 % 97.5 %

height 167.3667 170.5133

svyquantile(~height, dhtsrsboot, quantile=c(0.25,0.5,0.75), ties=c("rounded"))

Statistic:

height

q0.25 159.70

q0.5 168.75

q0.75 176.00

SE:

height

q0.25 0.8878743

q0.5 0.9930391

q0.75 1.1339674

Setting set.seed(9231), the above output shows the summary statistics of the mean,
selected quantiles and associated standard errors calculated using the bootstrap method.

Example 9.10 of SDA. The code for creating bootstrap weights in a complex survey design is
similar to that for an SRS. The survey design is speci�ed by svydesign, and the as.svrepdesign
function is used to create the replicate weights. Data set htstrat is a strati�ed random
sample, so svydesign requires only the stratum information. When the weights argument is
not supplied, the function calculates the weights from the information in the fpc argument.

data(htstrat)

nrow(htstrat)

[1] 200

dhtstrat <- svydesign(id = ~1, strata = ~gender, fpc = c(rep(1000,160),rep(1000,40)),

data = htstrat)

set.seed(982537455)

dhtstratboot <- as.svrepdesign(dhtstrat, type="subbootstrap",replicates=1000)

svymean(~height,dhtstratboot)

mean SE

height 169.02 0.7296

degf(dhtstratboot)

Constructing Replicate Weights 121

[1] 198

confint(svymean(~height,dhtstratboot),df=degf(dhtstratboot))

2.5 % 97.5 %

height 167.5769 170.4543

The estimated mean height is 169.02 with a standard error of 0.7296 by the bootstrap
method. The 95% con�dence interval for mean height is [167.5769, 170.4543], calculated
using a t distribution with 198 df (sample size minus number of strata, 200 − 2). If you
specify the bootstrap design object with a di�erent random number seed, you will obtain a
slightly di�erent value for the standard error because a di�erent set of bootstrap samples
will be used for the variance calculations.

The as.svrepdesign function will also construct bootstrap replicate weights for other forms
of bootstrap: type = "bootstrap" uses the method of Canty and Davison (1999) and type

= "mrbbootstrap" uses the multistage rescaled bootstrap of Preston (2009).

9.2.4 Replicate Weights and Nonresponse Adjustments

The code given so far in this section constructs replicate sampling weights. When nonre-
sponse adjustments are made to the �nal weights, as described in Chapter 8 of SDA, the
steps of weighting class adjustments, poststrati�cation, raking, and other adjustments that
are used on the �nal weights need to be repeated for each replicate weight column.

For example, the combination of as.svrepdesign and postStratify procedures will create repli-
cate weights that re�ect poststrati�cation weight adjustments. Let's look at that for the
poststrati�ed weights in Example 4.9 of SDA, which we discussed in Section 4.4.

Example 4.9 of SDA. Let's look at creating poststrati�ed replicate weights for an SRS.
Here are the steps:

1. De�ne a design object with the sampling weights, strati�cation, and clustering. Here,
the object dsrs is an SRS with weights 3078/300. Because most replicate weight methods
calculate the with-replacement variance, only the �rst-stage strata and psu information
needs to be supplied.

2. Choose the variance estimation method (here, JK1), and create a replicate-weights de-
sign object.

3. Apply poststrati�cation (function postStratify) to the replicate-weights design object.
This will poststratify the sampling weights and each variable of replicate weights.

data(agsrs)

define design object for sample

dsrs <- svydesign(id = ~1, weights=rep(3078/300,300), data = agsrs)

define replicate weights design object

dsrsjk<-as.svrepdesign(dsrs,type="JK1")

poststratify on region

pop.region <- data.frame(region=c("NC","NE","S","W"), Freq=c(1054,220,1382,422))

dsrspjk<-postStratify(dsrsjk, ~region, pop.region)

svymean(~acres92, dsrspjk)

mean SE

acres92 299778 18653

confint(svymean(~acres92, dsrspjk),df=degf(dsrspjk))

2.5 % 97.5 %

acres92 263069.2 336487

122 Variance Estimation in Complex Surveys

svytotal(~acres92, dsrspjk)

total SE

acres92 922717031 57413300

Check: estimates of counts in poststrata = pop.region counts with SE = 0

svytotal(~factor(region),dsrspjk)

total SE

factor(region)NC 1054 0

factor(region)NE 220 0

factor(region)S 1382 0

factor(region)W 422 0

The estimated mean value of acres92 is 299,778 with a standard error of 18,653, where the
jackknife replicate weights are poststrati�ed. Recall that in example 4.9, the poststrati�ed
standard error of the mean of acres92 is 17,513�this value is smaller because it included
a �nite population correction (fpc), while the replicate weight methods calculate the with-
replacement variance.

Note that the �nal poststrati�ed weights, and each poststrati�ed replicate weight variable,
sum to 1054 for the NC region, to 220 for the NE region, to 1382 for the S region, and to 422
for the W region�exactly the poststrati�cation totals de�ned in the data set pop.region.
After poststrati�cation, there is no sampling variability for the variables used in the post-
strati�cation. Variables associated with the poststrati�cation variables should have reduced
variance as well.

Performing multiple steps of nonresponse adjustments. Many surveys have several steps
of weighting class adjustments followed by calibration; sometimes intermediate or �nal
weights are trimmed or smoothed so that the weight adjustments do not have �spikes�
for some observations. Each step must be repeated for each replicate sampling weight.

1. Start with the sampling weight variable w, which is calculated as the inverse of the
probability of selection for each member of the selected sample, whether respondent or
nonrespondent.

2. Create R replicate sampling weights w1, . . . ,wR using the desired replication variance
estimation method; if desired, this can be done using the as.svyrepdesign function.

3. Now carry out each step of the weight adjustments�weighting class adjustments, weight
smoothing or trimming, propensity score adjustments, calibration, or other methods
that may be used�on the sampling weight. The �nal weight variable results from this
process.

4. Repeat the operations in Step 3 for each column of replicate weights. Each additional
step in the weighting adjustments needs to be carried out separately on each replicate
weight.

Some of the functions in the survey package, such as postStratify, will create replicate
weights for the nonresponse adjustments they carry out. For a complicated weighting proce-
dure, we prefer constructing the weights and replicate weights in a custom-written program
so that we can see the adjustments at each step.

Using Replicate Weights from a Survey Data File 123

9.3 Using Replicate Weights from a Survey Data File

Section 9.2 gave examples of how to create your own replicate weights for a survey from the
sampling weights, strati�cation, and clustering information.

Many survey organizations supply data �les for which the replicate weights have already
been created. These replicate weights have usually already accounted for the nonresponse
weighting adjustments. You can analyze these �les with the survey package, too.

Example 9.5 of SDA. Here, let's suppose that the BRR weights we created for the simple
data set in Table 9.2 of SDA have been stored in an external data set and then imported
into R. We create brrdf using the replicate weights from the design object dbrrexbrr that we
formed in Section 9.2.1, but then use brrdf alone to illustrate how the function svrepdesign
will create a design object from an imported data set that has replicate weights.

Create data frame containing final and replicate weights, and y

repwts<- dbrrexbrr$repweights$weights * matrix(brrex$wt,nrow=14,ncol=8,byrow=FALSE)

brrdf<-data.frame(y=brrex$y,wt=brrex$wt,repwts)

colnames(brrdf)<-c("y","wt",paste("repwt",1:8,sep=""))

brrdf # contains weight, repwt1-repwt8, and y but no stratum info

y wt repwt1 repwt2 repwt3 repwt4 repwt5 repwt6 repwt7 repwt8

1 2000 1500 3000 0 3000 0 3000 0 3000 0

2 1792 1500 0 3000 0 3000 0 3000 0 3000

3 4525 500 1000 1000 0 0 1000 1000 0 0

4 4735 500 0 0 1000 1000 0 0 1000 1000

5 9550 250 500 0 0 500 500 0 0 500

6 14060 250 0 500 500 0 0 500 500 0

7 800 500 1000 1000 1000 1000 0 0 0 0

8 1250 500 0 0 0 0 1000 1000 1000 1000

9 9300 1000 2000 0 2000 0 0 2000 0 2000

10 7264 1000 0 2000 0 2000 2000 0 2000 0

11 13286 250 500 500 0 0 0 0 500 500

12 12840 250 0 0 500 500 500 500 0 0

13 2106 1000 2000 0 0 2000 0 2000 2000 0

14 2070 1000 0 2000 2000 0 2000 0 0 2000

create design object

dbrrdf<-svrepdesign(weights=~wt,repweights="repwt[1-9]",data=brrdf,type="BRR")

dbrrdf

Call: svrepdesign.default(weights = ~wt, repweights = "repwt[1-9]",

data = brrdf, type = "BRR")

Balanced Repeated Replicates with 8 replicates.

svymean(~y,dbrrdf) # same as before!

mean SE

y 4451.7 236.42

In the svrepdesign function, we specify the weight variable and tell the function that the
replicate weights are in variables whose names are of the form �repwt� followed by a number.
The argument type="BRR" indicates that the replicate weights were formed using the BRR
method. The function requires only weights= and repweights= arguments to calculate
point estimates and standard errors. The point estimates are calculated using the full sample
weights (in the weights= argument), and the replicate weights are used to calculate standard
errors. No strati�cation or clustering information is supplied to the function.

124 Variance Estimation in Complex Surveys

The svrepdesign function can also accommodate replicate weights with types JK1, JK2 (a
version of jackknife for two-psu-per-stratum designs; see Brick et al., 2000), JKn, bootstrap,
the Fay variant of BRR, and other structures. The producer of the survey you are analyzing
will include information about the type of replicate weights that were produced and any
special considerations that are needed for analysis.

9.4 Summary, Tips, and Warnings

Table 9.1 lists the major R functions used in this chapter.

TABLE 9.1
Functions used for Chapter 9.

Function Package Usage

subset base Work with a subset of a vector, matrix, or data frame
srswor sampling Select an SRS without replacement
svydesign survey Specify the survey design
svymean survey Calculate mean and standard error of mean
svyratio survey Calculate ratio and standard error of ratio
svyquantile survey Calculate quantiles and their standard errors
as.svrepdesign survey Creates a replicate-weights survey design object from

a design object that includes weighting, strati�cation,
and clustering information

svrepdesign survey Creates a replicate-weights survey design object from a
data frame that contains columns for �nal and replicate
weights

Tips and Warnings

� To create replicate weights for a complex survey for which strati�cation and clustering
information is available, �rst create a design object with the svydesign function, then
convert it to a replicate-weights survey design object with the as.svrepdesign function.

� If performing nonresponse adjustments, perform the adjustments on the sampling weight
variable, and then on each replicated sampling weight. Then standard errors calculated
using the replicate weights will account for the weighting adjustments.

� To analyze data for which replicate weights have already been supplied, create the survey
design object with the svrepdesign function. You do not need strati�cation or clustering
information to analyze survey data when you have the replicate weights.

� Use the subset function to analyze data for a domain. When using replication vari-
ance estimation, create the replicate-weights design object �rst, then apply the subset
function.

10

Categorical Data Analysis in Complex Surveys

The functions svytable, svychisq and svyloglin from the survey package (Lumley, 2020) per-
form categorical data analyses on survey data. In this chapter, we present several examples
to illustrate the usage of these functions. The code is in �le ch10.R on the book website.

10.1 Contingency Tables and Odds Ratios

First let's look at the contingency table and odds ratio for an SRS.

Example 10.1 of SDA. Data set cablecomp is created from the category counts in Example
10.1 of SDA. Each household in the sample gives the computer (Yes or No) and cable (Yes
or No) status.

create the categorical table (Table 10.1)

cablecomp<-matrix(c(119,188,88,105), ncol=2, byrow=2)

dimnames(cablecomp)<-list(Cable=c("yes", "no"),

Computer=c("yes","no"))

cablecomp

Computer

Cable yes no

yes 119 188

no 88 105

Are households with a computer more likely to subscribe to cable? A chi-square or G2 test
for independence is often used for such questions. Using function chisq.test (without the
continuity correction), the Pearson's chi-square test statistic X2 is 2.281. For large samples,
X2 approximately follows a chi-square (χ2) distribution with (r − 1) ∗ (c − 1) degrees of
freedom (df) under the null hypothesis, where r and c are the number of rows and columns
in the contingency table. In this case, df = 1. The p-value for X2 statistic is 0.13, giving
no reason to doubt the null hypothesis that owning a computer and subscribing to cable
television are independent.

Pearson's chi-square test under multinomial sampling, obtain X^2

cablechisq<-chisq.test(cablecomp,correct=F)

cablechisq

##

Pearson's Chi-squared test

##

data: cablecomp

X-squared = 2.281, df = 1, p-value = 0.131

Expected values under null hypothesis

cablechisq$expected

Computer

Cable yes no

125

126 Categorical Data Analysis in Complex Surveys

yes 127.098 179.902

no 79.902 113.098

odds ratio

(cablecomp[1,1]/cablecomp[1,2])/(cablecomp[2,1]/cablecomp[2,2])

[1] 0.7552587

We estimate the odds of owning a computer if the household subscribes to cable as 119/188
and estimate the odds of owning a computer if the household does not subscribe to cable
as 88/105. The odds ratio is therefore estimated as

(119/188)/(88/105) = 0.755.

Contingency tables for data from a complex survey. The only di�erence between con-
structing contingency tables and computing odds ratios for an SRS and doing so for a
complex sample is that for the complex sample we include the design information in func-
tion svydesign and use svytable to calculate the weighted counts.

Example 10.5 of SDA. This example shows how to use functions svydesign and svytable to
produce statistics for a two-factor contingency table when observations are from a strati�ed
multistage sample�in this case, from the Survey of Youth in Custody (syc) data.

The following two variables are of interest. Variable famtime denotes �Was anyone in your
family ever incarcerated?� with 2 corresponding to No and 1 corresponding to Yes; and
variable everviol refers to the question �Have you ever been put on probation or sent to a
correctional institution for a violent o�ense?� with 0 corresponding to No and 1 correspond-
ing to Yes. Next, we specify the survey design using svydesign, and use svytable to create
the contingency table. Finally, we obtain a Wald chi-square test statistic with the summary
or svychisq function.

dsyc<-svydesign(ids=~psu,weights=~finalwt,strata=~stratum,nest=TRUE,data=syc)

dsyc # Verify this is a stratified cluster sample

Stratified 1 - level Cluster Sampling design (with replacement)

With (861) clusters.

svydesign(ids = ~psu, weights = ~finalwt, strata = ~stratum,

nest = TRUE, data = syc)

Create contingency table by incorporating weights

example1005 <- svytable(~famtime+everviol,design=dsyc)

example1005

everviol

famtime 0 1

1 4838 7946

2 4761 7154

Perform the Wald chi-square test

summary(example1005,statistic="Wald")

everviol

famtime 0 1

1 4838 7946

2 4761 7154

##

Design-based Wald test of association

##

data: svychisq(~famtime + everviol, design = dsyc, statistic = "Wald")

F = 0.99514, ndf = 1, ddf = 845, p-value = 0.3188

Alternatively, can calculate the Wald statistic directly using svychisq

Chi-Square Tests 127

without forming the table first

svychisq(~famtime+everviol,design=dsyc,statistic="Wald")

##

Design-based Wald test of association

##

data: svychisq(~famtime + everviol, design = dsyc, statistic = "Wald")

F = 0.99514, ndf = 1, ddf = 845, p-value = 0.3188

The Wald chi-square test statistic is X2
W = 0.995 with p-value of 0.32, which indicates that

there is no evidence of an association between the two factors famtime and everviol.

10.2 Chi-Square Tests

The svychisq function performs all of the chi-square tests discussed in Chapter 10 of SDA.
The general form of the function is:

svychisq(~variable1 + variable2, design.object, statistic="")

Table 10.1 lists some of the test statistics and measures of association produced.

TABLE 10.1
Chi-square test statistics calculated by function svychisq.

statistic= Statistic or Test

Wald Wald test (Koch et al., 1975).
Chisq First-order Rao-Scott test, based on Pearson's chi-square test statis-

tic (Rao and Scott, 1981, 1984).
F Second-order Rao-Scott test.
adjWald Adjusted Wald test (Thomas and Rao, 1987).
lincom Use exact asymptotic distribution for the linear combination of chi-

squared variables in Rao-Scott statistic.
saddlepoint Use saddlepoint approximation for the linear combination of chi-

squared variables in Rao-Scott statistic.

In general, we do not recommend using a �nite population correction (fpc) when conducting
a chi-square test. Often, the purpose of the test is to explore whether there is a general
association between the factors in the superpopulation, not merely in the �nite population
from which the data are drawn. To consider whether you want to include an fpc in the
calculations, ask whether you would want to conduct the test if you knew the values for the
entire population (i.e., you had a census, where the fpc is 1 −N/N = 0) in which case all
standard errors are zero if the fpc is used. If the answer is yes, then do not include the fpc.

Example 10.6 of SDA. For this example, we de�ned the variable currviol as 1 if crimtype =
1 and 0 otherwise. This means that the �0� category of currviol consists of the persons with
crimtype ∈ {2, 3, 4, 5} as well as the 12 persons with missing values for crimtype, and can
be thought of as the persons not known to have committed a violent o�ense. The analysis
results are almost the same when the 12 missing values are excluded. We also de�ne the
variable ageclass as 1 if age is less than or equal to 15, as 2 if age is equal to 16 or 17, and
as 3 if age is greater than or equal to 18.

128 Categorical Data Analysis in Complex Surveys

Create variables currviol and ageclass for 10.6

syc$currviol <- syc$crimtype

syc$currviol[syc$crimtype != 1 | is.na(syc$crimtype)] <- 0

syc$ageclass <- syc$age

syc$ageclass[syc$age <= 15] <- 1

syc$ageclass[syc$age == 16 | syc$age == 17] <- 2

syc$ageclass[18 <= syc$age] <- 3

Specify the survey design

dsyc<-svydesign(ids=~psu,weights=~finalwt,strata=~stratum,nest=TRUE,data=syc)

estimate the contingency table

svytable(~currviol+ageclass,design=dsyc)

ageclass

currviol 1 2 3

0 4247 6542 3190

1 2770 4630 3633

First-order Rao-Scott test

svychisq(~currviol+ageclass,design=dsyc,statistic="Chisq")

##

Pearson's X^2: Rao & Scott adjustment

##

data: svychisq(~currviol + ageclass, design = dsyc, statistic = "Chisq")

X-squared = 33.993, df = 2, p-value = 0.001909

Second-order Rao-Scott test

(this is the default, can also request with "statistic=F")

svychisq(~currviol+ageclass, design=dsyc)

##

Pearson's X^2: Rao & Scott adjustment

##

data: svychisq(~currviol + ageclass, design = dsyc)

F = 6.2614, ndf = 1.7258, ddf = 1458.2973, p-value = 0.003245

The Pearson's X2 is 33.993. The Rao-Scott �rst-order test statistic adjusts X2 by the design
correction Ê[X2]/2. Comparing to χ2 distribution with (3− 1) ∗ (2− 1) degrees of freedom,
the p-value of the Rao-Scott �rst-order test is 0.002.

The Rao-Scott F statistic for the second-order correction is F = 6.2614, which is obtained
by dividing the Pearson chi-square statistic (X2 = 33.99) by the design correction multiplied
by the degrees of freedom 2. The second-order Rao-Scott test is the default for svychisq,
or you can add statistic = "F" to obtain it. By setting statistic = "lincom", you
may also use an exact distribution for the numerator in Pearson's X2, which is a linear
combination of chi square distributions.

We do not need to calculate the design e�ects (de�s) for the table cells and margins in
order to conduct a chi-square test, because the svychisq function automatically adjusts for
the design e�ects when calculating the statistics. If you would like to see the de�s, however,
they can be calculated with the svymean function. Here, we obtain estimates of the de�s
compared with simple random sampling with replacement (deff="replace"). The design
e�ects for the table cells and margins are large, indicating that persons within the same psu
tend to be more similar than persons sampled at random from the facilities.

deffs for table cells

svymean(~interaction(factor(ageclass), factor(currviol)),design=dsyc,deff="replace")

mean SE DEff

Loglinear Models 129

interaction(factor(ageclass), factor(currviol))1.0 0.169798 0.028312 14.8978

interaction(factor(ageclass), factor(currviol))2.0 0.261554 0.017127 3.9791

interaction(factor(ageclass), factor(currviol))3.0 0.127539 0.012152 3.4771

interaction(factor(ageclass), factor(currviol))1.1 0.110747 0.013269 4.6840

interaction(factor(ageclass), factor(currviol))2.1 0.185111 0.019301 6.4706

interaction(factor(ageclass), factor(currviol))3.1 0.145250 0.013478 3.8335

deffs for table margins

svymean(~factor(ageclass)+ factor(currviol),design=dsyc,deff="replace")

mean SE DEff

factor(ageclass)1 0.280545 0.033395 14.4762

factor(ageclass)2 0.446666 0.026528 7.4598

factor(ageclass)3 0.272789 0.022366 6.6068

factor(currviol)0 0.558892 0.025337 6.8223

factor(currviol)1 0.441108 0.025337 6.8223

10.3 Loglinear Models

This section will discuss how to �t a loglinear model with categorical data using function
svyloglin.

Example 10.8 of SDA. Recall the computer and cable data from Example 10.1 of SDA. To
analyze this in the survey package, let's �rst create data set cabledf with 500 records�one
record per observation with sampling weight of 1, and create the survey design object.

cabletable <- matrix(c(

"no","no",105,

"no","yes",88,

"yes", "no",188,

"yes", "yes",119),byrow=T,nrow=4,ncol=3)

colnames(cabletable) <- c("cable","computer","count")

cabletable <- data.frame(cabletable)

cabledf <- cabletable[rep(row.names(cabletable), cabletable[,3]), 1:2]

dim(cabledf)

[1] 500 2

cabledf$wt <- rep(1,500)

head(cabledf)

cable computer wt

1 no no 1

1.1 no no 1

1.2 no no 1

1.3 no no 1

1.4 no no 1

1.5 no no 1

dcable <- svydesign(id=~1, weights=~wt, data=cabledf)

Now let's do a chi-square test for independence with the svychisq function. Since this is an
SRS with equal weights of 1, both chisq.test and svychisq give the same result. The value
of the chi-square statistic from svychisq is 2.281 with p-value = 0.1314, just as was found
in the chi-square test from Example 10.1.

chi-squared test for independent data, no continuity correction

chisq.test(cabledf$computer,cabledf$cable,correct=F)

130 Categorical Data Analysis in Complex Surveys

##

Pearson's Chi-squared test

##

data: cabledf$computer and cabledf$cable

X-squared = 2.281, df = 1, p-value = 0.131

svychisq(~computer+cable,design=dcable,statistic="Chisq")

##

Pearson's X^2: Rao & Scott adjustment

##

data: svychisq(~computer + cable, design = dcable, statistic = "Chisq")

X-squared = 2.281, df = 1, p-value = 0.1314

We can also use the svyloglin function to �t an additive loglinear model with variables cable
and computer.

Fit loglinear model for independence, with additive factors

cableindep <- svyloglin(~factor(cable)+factor(computer),design=dcable)

summary(cableindep)

Loglinear model: svyloglin(~factor(cable) + factor(computer), design = dcable)

coef se p

factor(cable)1 -0.2320788 0.04597713 4.471605e-07

factor(computer)1 0.1737269 0.04544339 1.318753e-04

obtain coefficients including intercept, deviance

cableindep$model

##

Call: glm(formula = ff, family = quasipoisson, data = dat)

##

Coefficients:

(Intercept) factor(cable)1 factor(computer)1

4.7866 -0.2321 0.1737

##

Degrees of Freedom: 3 Total (i.e. Null); 1 Residual

Null Deviance: 43.36

Residual Deviance: 2.275 AIC: NA

obtain the predicted counts under the independence model

cableindep$model$fitted.values

1 2 3 4

113.098 179.902 79.902 127.098

obtain the fitted probabilities under the model

cableindep$model$fitted.values/500

1 2 3 4

0.226196 0.359804 0.159804 0.254196

The estimates from summary(cableindep) are the coe�cients for cable = �no� and computer
= �no�. The output stated factor(cable)1, where 1 means �no" according to the alphabet-
ical order of �no� and �yes�. Note that the intercept here is equal to 4.786607, which is for the
expected count. To calculate the �tted probabilities using the loglinear model, we need to
convert it to the intercept for probabilities, which is equal to 4.786607− ln(500) = −1.428.
We can calculate the �tted probabilities using the formula, or by requesting the �tted.values,
which give the predicted counts under the additive loglinear model, from the function out-
put.

The deviance component of cableindep$model contains the deviance of 2.275. This is the
value of G2 from the likelihood ratio test for independence, corresponding to a p-value of

Loglinear Models 131

0.132. Alternatively, you can obtain this p-value from the interaction term of a saturated
model, or by comparing the two nested models.

Fit saturated loglinear model

cablesat <- svyloglin(~factor(cable)*factor(computer),design=dcable)

summary(cablesat)

Loglinear model: svyloglin(~factor(cable) * factor(computer), design = dcable)

coef se p

factor(cable)1 -0.22106707 0.04655596 2.050156e-06

factor(computer)1 0.15848550 0.04655596 6.635966e-04

factor(cable)1:factor(computer)1 -0.07017373 0.04655596 1.317341e-01

this can also be obtained by comparing the two models

anova(cablesat,cableindep)

Analysis of Deviance Table

Model 1: y ~ factor(cable) + factor(computer)

Model 2: y ~ factor(cable) + factor(computer) + factor(cable):factor(computer)

Deviance= 2.274961 p= 0.1324977

Score= 2.281035 p= 0.1319832

Example 10.9 of SDA. In this example, we use svyloglin to analyze the data syc. Let's
�rst take a look at the three-way table of weighted counts for the three variables ageclass,
everviol and famtime. We use the design object dsyc de�ned for Example 10.5 to incorporate
the weights.

syctable3way <- svytable(~ageclass+everviol+famtime,design=dsyc)

syctable3way

, , famtime = 1

##

everviol

ageclass 0 1

1 1628 2115

2 2332 3395

3 878 2436

##

, , famtime = 2

##

everviol

ageclass 0 1

1 1453 1723

2 2234 3056

3 1074 2375

Estimate probabilities in table

syctable3way/sum(syctable3way)

, , famtime = 1

##

everviol

ageclass 0 1

1 0.06591360 0.08563100

2 0.09441678 0.13745496

3 0.03554800 0.09862747

##

, , famtime = 2

##

everviol

ageclass 0 1

1 0.05882829 0.06975991

132 Categorical Data Analysis in Complex Surveys

2 0.09044901 0.12372971

3 0.04348354 0.09615774

Next, we �t a saturated model. This produces the parameter estimates, their standard
errors, and the p-values for the null hypotheses that the individual parameters equal 0. This
survey has large design e�ects because the facilities have a high degree of clustering with
respect to ages served and severity of o�enses.

The following code requests the saturated model.

svyloglin(~ageclass+everviol+famtime+ageclass*everviol

+ ageclass*famtime+everviol*famtime+ageclass*everviol*famtime,design=dsyc)

Alternatively, you could type

svyloglin(~ageclass*everviol*famtime,design=dsyc)

to include all the factors and interactions among the factors.

Fit saturated loglinear model

sycsat <- svyloglin(~ageclass*everviol*famtime,design=dsyc)

summary(sycsat)

Loglinear model: svyloglin(~ageclass * everviol * famtime, design = dsyc)

coef se p

ageclass1 -0.114863155 0.11589240 3.216275e-01

ageclass2 0.344093390 0.07257131 2.121916e-06

everviol1 -0.244591938 0.04529927 6.683913e-08

famtime1 0.024225036 0.03268196 4.585506e-01

ageclass1:everviol1 0.136557159 0.05820665 1.897229e-02

ageclass2:everviol1 0.072369272 0.03217396 2.449266e-02

ageclass1:famtime1 0.055452399 0.03677297 1.315632e-01

ageclass2:famtime1 0.012807329 0.02838298 6.518218e-01

everviol1:famtime1 -0.031699074 0.02297100 1.675988e-01

ageclass1:everviol1:famtime1 0.008882581 0.02890809 7.586381e-01

ageclass2:everviol1:famtime1 0.016132994 0.02780612 5.617826e-01

The output shows the parameter estimates for the 11 terms in the saturated model, along
with standard errors and p-values for the Wald tests that the individual parameters equal
zero. There are two parameters for each term involving the three-category factor ageclass.
The p-values can be used to test individual terms.

You can also compare sets of nested models. Let's �t the independent factor model, and
compare it with the saturated model.

Fit additive loglinear model for independent factors

sycind <- svyloglin(~ageclass+everviol+famtime,design=dsyc)

summary(sycind)

Loglinear model: svyloglin(~ageclass + everviol + famtime, design = dsyc)

coef se p

ageclass1 -0.14745454 0.11162655 1.865137e-01

ageclass2 0.31771375 0.07232164 1.117632e-05

everviol1 -0.22651791 0.04817065 2.571154e-06

famtime1 0.03519814 0.03202768 2.717719e-01

compare independent and saturated models

anova(sycsat, sycind)

Analysis of Deviance Table

Model 1: y ~ ageclass + everviol + famtime

Model 2: y ~ ageclass + everviol + famtime + ageclass:everviol + ageclass:famtime +

Summary, Tips, and Warnings 133

everviol:famtime + ageclass:everviol:famtime

Deviance= 50.82273 p= 0.0007817253

Score= 48.67106 p= 0.001132184

From the output,the p-value is 0.00113, indicating that the independence model exhibits
lack of �t when compared with the saturated model.

10.4 Summary, Tips, and Warnings

Table 10.2 lists the major functions used in this chapter to perform categorical data analyses.

TABLE 10.2
Functions used for Chapter 10.

Function Package Usage

summary base Summarize the results from �tting a model (here used
for loglinear models)

chisq.test stats Perform a chi-square test (not using survey methods)
anova stats Compute an analysis of variance table from a model

object
predict stats Obtain predicted values from a model object
svydesign survey Specify the survey design
svymean survey Calculate mean and standard error of mean; also cal-

culate design e�ects
svytable survey Estimate the population contingency table from survey

data
svychisq survey Calculate chi-square test statistics and p-values for sur-

vey data
svyloglin survey Fit a loglinear model to survey data; may also be used

to compare nested models

Tips and Warnings

� Always look at the estimated contingency table before conducting a chi-square test or
�tting a loglinear model.

� In general, we recommend conducting chi-square tests and �tting loglinear models with-
out an fpc. It is often desired to explore the association between variables in a context
more general than the particular �nite population.

� Check for empty or sparse cells by applying the table function before analyzing the
data, particularly if you are �tting a loglinear model with many terms. See Fienberg
and Rinaldo (2007) for a discussion of what can go wrong when �tting loglinear models.

11

Regression with Complex Survey Data

We have already used the svyglm procedure from the survey package (Lumley, 2020) in
Chapter 4 to perform ratio and regression estimation. In this chapter, we use the function to
calculate regression coe�cients and provide other summary statistics for regression analyses
with complex survey data. The code is in �le ch11.R on the book website.

11.1 Straight Line Regression in an SRS

For many analyses carried out on an SRS, results from a model-based analysis in a proce-
dure designed for independent and identically distributed data (such as the mean function)
are the same as the results from the corresponding survey analysis procedure (such as the
svymean function) used with weights set equal to 1. For regression, however, the standard
errors for an SRS calculated using functions lm or glm, which perform model-based regres-
sion analyses (see Section 4.6), di�er from those calculated by the svyglm function from
the survey package (Lumley, 2020). This is because, as explained in Section 11.2 of SDA,
the standard errors for the SRS calculated using linearization account for the errors in esti-
mating the population totals of both the x and y variables; the model-based standard error
calculated in the glm or lm function is conditional on the values of x in the sample.

We can see a slight di�erence for the estimates calculated in Examples 11.2 and 11.4 of
SDA using the lm and svyglm functions. For this example, the di�erence is small because
the model �ts well and the sample is an SRS; for other surveys and models, the di�erence
can be greater and we recommend using the svyglm function to �t the model.

Example 11.2 of SDA. The following shows an analysis conducted using the function lm
for the data in anthsrs. This conducts a model-based analysis under assumptions (A1)�(A4)
given in Section 11.1 of SDA. The summary function shows the regression parameter esti-
mates, standard error, t test, value of R2, and more. The function glm, which �ts generalized
linear models for non-survey data, will give the same results.

data(anthsrs)

fit<-lm(anthsrs$height~anthsrs$finger)

summary(fit)

##

Call:

lm(formula = anthsrs$height ~ anthsrs$finger)

##

Residuals:

Min 1Q Median 3Q Max

-3.9045 -1.1638 0.0543 1.1407 5.0543

##

Coefficients:

134

Straight Line Regression in an SRS 135

Estimate Std. Error t value Pr(>|t|)

(Intercept) 30.3162 2.5668 11.81 <2e-16 ***

anthsrs$finger 3.0453 0.2217 13.73 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

Residual standard error: 1.75 on 198 degrees of freedom

Multiple R-squared: 0.4879,Adjusted R-squared: 0.4853

F-statistic: 188.6 on 1 and 198 DF, p-value: < 2.2e-16

Example 11.4 of SDA. Now let's perform the regression analysis using the svyglm function.
The major di�erence is to include the design object created by svydesign, where the variable
wt is set equal to 3000/200 for each observation.

anthsrs$wt<-rep(3000/200,200)

danthsrs<- svydesign(id = ~1, weight = ~wt, data = anthsrs)

degf(danthsrs) # here, 199

[1] 199

fit2 <- svyglm(height~finger, design=danthsrs)

summary(fit2)

##

Call:

svyglm(formula = height ~ finger, design = danthsrs)

##

Survey design:

svydesign(id = ~1, weight = ~wt, data = anthsrs)

##

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 30.3162 2.5436 11.92 <2e-16 ***

finger 3.0453 0.2201 13.84 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

(Dispersion parameter for gaussian family taken to be 3.046384)

##

Number of Fisher Scoring iterations: 2

confint(fit2) # here calculated using normal distribution

2.5 % 97.5 %

(Intercept) 25.330821 35.301675

finger 2.613917 3.476583

fit2$coefficients # contains coefficients

(Intercept) finger

30.31625 3.04525

fit2$deviance # residual sum of squares (for this SRS example)

[1] 606.2304

The values of the estimated slope and intercept are the same as in the analysis with the
lm procedure, but the standard errors of the regression coe�cients, here calculated using
linearization, are di�erent. In this example, where the straight-line model �ts the data well,
the di�erence in the standard errors is small. In other examples the two sets of standard
errors may exhibit wider disparities.

Degrees of freedom (df) for regression analyses. One other di�erence between the two
analyses is the df to be used for the con�dence intervals and hypothesis tests. For the model-

136 Regression with Complex Survey Data

based analysis in Example 11.2, a t distribution with n− (number of model parameters) df
is used (here 198). We usually set the df equal to (number of psus) − (number of strata) for
regression analyses with complex survey data, regardless of number of model parameters.
One exception to that guideline is when an analysis is being done on a domain that does not
appear in all of the psus (although if domain members are represented in only a handful of
psus a model-based analysis might be preferred; see Section 11.5). Valliant and Rust (2010)
discuss the issue of df in survey data analyses.

Finite population corrections for regression analyses. If desired, you can include an fpc
argument in the svydesign function to calculate standard errors that incorporate a �nite
population correction (fpc) and hence will be slightly smaller. We suggest omitting the fpc
argument when performing regression analyses, because we often want to learn about the
relationships among variables in a universal sense (including potential populations that are
similar to the �nite population), not just in the particular �nite population that was studied.
Ask yourself: If I were estimating regression relationships for data from a population census,
would I want the standard errors of the coe�cients to be zero (as they would be if a census
were taken because there is no sampling variability)? If the answer is no, then omit the fpc.

Example 11.6 of SDA. Instead of using the linearization method to calculate standard
error of the regression coe�cients, we can also calculate jackknife weights for the survey
and use those with the svyglm function to compute the standard errors. The jackknife
weights are 3000/199 = 15.0754 for the observations not deleted for the replicate and 0 for
the observation that is deleted.

danthsrsjk <- as.svrepdesign(danthsrs, type="JK1")

fit3 <- svyglm(height~finger, design=danthsrsjk)

summary(fit3)

##

Call:

svyglm(formula = height ~ finger, design = danthsrsjk)

##

Survey design:

as.svrepdesign(danthsrs, type = "JK1")

##

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 30.3162 2.5805 11.75 <2e-16 ***

finger 3.0453 0.2233 13.64 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

(Dispersion parameter for gaussian family taken to be 606.2304)

##

Number of Fisher Scoring iterations: 2

confint(fit3)

2.5 % 97.5 %

(Intercept) 25.258652 35.373844

finger 2.607591 3.482909

The output for the jackknife is similar to that from Example 11.4, where standard errors
are calculated using linearization, but the standard errors are slightly larger. This is not a
matter for concern; the two methods of variance estimation are asymptotically equivalent,
but often give slightly di�erent numbers for real data sets, which are of �nite size.

Linear Regression for Complex Survey Data 137

For comparison, Table 11.1 lists the point estimates and standard errors using lm and
svyglm.

TABLE 11.1: Comparison of standard error estimates using linearization or jackknife for
the regression coe�cients by glm and svyglm (data anthsrs)

Estimate SE(lm) SE(svyglm, linearization) SE(svyglm, JK)

Intercept 30.3162 2.5668 2.5436 2.5805
Slope 3.0453 0.2217 0.2201 0.2233

11.2 Linear Regression for Complex Survey Data

The National Health and Nutrition Examination Survey (NHANES) data (nhanes in the
SDAResources package) will be used for examples in the remaining sections.

11.2.1 Multiple Linear Regression

Example 11.7 of SDA. This example �ts the regression model

bmxbmi = ridageyr + ridageyr2

to the NHANES data (nhanes); ridageyr is the variable in the data that gives each person's
age in years. This analysis �ts the model to the entire range of ages; Section 11.3 will show
an example of a regression model �t to the observations in the domain of adults. To enter
the design information, recall that sdmvpsu and sdmvstra are the primary sampling unit
(psu) and strata variables, respectively, and wtmec2yr is the weight variable. We create a
subset design object, dnhanescc, for the domain that has no missing data for the response
and explanatory variables in the regression.

data(nhanes)

nhanes$ridageyr2<-nhanes$ridageyr^2

dnhanes<-svydesign(id=~sdmvpsu, strata=~sdmvstra,nest=TRUE,

weights=~wtmec2yr,data=nhanes)

dnhanescc <- subset(dnhanes,complete.cases(cbind(bmxbmi,ridageyr)))

fit4<-svyglm(bmxbmi~ridageyr + ridageyr2, design=dnhanescc)

summary(fit4)

##

Call:

svyglm(formula = bmxbmi ~ ridageyr + ridageyr2, design = dnhanescc)

##

Survey design:

subset(dnhanes, complete.cases(cbind(bmxbmi, ridageyr)))

##

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 15.2981488 0.2293566 66.70 < 2e-16 ***

ridageyr 0.6031084 0.0188377 32.02 9.43e-14 ***

ridageyr2 -0.0057488 0.0002311 -24.88 2.38e-12 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

138 Regression with Complex Survey Data

(Dispersion parameter for gaussian family taken to be 42.25111)

##

Number of Fisher Scoring iterations: 2

can also extract separate elements

nobs(fit4) # number of observations used in regression

[1] 8756

fit4$coefficients # extract regression parameters

(Intercept) ridageyr ridageyr2

15.298148792 0.603108429 -0.005748801

1 - fit4$deviance/fit4$null.deviance # R-squared

[1] 0.2833541

test linear hypotheses about model terms

regTermTest(fit4,~ridageyr + ridageyr2,df=15)

Wald test for ridageyr ridageyr2

in svyglm(formula = bmxbmi ~ ridageyr + ridageyr2, design = dnhanescc)

F = 746.9868 on 2 and 15 df: p= 9.5625e-16

The svyglm function tells the procedure to �t a model with y variable bmxbmi and x
variables ridageyr and ridageyr2. The estimated regression coe�cients are accompanied by
their standard errors. The �tted values are given by the equation

ŷ = 15.298 + 0.6031084 ∗ ridageyr − 0.0057488 ∗ ridageyr2,

and the �tted values for the data observations are stored in fit4$fitted.values. Residuals
can be found in fit4$residuals.

We can estimate the population value of R2 using the estimated deviance from the �tted
model and null model (model �t with just an intercept term). For linear regression, R2 is the
proportion of variability about the mean that is explained by the regression model, which
is 1 minus (deviance from regression model)/(deviance from null model). Here we estimate
R2 = 0.2834.

Tests of linear hypotheses. The regTermTest function gives the Wald F statistic for
testing the hypothesis that the terms given in the second argument are all zero. For a linear
hypothesis H0 : Lβ = 0, the Wald F statistic equals

F =
(LB̂)T

[
L V̂ (B̂)LT

]−1
(LB̂)

rank
[
L V̂ (B̂)LT

]
(a generalized inverse may be used when the inverse of V̂ (L B̂) does not exist), and is

compared to an F distribution with numerator df equal to the rank of L V̂ (B̂)LT . We use
(number of psus minus number of strata) as the denominator df. Here, the Wald F statistic
of 746.99, with p-value much less than 0.0001, is for the null hypothesis that the coe�cients
of ridageyr and ridageyr2 are both zero, and is compared to an F2,15 distribution. The
regTermTest function will perform a Rao-Scott test based on the estimated log likelihood
ratio if method= "LRT" is speci�ed.

Regression analyses and missing data. Many data sets, including the nhanes data, have
missing values for the y variable or one or more of the x variables. In this case, only 8756
(=nobs(fit4)) of the 9971 observations in the data set had values for bmxbmi.

We performed the regression analysis on the subset of data with non-missing values. For this
example, the same results would be obtained by running the regression model with design

Linear Regression for Complex Survey Data 139

object dnhanes since the default method is to omit cases with missing data. For some anal-
yses, however, entire psus might be missing the value of at least one of the model variables;
using the subset function ensures that the standard error calculations use information from
all of the psus.

Another option is to �t the regression model with a replicate-weights design object. If you
are using replication methods to estimate variances, you can analyze subsets of the data,
as long as the replicate weights have been created using the full sample. This is because
the replicate weight construction already accounts for the full design structure. Replicate
weight variance estimates are of the form

∑R
r=1 cr(θ̂r−θ̂)2, where θ̂ is the estimate calculated

using the full-sample weight and θ̂r is the estimate calculated using the rth replicate weight.
When you calculate domain estimates, θ̂ and each replicate value θ̂r are calculated using the
same set of observations, so the domain of non-missing values does not need to be de�ned
separately.

Here we �t the model with BRR weights, excluding the observations with missing data. The
standard errors di�er slightly because a di�erent variance estimation method was used.

dnhanesbrr <- as.svrepdesign(dnhanes, type="BRR")

fit5<-svyglm(bmxbmi~ridageyr + ridageyr2, design=dnhanesbrr,na.action=na.omit)

summary(fit5)

##

Call:

svyglm(formula = bmxbmi ~ ridageyr + ridageyr2, design = dnhanesbrr,

na.action = na.omit)

##

Survey design:

as.svrepdesign(dnhanes, type = "BRR")

##

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 15.2981488 0.2337378 65.45 < 2e-16 ***

ridageyr 0.6031084 0.0190054 31.73 1.06e-13 ***

ridageyr2 -0.0057488 0.0002321 -24.76 2.53e-12 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

(Dispersion parameter for gaussian family taken to be 405852.8)

##

Number of Fisher Scoring iterations: 2

But be aware that item nonresponse can distort estimates of regression relationships in the
population. It is also possible that when a model has many explanatory variables, each with
some item nonresponse, the missing data patterns can mesh in such a way that the model is
�t on relatively few observations. Or the model might be �t on data from only a few of the
psus. We recommend exploring the amount and patterns of missing data before performing
analyses.

Graphing the regression equation. As we saw in Section 7.5, the svyplot procedure will
produce scatterplots that account for the survey weights. Figure 11.1 displays a bubble plot
with the �tted quadratic model.

plot data bmxbmi~ridageyr

svyplot(bmxbmi~ridageyr, design=dnhanes, style="bubble",basecol="gray",

inches=0.03,xlab="Age (years)",ylab="Body Mass Index",

xlim=c(0,80),ylim=c(10,70))

140 Regression with Complex Survey Data

plot fitted quadratic regression line

timevalues <- seq(2, 80, 0.02)

length(timevalues)

[1] 3901

predicted <- predict(fit4,data.frame(ridageyr=timevalues, ridageyr2=timevalues^2))

lines(timevalues, predicted, col = "black", lwd = 3)

0 20 40 60 80

10
20

30
40

50
60

70

Age (years)

B
od

y
M

as
s

In
de

x

FIGURE 11.1: Scatterplot with �tted quadratic model

11.3 Using Regression to Compare Domain Means

We computed domain means using the svyby function in Chapter 4. We can also compute�
and compare�domain means using the svyglm function, by �tting a regression model with
a categorical predictor variable that de�nes the domains.

To show how this works, let's de�ne a few new variables and design object dnhanes for the
remaining examples in this chapter.

� female: de�ne female = 1 if riagendr =2, and female = 0 if riagendr =1

� age20d : de�ne age20d=1 if ridageyr≥ 20 and bmxbmi is not missing, and 0 otherwise.

� raceeth: de�ne raceeth = Hispanic if ridreth3 = 1 or 2; raceeth = White if ridreth3 =
3; raceeth = Black if ridreth3 = 4; raceeth = Asian if ridreth3 = 6; raceeth = Other if
ridreth3 = 7;

� bmi30 : de�ne bmi30 =1 if bmxbmi> 30, bmi30 =0 if bmxbmi≤ 30

nhanes$female <- nhanes$riagendr-1

nhanes$age20d<-rep(0,nrow(nhanes))

Using Regression to Compare Domain Means 141

nhanes$age20d[nhanes$ridageyr >=20 & !is.na(nhanes$bmxbmi)]<-1

nhanes$bmi30<-nhanes$bmxbmi

nhanes$bmi30[nhanes$bmxbmi>30]<-1

nhanes$bmi30[nhanes$bmxbmi<=30]<-0

nhanes$raceeth <- rep(NA,nrow(nhanes))

nhanes$raceeth[nhanes$ridreth3==1 | nhanes$ridreth3==2] <- "Hispanic"

nhanes$raceeth[nhanes$ridreth3==3] <- "White"

nhanes$raceeth[nhanes$ridreth3==4] <- "Black"

nhanes$raceeth[nhanes$ridreth3==6] <- "Asian"

nhanes$raceeth[nhanes$ridreth3==7] <- "Other"

check variable construction; display missing values

table(nhanes$age20d,nhanes$bmi30,useNA="ifany")

##

0 1 <NA>

0 3130 220 1215

1 3248 2158 0

no missing data for female, raceeth

table(nhanes$female,nhanes$riagendr,useNA="ifany")

##

1 2

0 4892 0

1 0 5079

table(nhanes$raceeth,nhanes$ridreth3,useNA="ifany")

##

1 2 3 4 6 7

Asian 0 0 0 0 1042 0

Black 0 0 0 2129 0 0

Hispanic 1921 1308 0 0 0 0

Other 0 0 0 0 0 505

White 0 0 3066 0 0 0

dnhanes <- svydesign(id = ~sdmvpsu, strata = ~ sdmvstra, nest=TRUE,

weights=~wtmec2yr, data = nhanes)

Example 11.8 of SDA. Section 4.3 used the svyby function to calculate separate estimates
for domains. The easiest way to compare domain means in the survey package is to �t a
regression model predicting the response from one or more variables de�ning the domains.
When there are only two domains, an indicator variable may be used. Here we �t a model
on the domain of adults predicting BMI from the indicator variable female.

dnhanescc <- subset(dnhanes,!is.na(bmxbmi))

fit6<-svyglm(bmxbmi~female, design=dnhanescc)

summary(fit6)

##

Call:

svyglm(formula = bmxbmi ~ female, design = dnhanescc)

##

Survey design:

subset(dnhanes, !is.na(bmxbmi))

##

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 26.9276 0.2070 130.076 <2e-16 ***

female 0.6897 0.2531 2.725 0.0164 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

142 Regression with Complex Survey Data

##

(Dispersion parameter for gaussian family taken to be 58.8379)

##

Number of Fisher Scoring iterations: 2

2*(1-pt(2.725,15)) # calculate p-value for female with 15 df

[1] 0.01565339

The regression coe�cient corresponding to female is the estimated di�erence between the
mean BMI of females and the mean BMI of males. From the output, this value is 0.6897.
The test statistic for the null hypothesis that the mean BMI is the same for both genders
is 2.725 = 0.6897/0.2531; comparing this to a t distribution with degrees of freedom of 15
(number of psus minus number of strata) results in a p-value of 0.0157, indicating that
the mean BMI is signi�cantly di�erent for the two genders. The estimated mean BMI for
the male group (having female=0) is 26.9276, and the estimated mean BMI for the female
group is 26.9276 + 0.6897 = 27.6173.

You can also see the individual domain means by �tting a regression model without an
intercept with the explanatory variable factor(female). The regression parameters are the
estimated mean BMI for males and females.

fit7<-svyglm(bmxbmi~factor(female)-1, design=dnhanescc)

summary(fit7)

##

Call:

svyglm(formula = bmxbmi ~ factor(female) - 1, design = dnhanescc)

##

Survey design:

subset(dnhanes, !is.na(bmxbmi))

##

Coefficients:

Estimate Std. Error t value Pr(>|t|)

factor(female)0 26.928 0.207 130.1 <2e-16 ***

factor(female)1 27.617 0.260 106.2 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

(Dispersion parameter for gaussian family taken to be 58.8379)

##

Number of Fisher Scoring iterations: 2

Comparing more than two domain means. With more than two categories, it is more con-
venient to declare the variable de�ning the domains as a categorical variable using function
factor, and use that as the explanatory variable in the model statement of function svyglm.
Bretz et al. (2016) discussed how to use multiple comparison methods in R to compare
group means.

Example 11.9 of SDA. This example shows a comparison of BMI for adults in �ve race/eth-
nicity groups measured in NHANES. We de�ned the categories in variable raceeth above.
We �rst create the subset design object, to restrict the analysis to adults age 20 and over,
and then �t the model with the factor variable.

subset to age20d = 1 has no missing data for modeling

dnhanesadult <- subset(dnhanes,age20d==1)

fit8<-svyglm(bmxbmi~factor(raceeth), design=dnhanesadult)

summary(fit8)

##

Using Regression to Compare Domain Means 143

Call:

svyglm(formula = bmxbmi ~ factor(raceeth), design = dnhanesadult)

##

Survey design:

subset(dnhanes, age20d == 1)

##

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 24.9707 0.1411 176.92 < 2e-16 ***

factor(raceeth)Black 5.6205 0.3380 16.63 3.83e-09 ***

factor(raceeth)Hispanic 5.6266 0.3368 16.71 3.65e-09 ***

factor(raceeth)Other 5.4714 0.5337 10.25 5.76e-07 ***

factor(raceeth)White 4.2599 0.2372 17.96 1.69e-09 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

(Dispersion parameter for gaussian family taken to be 47.05606)

##

Number of Fisher Scoring iterations: 2

1 - fit8$deviance/fit8$null.deviance # R-squared

[1] 0.03264132

test statistic for H0: all domain means are equal

regTermTest(fit8,~factor(raceeth),df=15)

Wald test for factor(raceeth)

in svyglm(formula = bmxbmi ~ factor(raceeth), design = dnhanesadult)

F = 131.6208 on 4 and 15 df: p= 1.7277e-11

can draw side-by-side boxplot, see Figure 11.6 of SDA for plot

svyboxplot(bmxbmi~raceeth,dnhanesadult)

The above code produces estimates of the regression parameters together with standard
errors and test statistics. These are the coe�cients for the domain of adults (age20d = 1)
that are shown in Table 11.5 of SDA. Note that the coe�cient for the reference category,
Asian, is the intercept 24.9707. The other regression coe�cients estimate the di�erence
between the mean for the category listed and the reference category, and you can calculate
each estimated domain mean from those. For example, the estimated BMI for Black adults
is 24.9707 + 5.620 = 30.5907.

Alternatively, you can �t the model without an intercept. Then the estimated regression
coe�cients are the domain means.

fit9<-svyglm(bmxbmi~factor(raceeth)-1, design=dnhanesadult)

fit9$coefficients

factor(raceeth)Asian factor(raceeth)Black factor(raceeth)Hispanic

24.97068 30.59121 30.59725

factor(raceeth)Other factor(raceeth)White

30.44209 29.23055

Note that the estimated value of R2 for this analysis is low�only about three percent
of the variability is explained by the variable raceeth, but the Wald test shows the group
means to be highly signi�cantly di�erent (F = 131.6 with p-value < 0.0001). Remember
that statistical signi�cance, which depends on the e�ective sample sizes for the domains, is
not necessarily the same as practical importance.

144 Regression with Complex Survey Data

11.4 Logistic Regression

The svyglm function can perform logistic regression by adding the argument family =

quasibinomial. Call the function as:

svyglm(y ~ x1 + x2 +,family=quasibinomial,design= design object)

where y is a (binary) response variables and x1, x2, ... are explanatory variables. You can
specify the variance estimation methods for the svyglm procedure through the svydesign or
svrepdesign functions, as discussed in Chapter 9.

Example 11.12 of SDA. Recall that variable female is de�ned to equal 1 if the person is a
female and 0 if the person is a male. Here, female is treated as a numeric variable; it could
also be analyzed as a categorical variable using function factor. Variable bmi30 is de�ned
as 1 if bmxbmi> 30, and de�ned as 0 if bmxbmi≤ 30.

We use a subset design object to estimate parameters for adults aged 20 and over who have
data for all variables in the regression equation. The model �t in this example, which does
not include an interaction term, has the same rate of increase for the logit of the predicted
probability for males and females, even though the two genders may have di�erent base
probabilities.

dnhanessub2<-subset(dnhanes,age20d==1 & !is.na(bmxwaist))

lrout<-svyglm(bmi30 ~ bmxwaist+ female,family=quasibinomial,

design=dnhanessub2)

summary(lrout)

##

Call:

svyglm(formula = bmi30 ~ bmxwaist + female, design = dnhanessub2,

family = quasibinomial)

##

Survey design:

subset(dnhanes, age20d == 1 & !is.na(bmxwaist))

##

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -29.9560 1.1920 -25.130 2.09e-12 ***

bmxwaist 0.2809 0.0115 24.434 3.00e-12 ***

female 1.5786 0.1666 9.478 3.34e-07 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

(Dispersion parameter for quasibinomial family taken to be 0.7048114)

##

Number of Fisher Scoring iterations: 7

calculate odds ratios

exp(lrout$coefficient)

(Intercept) bmxwaist female

9.778316e-14 1.324332e+00 4.848338e+00

Wald test for all parameters in model

regTermTest(lrout, ~bmxwaist+female,df=15)

Wald test for bmxwaist female

in svyglm(formula = bmi30 ~ bmxwaist + female, design = dnhanessub2,

family = quasibinomial)

Logistic Regression 145

F = 312.2534 on 2 and 15 df: p= 5.982e-13

The output shows the parameter estimates for the model. The odds ratio is calculated
as exp(B̂j) for the corresponding regression coe�cient. Thus the odds ratio for bmxwaist
equals exp(0.2809) = 1.324 and is interpreted as follows. Suppose that person 1 has a waist
circumference that is 1 cm larger than the waist circumference of person 2, and the two
persons have the same values for all of the other covariates in the model (in this example,
that means they have the same gender). Then the model predicts the odds that person 1
has BMI > 30 to be 1.324 times as large as the odds that person 2 has BMI > 30.

The regTermTest function computes a Wald-type F statistic for comparing nested models.
Here we compute the statistic for the null hypothesis that the e�ects of bmxwaist and female
are both 0. The Wald test statistic is F = 312.25 with a p-value much less than 0.0001,
suggesting rejection of the null hypothesis.

Graphing predicted probabilities from logistic regression. In the following, we show a
graph of the predicted probability that BMI > 30 for men and women. The predicted
values from the model are stored in lrout$fitted.values, but we use the predict function
to give an even distribution of points for drawing the lines.

waist <- seq(50,175,0.1)

xfemale <- data.frame(bmxwaist=waist,female=rep(1,length(waist)))

linfemalepred <- predict(lrout,xfemale)

xmale <- data.frame(bmxwaist=waist,female=rep(0,length(waist)))

linmalepred <- predict(lrout,xmale)

predicted probability for female

femalepred <- exp(linfemalepred)/(1 + exp(linfemalepred))

predicted probability for male

malepred <- exp(linmalepred)/(1 + exp(linmalepred))

draw the graph

par(las=1,mar=c(4,4,1,2))

plot(waist,femalepred,type="n",xlab="Waist Circumference (cm)",

ylab="Estimated Probability",axes=F,xlim=c(70,140))

lines(waist,femalepred,lty=1,lwd=2)

lines(waist,malepred,lty=2,lwd=2)

legend("topleft",c("Female","Male"),lty=c(1,2),bty="n")

axis(2)

axis(1)

box(bty="l")

The graph in Figure 11.2 shows the predicted probabilities from the model. This does
not show the original data, however, and a scatterplot of a binary variable y versus the
explanatory variables typically does not provide much information about the relationship
because it usually displays an indistinguishable mass of observations at y = 1 and another
mass at y = 0. A more helpful option is to construct graphs showing the distribution of
continuous covariates for each level of the response variable (here, bmi30). If there is a single
continuous covariate, you may want to construct a histogram of the values of the covariate
at each value of y.

Many of the diagnostics and graphs described by Allison (2012) for model-based logistic
regression can also be applied to survey data.

146 Regression with Complex Survey Data

Waist Circumference (cm)

E
st

im
at

ed
 P

ro
ba

bi
lit

y
Female
Male

0.0

0.2

0.4

0.6

0.8

1.0

70 80 90 100 110 120 130 140

FIGURE 11.2: Predicted probability that BMI > 30

11.5 Additional Resources and Code

Balanced sampling: Exercise 11.36 of SDA. There are several methods that can be used
for selecting a balanced sample in R. The rejective method described in the exercise involves
generating repeated samples, and then selecting a sample at random from those that meet
the balancing constraints to within a predetermined tolerance.

The rejective method can require a great deal of computation, however. If the population
and sample are large, it may not be feasible to generate repeated samples and then reject
those that fail to meet the balancing criteria. Programs in the R statistical programming
language that will select balanced samples are given in Tillé and Matei (2021) and Grafström
and Lisic (2019). See also Chauvet and Tillé (2006) and Tillé and Wilhelm (2017).

Model-based regression for survey data. Section 11.4 of SDA discussed model-based
regression analyses for survey data. You may want to see if the regression coe�cients vary
from cluster to cluster, or compare the results of models �t with and without weights to see
if the weights have information about the regression relationships.

Packages nlme (Pinheiro et al., 2021) and lme4 (Bates et al., 2015, 2020) are commonly
used to �t mixed models in R. Functions from these packages can be used to �t linear and
generalized mixed models that explicitly include strati�cation and clustering information
in the model. As of this writing, these packages do not provide options for �tting mixed
models with complex survey designs.

Summary, Tips, and Warnings 147

11.6 Summary, Tips, and Warnings

The svyglm function performs linear and logistic regression analyses with numeric and
categorical explanatory variables. It will also �t other generalized linear models to survey
data. When called without the family argument or with family=gaussian, it will �t a linear
regression model; when called with family=quasibinomial, it will �t a logistic regression
model; when called with family=quasipoisson, it will �t a Poisson regression model.

Table 11.2 lists svyglm and the other major functions used in this chapter to perform
regression analyses.

TABLE 11.2
Functions used for Chapter 11.

Function Package Usage

summary base Summarize the results from �tting a model
subset base Work with a subset of a vector, matrix, or data frame
predict stats Obtain predicted values from a model object
con�nt stats Calculate con�dence interval
lm stats Fit a linear model to a data set (not using survey meth-

ods)
anova stats Compute an analysis of variance table from a model

object
nobs stats Find out how many observations were used to �t a

model
svydesign survey Specify the survey design
as.svrepdesign survey Create a replicate-weights survey design object from

a design object that includes weighting, strati�cation,
and clustering information

svyboxplot survey Draw boxplot of survey data, incorporating the weights
svyplot survey Draw scatterplot of survey data, incorporating the

weights
svyglm survey Fit a generalized linear model to survey data
regTermTest survey Calculate Wald test statistic from model object created

using svyglm

The main commands used for a typical analysis with the svyglm procedure are given below.
Many other statements and options are available for the svyglm procedure, and these are
described in the survey package documentation.

categorical variable using function 'factor'

mydata$class_var1<-factor(mydata$class_var1)

mydataclass_var2<-factor(mydata$class_var2)

enter design object

dobject <- svydesign(id = ~psu, strata = ~ strata, nest=TRUE,

weights=~wt, data = mydata)

enter replicate methods for variance calculation if desired

or use svrepdesign to use data already containing replicate weights

dobject2 <- as.svrepdesign(dobject, type=" ")

enter domain info, if analysis is restricted within domain

dobjectsub<-subset(dobject, domain =)

148 Regression with Complex Survey Data

or using replicate methods for variance calculation

dobjectsub2<- subset(dobject2, domain =)

perform regression analysis

design = dobject for whole data analysis using linearization

design = dobject2 for whole data analysis using replicate methods

design = dobjectsub for domain analysis using linearization

design = dobjectsub2 for domain analysis using replicate methods

fit<-svyglm(y ~x1+ x2+ class_var1 + class_var2, design=)

logistic regression

fit<-svyglm(y ~x1+ x2+ class_var1 + class_var2,

family=quasibinomial, design=)

Display coefficient estimatets etc

summary(fit)

test linear hypotheses using Wald statistic

regTermTest(fit, ~variable1 + variable2)

estimate R-squared

1 - fit$deviance/fit$null.deviance

extract coefficients

fit$coefficients

extract residuals, fitted values

resid <- fit$residuals

fitted.values <- fit$fitted.values

For replication variance estimation, specify which variance estimation method is used in the
type = option in function as.svrepdesign or svrepdesign, as described in Chapter 9.

Tips and Warnings

� If your data set has item nonresponse, function nobs will tell you how many observations
were used in the analysis. If many observations were excluded from the model because
they were missing y or one of the x variables, you may want to consider an alternative
model for the data. You may also want to investigate the pattern of missing data across
psus.

� If separate regression models are desired for domains, use the subset function to de�ne
design objects for the domains.

� You can use the svyby (see Section 4.3) or svyglm functions to compute domain means.

12

Additional Topics for Survey Data Analysis

In this chapter, we present some methods for analyzing simple two-phase samples and
estimating the size of a population using capture-recapture methods. We also describe re-
sources for �tting more complex models to estimate population size, and for �tting small
area estimation models. The code is in �le ch12.R on the book website.

12.1 Two-Phase Sampling

In a two-phase design, the �nal sample is taken in two steps. First, a sample is selected from
a population using a probability sampling design. In the second step, information from the
�rst-phase sample is used to set selection probabilities for a subsample to be drawn from
the �rst-phase sample. The function twophase from the survey package (Lumley, 2020) will
analyze data from two-phase samples.

Example 12.1 and 12.4 of SDA. In this example, we use two-phase sampling to estimate
the percentage of Vietnam-era veterans in U.S. Veterans Administration (VA) hospitals
who actually served in Vietnam (Stockford and Page, 1984). In the �rst phase, the 1982
VA Annual Patient Census (APC) included a random sample of 20% of the patients in
VA hospitals. Therefore, phase1wt is equal to 5. After the phase I data were collected, the
answers to the question �Was military service in Vietnam?� (�Yes,� �No,� or �Not Available�)
were obtained from medical records and used to determine strata for the second phase of
sampling. The second phase obtained the true classi�cation of Vietnam service from the
military records of a strati�ed random subsample of the phase I sample. Variable phase2wt
gives the strati�ed weights from the second phase of sampling.

The results for the question �Was service in Vietnam?� for this survey are given in Table 12.1.

TABLE 12.1: Results for the question �Was service in Vietnam?�

APC Group APC Classi�cation Phase II Sample Size Vietnam Service

Yes 755 67 49
No 804 72 11
NotAvail 505 505 211

Total 2064 644 271

From table 12.1, the percentage of veterans with Vietnam service di�ered for the three
groups: Of the veterans with a �yes� response to the APC survey question, 73% actually
served in Vietnam, compared with 15% for the �no� group and 42% for the veterans for
whom the information was not available.

149

150 Additional Topics for Survey Data Analysis

We can use the twophase function to estimate the population percentage of persons who
served in Vietnam. The function has the form

twophase(id=list(~ ,~), strata = list(~, ~) , probs = list(~, ~),

weights = list(~, ~), fpc = list(~, ~), subset,

data, method=c("full","approx","simple"))

where the id, strata, probs, weights and fpc arguments (usually, only some of these arguments
are needed) are supplied with information for both design phases. The subset argument is
used to specify which observations are selected in phase 2. Three methods are available
for variance estimation. The "full" method, which requires the sampling probabilities for
each stage, gives unbiased variance estimates for general multistage designs. The "simple"
and "approx" methods are simpler and use less memory: these will calculate variances for
designs in which an SRS is taken at phase I and a strati�ed random sample is taken at
phase II.

Many two-phase surveys, such as the survey considered here and the majority of the surveys
in the exercises for Chapter 12 of SDA, have an SRS at phase I and a strati�ed sample at
phase II, so we show how to use the twophase function with the "simple" method for
variance estimation.

The id, weights, and strata arguments to twophase are lists:

� We enter the weights at each phase as weights=list(�phase1wt, �phase2wt). For
this application, each phase I weight, in variable phase1wt, equals N divided by the
phase I sample size; the phase II weights in variable phase2wt are nh/mh, the observed
phase I sample size in stratum h divided by the phase II sample size in stratum h.

� We use id=list(�1,�1) to show that there is no clustering at either phase of sampling.

� The phase I sample is an SRS, and the phase II sample is strati�ed by the information
in variable apc that is gathered at phase I. This is entered as strata=list(NULL,�apc),
where the NULL for phase I indicates no strati�cation was used at that phase of sam-
pling.

Only the records sampled in phase II have information for vietnam, the variable of interest.
We thus analyze only the subset of records from the phase II sample; these are the records
having vietnam$p2sample=1.

data(vietnam)

print.data.frame(vietnam[1:6,])

apc p2sample vietnam phase1wt phase2wt finalwt p1apcsize p2apcsize

1 Yes 1 1 5 11.26866 56.34328 755 67

2 Yes 1 1 5 11.26866 56.34328 755 67

3 Yes 1 1 5 11.26866 56.34328 755 67

4 Yes 1 1 5 11.26866 56.34328 755 67

5 Yes 1 1 5 11.26866 56.34328 755 67

6 Yes 1 1 5 11.26866 56.34328 755 67

nrow(vietnam) #2064

[1] 2064

define logical index to specify which obsns are selected in phase 2

vietnam$indexp2<- vietnam$p2sample==1

dphase2<-twophase(id=list(~1,~1), weights=list(~phase1wt, ~phase2wt),

strata=list(NULL,~apc), subset=~indexp2, data=vietnam, method="simple")

svymean(~vietnam, dphase2)

mean SE

vietnam 0.42926 0.0271

Estimating the Size of a Population 151

From the two-phase sample, the estimated percentage of Vietnam-era veterans in U.S.
Veterans Administration (VA) hospitals who actually served in Vietnam is 0.42926 with a
standard error of 0.0271.

12.2 Estimating the Size of a Population

12.2.1 Ratio Estimation of Population Size

As discussed in Section 13.1 of SDA, the simple two-sample capture-recapture estimate
can be calculated using ratio estimation. Symmetric con�dence intervals calculated using
the t distribution can have poor coverage probability in small samples, so we also discuss
calculating con�dence intervals using inverted likelihood-ratio tests and bootstrap.

Example 13.1 of SDA. In this example, we estimate the total number of �sh N in a lake
together with the standard error based on a capture-recapture sample.

In the �rst step, catch and mark 200 �sh in the lake, then release them. Allow the marked
and released �sh to mix with the other �sh in the lake. Next, take a second, independent
sample of 100 �sh. Suppose that 20 of the �sh in the second sample are marked. Assuming
that the population of �sh has not changed between the two samples and that each catch
gives a simple random sample (SRS) of �sh in the lake. Below is the data set illustrated in
a 2× 2 table.

TABLE 12.2: Data for Example 13.1

In sample 2

Yes No

In sample 1 Yes 20 180 200

No 80 ? ?

100 ? N

The function svyratio in the survey package can be used to estimate the population total
with a symmetric con�dence interval. We create a data set with records for the second
sample, where every observation has weight 1.

create data frame of records from sample 2 of size n2

n1 <- 200

n2 <- 100

m <- 20

fish<-data.frame(x=c(rep(1,m),rep(0,n2-m)),wt=rep(1,n2),n1=rep(n1,n2))

dfish<-svydesign(id=~1,weights=~wt,data=fish)

estpop<-svyratio(~n1,~x,dfish)

estpop

Ratio estimator: svyratio.survey.design2(~n1, ~x, dfish)

Ratios=

x

n1 1000

SEs=

x

n1 201.0076

152 Additional Topics for Survey Data Analysis

calculate symmetric confidence interval

confint(estpop,df=n2-1)

2.5 % 97.5 %

n1/x 601.1574 1398.843

For many applications, however, the distribution of the ratio is skewed so that a symmetric
con�dence interval may not have accurate coverage probability. The function captureci from
the package SDAResources will compute a con�dence interval using the method of Cormack
(1992).

To apply function captureci, �rst construct a matrix xmat, where 1 = �in sample� and 0 =
�not in sample.� For our example, xmat has two columns since there are two samples; the
row (0,0) represents the category of not being in either sample. Next we de�ne y with the
number of �sh corresponding to xmat. Table 12.3 illustrates the de�nition of xmat and y.

TABLE 12.3: Matrix notation for Example 13.1

Description Vector notation, xmat Number of �sh, y

In sample 1 and sample 2 (1,1) 20
In sample 1, not in sample 2 (1,0) 180
Not in sample 1, in sample 2 (0,1) 80

After de�ning xmat and y, simply type captureci(xmat,y) to derive the estimates.

define xmat and y

xmat <- cbind(c(1,1,0),c(1,0,1))

y <- c(20,180,80)

cbind(xmat,y) # show xmat and y

y

[1,] 1 1 20

[2,] 1 0 180

[3,] 0 1 80

captureci(xmat,y)

$cell

(Intercept)

720

##

$N

(Intercept)

1000

##

$CI_cell

[1] 436.199 1233.835

##

$CI_N

[1] 716.199 1513.835

##

$deviance

[1] 1.598721e-14

The function captureci reports the estimated cell value for the missing count for category
(0, 0), the estimated total N̂ , and the con�dence intervals for the missing category count. The
estimated total �sh in the lake is 1000, with a 95% con�dence interval of [716.199, 1513.835].

Estimating the Size of a Population 153

We can also derive a con�dence interval for the population size using the bootstrap method.
The �rst column of data �sh contains a vector of length n2 that indicates membership in
sample 1. We can take R samples with replacement from this vector, calculate Chapman's
(1951) estimate

Ñ =
(n1 + 1)(n2 + 1)

m+ 1
− 1

from each resample, and then use the R estimates from the bootstrap resamples to estimate
the sampling distribution of Ñ . We use Chapman's estimate here because it is guaranteed to
be �nite for every bootstrap resample, whereas N̂ = n1n2/m might be in�nite if a resample
contains no marked �sh.

chapman<-function(y,n1) { (n1+1)*(length(y)+1)/(sum(y)+1) - 1}

Ntilde<-chapman(fish[,1],n1)

Ntilde

[1] 965.7143

generate 2000 bootstrap samples

nboot<-2000

set.seed(9231)

bootsamp<-matrix(sample(fish[,1], size = nrow(fish)*nboot, replace=TRUE), ncol=nboot)

dim(bootsamp) # nboot columns of resamples

[1] 100 2000

calculate Chapman's estimate for each column

Ntildeboot<-apply(bootsamp,2,chapman,n1)

draw histogram of bootstrap distribution

par(las=1)

hist(Ntildeboot,xlab = "Estimated Population Size",

main = "Histogram of Bootstrap Estimates",col="lightgray",

breaks=20,border="white")

box(bty="l")

calculate percentiles to get confidence interval

quantile(Ntildeboot,probs=c(0.025,0.975))

2.5% 97.5%

699.0345 1560.6154

The estimated con�dence interval for total �sh in the lake, using the bootstrap method
with a seed of 9231, is [699, 1561]. The histogram in Figure 12.1 shows the distribution of
the estimates from the bootstrap replicates. Note that the distribution is skewed, indicating
that a symmetric con�dence interval, produced under the assumption that Ñ follows a t
distribution, is not a good choice for this data set.

12.2.2 Loglinear Models with Multiple Lists

Section 10.3 used the svyglm procedure to �t loglinear models to data from a complex survey.
When loglinear models are used in multiple-recapture estimation, it is often assumed that
the lists are simple random samples. This section uses the function captureci from package
SDAResources to calculate con�dence intervals for the missing cell and the population size.
In captureci, the loglinear model is �t using Poisson regression with the glm function.

Example 13.3 of SDA. Domingo-Salvany et al. (1995) used capture�recapture to estimate
the prevalence of opiate addiction in Barcelona, Spain. One of their data sets consisted of
three samples from 1989: (1) a list of opiate addicts from emergency rooms (E list), (2)
a list of persons who started treatment for opiate addiction during 1989, reported to the
Catalonia Information System on Drug Abuse (T list), and (3) a list of heroin overdose

154 Additional Topics for Survey Data Analysis

Histogram of Bootstrap Estimates

Estimated Population Size

F
re

qu
en

cy

500 1000 1500 2000

0

100

200

300

400

FIGURE 12.1: Histogram of population size estimates from bootstrap replicates

deaths registered by the forensic institute in 1989 (D list). A total of 2864 distinct persons
were on the three lists.

Persons on the three lists were matched, with the results listed in Table 12.4. The Member-
ship column of the table gives the group membership in binary notation, with 1 denoting
membership in the list. There are 712 observations on the T list but neither of the others,
69 observations in the D list but neither of the others, 314 observations on both the E list
and the T list but not on the D list, and so on, with 6 observations on all three lists. The
�rst line of the table shows a missing count for the units not on any of the lists.

TABLE 12.4: Notation for Example 13.3

List Membership (E list, D list, T list) Count

None (0,0,0) ?
T (0,0,1) 712
D (0,1,0) 69
E (1,0,0) 1728
DT (0,1,1) 8
ET (1,0,1) 314
ED (1,1,0) 27
EDT (1,1,1) 6

Using Table 12.4, we can de�ne xmat2 and y2, and apply function captureci to derive the
estimates.

define xmat2 and y2

xmat2<-cbind(c(1,1,1,0,1,0,0),c(1,1,0,1,0,1,0),c(1,0,1,1,0,0,1))

y2 <- c(6,27,314,8,1728,69,712)

apply captureci

Small Area Estimation 155

captureci(xmat2,y2)

$cell

(Intercept)

3966.743

##

$N

(Intercept)

6830.743

##

$CI_cell

[1] 3461.950 4547.747

##

$CI_N

[1] 6325.950 7411.747

##

$deviance

[1] 1.797782

From the output, the number of persons who have opiate addiction in Barcelona, Spain is
estimated as 6830.743, with a CI of [6325.95, 7411.747].

Several contributed packages in R will �t these, and more complicated, capture-recapture
models. The Rcapture package (Baillargeon and Rivest, 2007; Rivest and Baillargeon, 2019)
estimates population sizes for open and closed populations using loglinear models, and will
compute all of the estimates discussed in SDA (and more). The SpadeR (Species Prediction
and Diversity Estimation) package (Chao et al., 2016) �ts a variety of models for estimating
population sizes and biodiversity indices.

12.3 Small Area Estimation

Many researchers have implemented algorithms for computing small area estimates (SAEs).
Pratesi (2016) and Tzavidis et al. (2018) describe some of the macros and packages that
have been developed to �t small area models with SAS and R software. The basic area-level
and unit-level models described in SDA can be �t using the nlme (Pinheiro et al., 2021) or
lme4 (Bates et al., 2015, 2020) packages in R.

Numerous contributed packages are available for computing small area estimates in R; Rao
and Molina (2015, page 188), Hidiroglou et al. (2019), and Kreutzmann et al. (2019) describe
some of the packages that have been developed. These packages calculate SAEs for a variety
of situations�for example, accounting for spatial or temporal correlation among areas, or
for measurement error among the covariates; using robust estimation of model parameters;
or adopting a fully Bayesian approach.

The following list gives brief descriptions of three packages that have been used to produce
small area estimates in various applications. All also compute the mean squared errors of
the estimates.

� Package sae, �Small Area Estimation� (Molina and Marhuenda, 2015, 2020), calculates
SAEs using a variety of models, including the Fay-Herriot model and the basic unit-level
model. Models are also available that incorporate spatial or temporal information.

156 Additional Topics for Survey Data Analysis

� Package emdi, �Estimating and Mapping Disaggregated Indicators� (Kreutzmann et al.,
2019; Harmening et al., 2021), �nds SAEs for small geographic areas, with an emphasis
on poverty indicators; the package also includes a variety of diagnostic plots.

� Package mme, �Multinomial Mixed E�ects Models� (Lopez-Vizcaino et al., 2019), �ts
Gaussian-multinomial models to calculate SAEs of proportions, accounting for temporal
correlations.

The Asian Development Bank (2020) provides a step-by-step guide to calculating small area
estimates in R, using the sae and survey packages, with code for computing and creating
maps for small area poverty estimates.

12.4 Summary

Table 12.5 lists the major functions used in this chapter.

TABLE 12.5
Functions used for Chapter 12.

Function Package Usage

sample base Select with-replacement samples for use with bootstrap
con�nt stats Calculate con�dence interval
glm stats Fit a generalized linear model (not using survey meth-

ods)
svydesign survey Specify the survey design
svyratio survey Calculate a ratio and its standard error from a survey
twophase survey Calculate estimates and standard errors from a two-

phase survey
captureci SDAResources Calculate a con�dence interval for population size using

an inverted likelihood-ratio test

Continuing the journey. The capabilities of R continue to expand as new statistical meth-
ods are developed and implemented in packages. You can �nd recent contributions under
�Packages� on the left panel of the website https://cran.r-project.org/.

Still have questions after reading this book? There are many resources available online that
provide help for using R. The websites at

https://support.rstudio.com/hc/en-us/articles/200552336-Getting-Help-with-R

https://www.r-bloggers.com

https://journal.r-project.org/

provide links to articles and pages where members of the R user community post answers to
questions. Chances are that you are not the �rst to have your question, and that someone
has posted an answer to it online.

https://cran.r-project.org/
https://support.rstudio.com/hc/en-us/articles/200552336-Getting-Help-with-R
https://www.r-bloggers.com
https://journal.r-project.org/

A

Data Set Descriptions

The data sets referenced in SDA and described in this appendix are available from the book
website (see page iv of the Preface for the website address) and in the contributed R package
SDAResources (Lu and Lohr, 2021). These data sets are provided for instructional purposes
only and without warranty. Anyone wishing to investigate the subject matter further should
obtain the original data from the source. In some cases, the data sets referenced in SDA
and this book are a subset of the original data; in others, the information has been modi�ed
to protect the con�dentiality of the respondents.

All data sets ending in .csv use commas as a separator between �elds.

These data sets have also been stored in SAS format (with the name ending in .sas7bdat)
and R format with missing values recoded to the symbols used for missing data in the
software package (`.' or blank in SAS and NA in R).

agpop.csv Data from the 1992 U.S. Census of Agriculture. Source: U.S. Bureau of the Cen-
sus (1995). In columns 3�14, the value �-99� denotes missing data.

Column Name Value

1 county county name (character variable)
2 state state abbreviation (character variable)
3 acres92 number of acres devoted to farms, 1992
4 acres87 number of acres devoted to farms, 1987
5 acres82 number of acres devoted to farms, 1982
6 farms92 number of farms, 1992
7 farms87 number of farms, 1987
8 farms82 number of farms, 1982
9 largef92 number of farms with 1,000 acres or more, 1992
10 largef87 number of farms with 1,000 acres or more, 1987
11 largef82 number of farms with 1,000 acres or more, 1982
12 smallf92 number of farms with 9 acres or fewer, 1992
13 smallf87 number of farms with 9 acres or fewer, 1987
14 smallf82 number of farms with 9 acres or fewer, 1982
15 region S = south; W = west; NC = north central;

NE = northeast

agpps.csv Data from a without-replacement probability-proportional-to-size sample from
�le agpop.csv.

157

158 Data Set Descriptions

Column Name Value

1 county county name
2 state state abbreviation
3 acres92 number of acres devoted to farms, 1992
4 acres87 number of acres devoted to farms, 1987
5�15 . . . same as variables 5�15 in agpop.csv

16 sizemeas size measure used to select the pps sample
17 SelectionProb inclusion probability for county i, πi
18 SamplingWeight sampling weight for county i, wi = 1/πi
19 Unit unit number for indexing joint inclusion probabilities
20�34 JtProb_1�

JtProb_15
columns of joint inclusion probabilities

agsrs.csv Data from an SRS of size 300 from the 1992 U.S. Census of Agriculture. Variables
are the same as in agpop.csv. In columns 3-14, the value �-99� denotes missing data.

agstrat.csv Data from a strati�ed random sample of size 300 from the 1992 U.S. Census
of Agriculture data in agpop.csv. In columns 3-14, the value �-99� denotes missing data.

Column Name Value

1 county county name
2 state state abbreviation
3 acres92 number of acres devoted to farms, 1992
4 acres87 number of acres devoted to farms, 1987
5 acres82 number of acres devoted to farms, 1982
6 farms92 number of farms, 1992
7 farms87 number of farms, 1987
8 farms82 number of farms, 1982
9 largef92 number of farms with 1,000 acres or more, 1992
10 largef87 number of farms with 1,000 acres or more, 1987
11 largef82 number of farms with 1,000 acres or more, 1982
12 smallf92 number of farms with 9 acres or fewer, 1992
13 smallf87 number of farms with 9 acres or fewer, 1987
14 smallf82 number of farms with 9 acres or fewer, 1982
15 region S = south; W = west; NC = north central;

NE = northeast
16 rn random numbers used to select sample in each stratum
17 strwt sampling weight for each county in sample

algebra.csv Hypothetical data for an SRS of 12 algebra classes in a city, from a population
of 187 classes.

Column Name Value

1 class Class number
2 Mi Number of students (Mi) in class
3 score Score of student on test

159

anthrop.csv Finger length and height for 3,000 criminals. Source: Macdonell (1901). This
data set contains information for the entire population.

Column Name Value

1 �nger length of left middle �nger (cm)
2 height height (inches)

anthsrs.csv Finger length and height for an SRS of size 200 from anthrop.csv.

Column Name Value

1 �nger length of left middle �nger (cm)
2 height height (inches)
3 wt sampling weight

anthuneq.csv Finger length and height for a with-replacement unequal-probability sample
of size 200 from anthrop.csv. The probability of selection, ψi, was proportional to 24 for
for y < 65, 12 for y = 65, 2 for y = 66 or 67, and 1 for y > 67.

Column Name Value

1 �nger length of left middle �nger (cm)
2 height height (inches)
3 wt sampling weight

artifratio.csv Values from all possible SRSs for arti�cial population in Chapter 4 of SDA.

Column Name Value

1 sample sample number
2 i1 �rst unit in sample
3 i2 second unit in sample
4 i3 third unit in sample
5 i4 fourth unit in sample
6 xbars x̄S
7 ybars ȳS
8 bhat B̂
9 tSRS t̂y,SRS = NȳS
10 thatr t̂yr

asafellow.csv Information from a strati�ed random sample of Fellows of the American
Statistical Association elected between 2000 and 2018. The list of Fellows serving as the pop-
ulation was downloaded from https://www.amstat.org/ASA/Your-Career/Awards/ASA-

Fellows-list.aspx on March 18, 2019. All other information was obtained from public
sources.

Column Name Value

1 awardyr Year of award
2 gender Gender of Fellow (character variable, M =male, F = female)

https://www.amstat.org/ASA/Your-Career/Awards/ASA-Fellows-list.aspx
https://www.amstat.org/ASA/Your-Career/Awards/ASA-Fellows-list.aspx

160 Data Set Descriptions

asafellow.csv (continued)

Column Name Value

3 popsize Population size in stratum (= Nh)
4 sampsize Sample size in stratum (= nh)
5 �eld Field of employment (character variable)

acad = academia, ind = industry, govt = government
6 degreeyr Year in which Fellow received terminal degree (year of Ph.D.

if applicable, otherwise year of Master's or Bachelor's de-
gree)

7 math = 1 if majored in mathematics as undergraduate, 0 if did
not major in math, -99 if missing

auditresult.csv Audit data used in Chapter 6 of SDA.

Column Name Value

1 account audit unit
2 bookvalue book value of account
3 psi probability of selection
4 auditvalue audit value of account

auditselect.csv Selection of accounts for audit data used in Chapter 6 of SDA.

Column Name Value

1 account audit unit
2 bookval book value of account
3 cumbv cumulative book value
4 rn1 random number 1 selecting account
5 rn2 random number 2 selecting account
6 rn3 random number 3 selecting account

azcounties.csv Population and housing unit estimates for Arizona counties (excluding
Maricopa and Pima counties), from the American Community Survey 2018 5-year estimates.
Source: https://data.census.gov/, accessed November 27, 2020.

Column Name Value

1 number County number
2 name County name (character variable, length 15)
3 population Population estimate for county
4 housing Housing unit estimate for county
5 ownerocc Number of owner-occupied housing units for county

baseball.csv Statistics on 797 baseball players, compiled by Jenifer Boshes from the rosters
of all major league teams in November 2004. Source: Forman (2004). Missing values (for
variables pball, intwalk, hbp, sacr�y ; all other variables have complete data) are coded as
−9.

https://data.census.gov/

161

Column Name Value

1 team team played for at beginning of the season
2 leagueid AL or NL
3 player a unique identi�er for each baseball player
4 salary player salary in 2004
5 pos primary position coded as P, C, 1B, 2B, 3B, SS, RF, LF, or

CF
6 gplay games played
7 gstart games started
8 inning number of innings
9 putout number of putouts
10 assist number of assists
11 error Errors
12 dplay number of double plays
13 pball number of passed balls (only applies to catchers)
14 gbat number of games that player appeared at bat
15 atbat number of at bats
16 run number of runs scored
17 hit number of hits
18 secbase number of doubles
19 thirdbase number of triples
20 homerun number of home runs
21 rbi number of runs batted in
22 stolenb number of stolen bases
23 csteal number of times caught stealing
24 walk number of times walked
25 strikeout number of strikeouts
26 intwalk number of times intentionally walked
27 hbp number of times hit by pitch
28 sacrhit number of sacri�ce hits
29 sacr�y number of sacri�ce �ies
30 gidplay grounded into double play

books.csv Data from homeowner's survey to estimate total number of books, used in
Chapter 5.

Column Name Value

1 shelf shelf number
2 Mi number of books on shelf
3 booknumber number of the book selected
4 purchase purchase cost of book
5 replace replacement cost of book

census1920.csv Population sizes for each state, from the 1920 U.S. census. The data
set contains only the 48 states, and excludes Washington D.C. Puerto Rico, and U.S.
territories (these areas were not allowed to have voting representatives in Congress). Source:
U.S. Bureau of the Census (1921).

162 Data Set Descriptions

Column Name Value

1 state state name
2 population state population in 1920 census

census2010.csv Population sizes for each state, from the 2010 U.S. census. Source:
U.S. Census Bureau (2019). The data set contains only the 50 states, and excludes the
areas that, as of 2020, are not allowed to have voting representatives in Congress: Washing-
ton D.C. Puerto Rico, and U.S. territories.

Column Name Value

1 state state name
2 population state population in 2010 census

cherry.csv Data for a sample of 31 cherry trees. Source: Hand et al. (1994).

Column Name Value

1 diameter Diameter of tree (inches)
2 height Height of tree (feet)
3 volume Timber volume of tree (cubic feet)

classes.csv Population sizes for 15 classes, used in Chapter 6 of SDA to demonstrate
unequal-probability sampling.

Column Name Value

1 class Class ID number
2 class_size Number of students in class

classpps.csv Two-stage unequal-probability sample without replacement from the popu-
lation of classes in classes.csv.

Column Name Value

1 class Class ID number
2 class_size Number of students in class
3 �nalweight Sampling weight for student
4 hours Number of hours spent studying statistics

classppsjp.csv Joint inclusion probabilities for unequal-probability sample without re-
placement from the population of classes in classes.csv.

Column Name Value

1 class Class ID number
2 class_size Number of students in class
3 SelectionProb Probability of being included in sample, πi
4 SamplingWeight Sampling weight wi = 1/πi
5�9 JtProb_1�JtProb_5 Columns of joint inclusion probabilities, πik

163

college.csv Selected variables from the U.S. Department of Education College Scorecard
Data (version updated on June 1, 2020). Source: U.S. Department of Education (2020),
downloaded on August 25, 2020. Some of the variables in the book data have been calcu-
lated from other variables in the original source; these have been given new variable names
that are not found in the data dictionary at https://collegescorecard.ed.gov/data/
documentation/.

The data set college.csv contains only colleges in the 50 states plus District of Columbia
that o�er undergraduate degrees and contain information on average net price.

This data set is made available for pedagogical purposes only. Anyone wishing to draw
conclusions from College Scorecard data should obtain the full data set from the Department
of Education. The original data set has 1,925 variables and includes institutions (such as
those that do not grant undergraduate degrees) that are not in the �le college.csv.

The �le college.csv includes institutions in the original data set that: (1) are located in the
50 states plus District of Columbia, (2) contain information on average net price (NPT4),
(3) are predominantly Bachelor's degree-granting, (4) were currently operating as of June
2020, (5) are not private for-pro�t institutions or �global� campuses, (6) have Carnegie size
classi�cation (variable ccsizset) between 6 and 17 and Carnegie basic classi�cation (variable
ccbasic) between 14 and 22 (these o�er Bachelor's degrees), (7) enrolls �rst-time students,
and (8) are not U.S. Service Academies.

For all variables, missing data are coded as -99.

Column Name Value

1 unitid Unit identi�cation number
2 instnm Institution name (character, length 81)
3 city City (character, length 24)
4 stabbr State abbreviation (character, length 2)
5 highdeg Highest degree awarded

3 = Bachelor's degree, 4 = Graduate degree
6 control Control (ownership) of institution

1 = Public, 2 = Private nonpro�t
7 region Region where institution is located

1 New England (CT, ME, MA, NH, RI, VT)
2 Mid East (DE, DC, MD, NJ, NY, PA)
3 Great Lakes (IL, IN, MI, OH, WI)
4 Plains (IA, KS, MN, MO, NE, ND, SD)
5 Southeast (AL, AR, FL, GA, KY, LA, MS, NC, SC, TN,
VA, WV)
6 Southwest (AZ, NM, OK, TX)
7 Rocky Mountains (CO, ID, MT, UT, WY)
8 Far West (AK, CA, HI, NV, OR, WA)

8 locale Locale of institution
11 City: Large (population of 250,000 or more)
12 City: Midsize (population of at least 100,000 but less
than 250,000)
13 City: Small (population less than 100,000)
21 Suburb: Large (outside principal city, in urbanized area
with population of 250,000 or more)

https://collegescorecard.ed.gov/data/documentation/
https://collegescorecard.ed.gov/data/documentation/

164 Data Set Descriptions

college.csv (continued)

Column Name Value

22 Suburb: Midsize (outside principal city, in urbanized area
with population of at least 100,000 but less than 250,000)
23 Suburb: Small (outside principal city, in urbanized area
with population less than 100,000)
31 Town: Fringe (in urban cluster up to 10 miles from an
urbanized area)
32 Town: Distant (in urban cluster more than 10 miles and
up to 35 miles from an urbanized area)
33 Town: Remote (in urban cluster more than 35 miles from
an urbanized area)
41 Rural: Fringe (rural territory up to 5 miles from an ur-
banized area or up to 2.5 miles from an urban cluster)
42 Rural: Distant (rural territory more than 5 miles but up
to 25 miles from an urbanized area or more than 2.5 and
up to 10 miles from an urban cluster)
43 Rural: Remote (rural territory more than 25 miles from
an urbanized area and more than 10 miles from an urban
cluster)

9 ccbasic Carnegie basic classi�cation
15 Doctoral Universities: Very High Research Activity
16 Doctoral Universities: High Research Activity
17 Doctoral/Professional Universities
18 Master's Colleges & Universities: Larger Programs
19 Master's Colleges & Universities: Medium Programs
20 Master's Colleges & Universities: Small Programs
21 Baccalaureate Colleges: Arts & Sciences Focus
22 Baccalaureate Colleges: Diverse Fields

10 ccsizset Carnegie classi�cation, size and setting
6 Four-year, very small, primarily nonresidential
7 Four-year, very small, primarily residential
8 Four-year, very small, highly residential
9 Four-year, small, primarily nonresidential
10 Four-year, small, primarily residential
11 Four-year, small, highly residential
12 Four-year, medium, primarily nonresidential
13 Four-year, medium, primarily residential
14 Four-year, medium, highly residential
15 Four-year, large, primarily nonresidential
16 Four-year, large, primarily residential
17 Four-year, large, highly residential

11 hbcu Historically black college or university, 1=yes, 0 = no
12 openadmp Does the college have an open admissions policy, that is,

does it accept any students that apply or have minimal
requirements for admission? 1 = yes, 0 = no

13 adm_rate Fall admissions rate, de�ned as the number of admitted
undergraduates divided by the number of undergraduates
who applied

14 sat_avg Average SAT score (or equivalent) for admitted students

165

college.csv (continued)

Column Name Value

15 ugds Number of number of degree-seeking undergraduate stu-
dents enrolled in the fall term

16 ugds_men Proportion of ugds who are men
17 ugds_women Proportion of ugds who are women
18 ugds_white Proportion of ugds who are white (based on self-reports)
19 ugds_black Proportion of ugds who are black/African American (based

on self-reports)
20 ugds_hisp Proportion of ugds who are Hispanic (based on self-reports)
21 ugds_asian Proportion of ugds who are Asian (based on self-reports)
22 ugds_other Proportion of ugds who have other race/ethnicity (created

from other categories on original data �le; race/ethnicity
proportions sum to 1)

23 npt4 Average net price of attendance, derived from the full cost of
attendance (including tuition and fees, books and supplies,
and living expenses) minus federal, state, and institutional
grant/scholarship aid, for full-time, �rst-time undergradu-
ate Title IV-receiving students. NPT4 created from score-
card data variables NPT4_PUB if public institution and
NPT4_PRIV if private

24 tuitionfee_in In-state tuition and fees
25 tuitionfee_out Out-of-state tuition and fees
26 avgfacsal Average faculty salary per month
27 pftfac Proportion of faculty that is full-time
28 c150_4 Proportion of �rst-year, full-time students who complete

their degree within 150% of the expected time to complete;
for most institutions, this is the proportion of students who
receive a degree within 6 years

29 grads Number of graduate students

collegerg.csv Five replicate SRSs from the set of public colleges and universities (having
control = 1) in college.csv. Columns 1�29 are as in college.csv, with additional columns
30�32 listed below. Note that the selection probabilities and sampling weights are for the
separate replicate samples, so that the weights for each sample sum to the population size
500.

Column Name Value

30 selectionprob Selection probability for each replicate sample
31 samplingweight Sampling weight for each replicate sample
32 repgroup Replicate group number

collshr.csv Probability-proportional-to-size sample of size 10 from the stratum of small,
highly residential colleges (having ccsizeset = 11) in college.csv. Columns 1�29 are as in
college.csv, with additional columns 30�35 listed below.

166 Data Set Descriptions

Column Name Value

30 mathfac Number of mathematics faculty
31 psychfac Number of psychology faculty
32 biolfac Number of biology faculty
33 psii Selection probability, = ugds/(sum of ugds for stratum)
34 wt Sampling weight = 1/(10ψi)

coots.csv Selected information on egg size, from a larger study by Arnold (1991). Data
provided courtesy of Todd Arnold. Not all observations are used for this data set, so results
may not agree with those in Arnold (1991).

Column Name Value

1 clutch clutch number from which eggs were subsampled.
2 csize number of eggs in clutch (Mi)
3 length length of egg (mm)
4 breadth maximum breadth of egg (mm)
5 volume calculated as 0.000507*length * breadth2 (mm3)
6 tmt = 1 if received supplemental feeding, 0 otherwise

counties.csv Data (from 1990) from an SRS of 100 of the 3141 counties in the United
States. Missing values are coded as −99. Source: U.S. Census Bureau (1994).

Column Name Value

1 RN random number used to select the county
2 state state abbreviation
3 county county name
4 landarea land area, 1990 (square miles)
5 totpop total number of persons, 1992
6 physician active non-Federal physicians on Jan. 1, 1990
7 enroll school enrollment in elementary or high school, 1990
8 percpub percent of school enrollment in public schools
9 civlabor civilian labor force, 1991
10 unemp number unemployed, 1991
11 farmpop farm population, 1990
12 numfarm number of farms, 1987
13 farmacre acreage in farms, 1987
14 fedgrant total expenditures in federal funds and grants, 1992 (millions

of dollars)
15 fedciv civilians employed by federal government, 1990
16 milit military personnel, 1990
17 veterans number of veterans, 1990
18 percviet percent of veterans from Vietnam era, 1990

crimes.csv Data from selected variables in a simple random sample of 5,000 records from
the 7,048,107 records with dates between 2001 and 2019 in the City of Chicago database
�Crimes�2001 to Present.� This �le was downloaded on August 11, 2020 from https://

data.cityofchicago.org/. These data are provided for pedagogical purposes only. Anyone

https://data.cityofchicago.org/
https://data.cityofchicago.org/

167

wishing to publish analyses of Chicago crime data should obtain the most recent data
from https://data.cityofchicago.org/. For a list and map of Community Areas, see
https://www.chicago.gov/city/en/depts/dgs/supp_info/citywide_maps.html.

Column Name Value

1 year Year in which crime occurred (between 2001 and 2019)
2 crimetype Type of crime, determined from detailed crime description in

database
homicide = homicide, sexualasslt = sexual assault, robbery =
robbery, aggasslt = aggravated assault, burglary = burglary,
mvtheft = motor vehicle theft, idtheft = identity theft, theft =
other type of theft, arson = arson, simpleasslt = simple assault
(assaults that are not aggravated), threat = threat or harass-
ment, fraud = fraud, weapon = weapons violation, trespass =
trespassing, narcotics = narcotics or liquor law violation, other
= other

3 violent = 1 if violent crime, 0 otherwise
4 arrest = 1 if an arrest was made, 0 otherwise
5 domestic = 1 if crime was domestic-related as de�ned by the Illinois

Domestic Violence Act, 0 otherwise
6 commarea Number of the Community Area in Chicago where the crime

occurred
7 location Type of location where crime occurred (e.g. street, apartment)

deadtrees.csv Number of dead trees recorded by photograph and �eld count for a (�c-
tional) SRS of 25 plots taken from a population of 100 plots.

Column Name Value

1 photo Number of dead trees in plot from photograph
2 �eld Number of dead trees in plot from �eld observation

divorce.csv Data from a sample of divorce records for states in the Divorce Registration
Area. Source: National Center for Health Statistics (1987).

Column Name Value

1 state state name (character variable)
2 abbrev state abbreviation (character variable)
3 samprate sampling rate for state
4 numrecs number of records sampled in state
5 hsblt20 number of records in sample with husband's age < 20
6 hsb20to24 number of records with 20 ≤ husband's age ≤ 24
7 hsb25to29 number of records with 25 ≤ husband's age ≤ 29
8 hsb30to34 number of records with 30 ≤ husband's age ≤ 34
9 hsb35to39 number of records with 35 ≤ husband's age ≤ 39
10 hsb40to44 number of records with 40 ≤ husband's age ≤ 44

https://data.cityofchicago.org/
https://www.chicago.gov/city/en/depts/dgs/supp_info/citywide_maps.html

168 Data Set Descriptions

divorce.csv (continued)

Column Name Value

11 hsb45to49 number of records with 45 ≤ husband's age ≤ 49
12 hsbge50 number of records with husband's age ≥ 50
13 w�t20 number of records with wife's age < 20
14 wf20to24 number of records with 20 ≤ wife's age ≤ 24
15 wf25to29 number of records with 25 ≤ wife's age ≤ 29
16 wf30to34 number of records with 30 ≤ wife's age ≤ 34
17 wf35to39 number of records with 35 ≤ wife's age ≤ 39
18 wf40to44 number of records with 40 ≤ wife's age ≤ 44
19 wf45to49 number of records with 45 ≤ wife's age ≤ 49
20 wfge50 number of records with wife's age ≥ 50

gini.csv Data from the population of districts for the 1921 Italian general census. Source:
Gini and Galvani (1929); the data are on pages 73�78.

Column Name Value

1 id ID number
2 district District name
3 birth_rate Births per 1,000 population
4 death_rate Deaths per 1,000 population
5 marriage_rate Marriages per 1,000 population
6 agricultural_pop Percentage of males over 10 years old who work in agri-

culture
7 urban_population Percentage of population in urban areas
8 income Average income
9 altitude Average altitude above sea level (meters)
10 pop_density Number of inhabitants per square kilometer
11 natural_growth Rate of average increase of the population
12 population Population of area
13 area Land area (square kilometers)
14 in_GG_sample = 1 if in the purposive sample selected by Gini and

Galvani; 0 otherwise

golfsrs.csv A simple random sample of 120 golf courses, taken from the population on the
web site ww2.golfcourse.com on August 5, 1998. Missing data in the .csv �le are denoted
by blanks.

Column Name Value

1 RN random number used to select golf course for sample
2 state state name
3 holes number of holes
4 type type of course: priv = private, semi = semi-private,

pub=public, mili=military, resort
5 yearblt year course was built
6 wkday18 greens fee for 18 holes during week
7 wkday9 greens fee for 9 holes during week
8 wkend18 greens fee for 18 holes on weekend

ww2.golfcourse.com

169

golfsrs.csv (continued)

Column Name Value

9 wkend9 greens fee for 9 holes on weekend
10 backtee back tee yardage
11 rating course rating
12 par par for course
13 cart18 golf cart rental fee for 18 holes
14 cart9 golf cart rental fee for 9 holes
15 caddy Are caddies available? (y or n)
16 pro Is a golf pro available? (y or n)

gpa.csv GPA data from Chapter 5 of SDA.

Column Name Value

1 suite Suite (psu) identi�er
2 gpa Grade point average of person in suite
3 wt Sampling weight, = 20 for every observation

healthjournals.csv Randomization and statistical inference practices in a strati�ed random
sample of 196 public health articles. The data, provided courtesy of Dr. Matt Hayat, are
discussed in Hayat and Knapp (2017). The variables provided in healthjournals.csv are
a subset of the variables collected by the authors.

Column Name Value

1 journal Journal that published the article
AJPH = American Journal of Public Health
AJPM = American Journal of Preventive Medicine
PM = Preventive Medicine

2 NumAuthors Number of authors
3 RandomSel = �Yes� if data in the article were from a randomly selected

(probability) sample; �No� otherwise
4 RandomAssn = �Yes� if study subjects for the article were randomly as-

signed to treatment groups; �No� otherwise
5 ConfInt = �Yes� if a con�dence interval appeared in the article's main

text, tables, or �gures; �No� otherwise
6 HypTest = �Yes� if a p-value or signi�cance test appeared in the arti-

cle's main text, tables, or �gures; �No� otherwise
7 Asterisks = �Yes� if asterisks were used to represent p-value ranges;

�No� otherwise

htcdf.csv Empirical distribution function and empirical probability mass function of data
in htpop.csv.

170 Data Set Descriptions

Column Name Value

1 height height value, cm
2 frequency number of times height value in column 1 occurs in population
3 epmf empirical probability mass function
4 ecdf empirical distribution function

htpop.csv Height and gender of 2,000 persons in an arti�cial population.

Column Name Value

1 height height of person, cm
2 gender M=male, F=female

htsrs.csv Height and gender for a SRS of 200 persons, taken from htpop.csv.

Column Name Value

1 rn random number used to select unit
2 height height of person, cm
3 gender M=male, F=female

htstrat.csv Height and gender for a strati�ed random sample of 160 women and 40 men,
taken from htpop.csv. The columns and names are as in htsrs.csv.

hunting.csv Population and sample sizes for the poststrata used for the Sunday hunting
survey. Source: Virginia Polytechnic and State University/Responsive Management (2006).

Column Name Value

1 region Region of state (East, Central, West)
2 gender Gender (female, male)
3 age Age group (16-24, 25-34, 35-44, 45-54, 55-64, 65+)
4 popsize Population size in poststratum from the 2000 U.S. census
5 sampsize Sample size in poststratum

impute.csv Small arti�cial data set used to illustrate imputation methods. Missing values
are denoted by −99.

Column Name Value

1 person identi�cation number for person
2 age age in years
3 gender M=male, F=female
4 education number of years of education
5 crime = 1 if victim of any crime, 0 otherwise
6 violcrime = 1 if victim of violent crime, 0 otherwise

integerwt.csv Arti�cial population of 2000 observations.

171

Column Name Value

1 stratum Stratum number
2 y y value of observation

intellonline.csv Data from the online (Mechanical Turk) survey. Source: Heck et al. (2018).
The data were downloaded from https://journals.plos.org/plosone/article?id=10.

1371/journal.pone.0200103 on February 8, 2020; the variables extracted from the full
data set are provided here for educational purposes only.

Column Name Value

1 int Response to question about agreement with the statement �I
am more intelligent than the average person.�
1 = Strongly Agree; 2 = Mostly Agree; 3 = Mostly Disagree;
4 = Strongly Disagree; 5 = Don't Know or Not Sure

2 region Census region of respondent (character variable, length 10):
Northeast, South, Midwest, West

3 sex Sex (character variable, length 8): Male, Female
4 race Race (character variable, length 18): White, African American,

Asian American, Hispanic American, Another origin
5 age Age, years
6 income Household income level (character variable, length 8): <$40k,

$40�80k, or >$80k
7 education Highest education level attained (character variable, length

12): No College, Some College, College Grad, Grad School
8 postwt Relative weight, obtained by poststratifying to demographic

proportions in the 2010 U.S. Census. The weights are normed
so that they sum to 750.

intelltel.csv Data from the telephone survey studied by Heck et al. (2018). The
data were downloaded from https://journals.plos.org/plosone/article?id=10.

1371/journal.pone.0200103 and are provided here for educational purposes only. The
variables are the same as in intellonline.csv.

intellwts.csv Relative weights for demographic groups in intellonline.csv and
intelltel.csv (Heck et al., 2018). Each sample was weighted using the 2010 U.S. Census
demographics for sex (male, female), age (< 44, ≥ 44), and race/ethnicity (white, nonwhite).
The table entries give the weights for each of these eight demographic groups.

Column Name Value

1 sex Sex
2 agegroup Age group: Young = (age less than 44), Old = (age greater

than or equal to 44)
3 race Race: White or Nonwhite
4 tel_n Number of telephone survey respondents in the sex/age-

group/race class

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0200103
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0200103
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0200103
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0200103

172 Data Set Descriptions

intellwts.csv (continued)

Column Name Value

5 online_n Number of online survey respondents in the sex/agegroup/race
class

6 tel_wgt Relative weight for each respondent to the telephone survey in
this sex/agegroup/race class

7 online_wgt Relative weight for each respondent to the telephone survey in
this sex/agegroup/race class

ipums.csv Data extracted from the 1980 Census Integrated Public Use Microdata Series,
using the �Small Sample Density� option in the data extract tool, on September 17, 2008.
The stratum and psu variables were constructed for use in the book exercises. Data analyses
on this �le do NOT give valid results for inference to the 1980 U.S. population. Source:
Ruggles et al. (2004).

Column Name Value

1 stratum stratum number (1�9)
2 psu psu number (1�90)
3 inctot total personal income (dollars), topcoded at $75,000
4 age age, with range 15�90
5 sex 1 = Male, 2 = Female
6 race 1 = White, 2 = Black, 3 = American Indian or Alaska Native,

4 = Asian or Paci�c Islander, 5 = Other Race
7 hispanic 0 = Not Hispanic, 1 = Hispanic
8 marstat Marital Status: 1 = Married, 2 = Separated, 3 = Divorced, 4

= Widowed, 5 = Never married/single
9 ownershg Ownership of housing unit: 0 = Not Applicable (N/A), 1 =

Owned or being bought, 2 = Rents
10 yrsusa Number of years a foreign-born person has lived in the U.S.:

0= N/A, 1= 0�5 years, 2= 6�10 years, 3= 11�15 years, 4=
16�20 years, 5= 21+ years

11 school Is person in school? 0 = N/A, 1 = No, not in school, 2 = Yes,
in school

12 educrec Educational Attainment: 1= None or preschool, 2= Grade 1,
2, 3, or 4, 3= Grade 5, 6, 7, or 8, 4= Grade 9, 5= Grade 10,
6= Grade 11, 7= Grade 12, 8= 1 to 3 years of college, 9= 4+
years of college

13 labforce In labor force? 0 = Not Applicable, 1 = No, 2 = Yes
14 classwk class of worker: 0=Not applicable, 13= Self-employed,

not incorporated, 14= Self-employed, incorporated, 22=
Wage/salary, private, 25= Federal government employee, 27=
State government employee, 28= Local government employee,
29= Unpaid family worker

15 vetstat Veteran Status 0 = Not Applicable, 1 = No Service, 2 = Yes

173

journal.csv Types of sampling used for articles in a sample of journals. Source: Jacoby
and Handlin (1991).

Note that columns 2 and 3 do not always sum to column 1; for some articles, the investigators
could not determine which type of sampling was used. When working with these data, you
may wish to create a fourth column, �indeterminate,� which equals column1 − (column2 +
column3).

Column Name Value

1 numemp number of articles in 1988 that used sampling
2 prob number of articles that used probability sampling
3 nonprob number of articles that used non-probability sampling

measles.csv Roberts et al. (1995) reported on the results of a survey of parents whose
children had not been immunized against measles during a recent campaign to immunize
all children in the �rst �ve years of secondary school. The original data were unavailable;
univariate and multivariate summary statistics from these arti�cial data, however, are con-
sistent with those in the paper. All variables are coded as 1 for yes, 0 for no, and 9 for
no answer. A parent who refused consent (variable 4) was asked why, with responses in
variables 5 through 10. If a response in variables 5 through 10 was checked, it was assigned
value 1; otherwise it was assigned value 0. A parent could give more than one reason for
not having the child immunized.

Column Name Value

1 school school attended by child
2 form Parent received consent form
3 returnf Parent returned consent form
4 consent Parent gave consent for measles immunization
5 hadmeas Child had already had measles
6 previmm Child had been immunized against measles
7 sidee� Parent concerned about side e�ects
8 gp Parent wanted GP to give vaccine
9 noshot Child did not want injection
10 notser Parent thought measles not a serious illness
11 gpadv GP advised that vaccine was not needed
12 Mitotal Population size in school
13 mi Sample size in school

mysteries.csv Data from a strati�ed random sample of books nominated for the Edgar®

awards for Best Novel and Best First Novel. The sample was drawn from the population
listing of 655 books at http://theedgars.com/awards/ on August 14, 2020.

Column Name Value

1 stratum Stratum number, from 1 to 12, computed from the strati�ca-
tion variables in columns 2�4

2 time Time period in which award was given: 1 = 1946�1980, 2 =
1981�2000, 3 = 2001�2020

3 category Award category (character variable, length 16): Best Novel, or
Best First Novel

http://theedgars.com/awards/

174 Data Set Descriptions

mysteries.csv (continued)

Column Name Value

4 winner = 1 if book won the award that year,
= 0 if book was nominated but did not win award

5 popsize Number of population books in stratum (= Nh)
6 sampsize Number of sampled books in stratum (= nh)
7 obtained = 1 if book was obtained (responded) in original sample, = 2

if book was obtained in phase II subsample of nonrespondents,
= 0 if not obtained

8 p1weight Weight for phase I sample, calculated as Nh/nh; use for exer-
cises in Chapters 1�11 of SDA

9 p2weight Final weight for phase II sample; use for exercises in Chap-
ter 12 of SDA and analyses involving variables victims and
�rearm

10 genre Genre of book (character variable, length 11). Values �private
eye� (protagonist is a private detective), �procedural� (a de-
tailed, step-by-step analysis of how the crime is solved, using
the skills of the detective), or �suspense� (the protagonist is at
the center of action or is involved in espionage, but is not a
professional detective)

11 historical = 1 if the main action in the book takes place at least 20 years
before the book's publication date, = 0 if book action is within
20 years of the publication date

12 urban = 1 if the main action in the book takes place primarily in
urban areas, = 0 otherwise

13 authorgender Gender of author (character variable, length 1) = �F� is author
is female, �M� if author is male

14 fdetect Number of female detectives (or protagonists, if book has no
detective) in book

15 mdetect Number of male detectives (or protagonists, if book has no
detective) in book

16 victims Number of murder victims in book (missing value set to −9 if
obtained = 0)

17 �rearm Number of murders committed with �rearms in book (missing
value set to −9 if obtained = 0)

nhanes.csv Selected variables from the 2015�2016 National Health and Nutrition Exami-
nation Survey (NHANES). Source: Centers for Disease Control and Prevention (2017). This
data set is provided for educational purposes only. Anyone wishing to publish or use results
from analyses of NHANES data should obtain the data �les directly from the source.

The data �les merged to create nhanes.csv can be read directly from the SAS transport
�les DEMO_I.XPT, BMX_I.XPT, TCHOL_I.XPT, and BPX_I.XPT from the NHANES website.
Variables 1�23 have the same names as in the SAS transport �les.

The blood pressure variables sbp and dbp were created as follows. In the medical examina-
tion, three consecutive blood pressure readings were obtained after participants sat quietly
for 5 minutes and the maximum in�ation level was determined. A fourth measurement was
conducted for some persons who had an incomplete or interrupted blood pressure reading.

175

The variables sbp and dbp were calculated by discarding the �rst blood pressure reading
and calculating the average of the remaining valid readings. Note that some of the diastolic
blood pressure readings are 0.

In the comma-delimited �le nhanes.csv, missing values are denoted by -9. In the SAS data
�le, missing values are denoted by a period. In the R data �le, missing values are denoted by
NA. Note that some of the codes for variables in the table below also denote missing values;
for example, the value 7 for dmdeduc2 indicates �Refused,� and these codes for special types
of missing values remain in the SAS and R data �les.

Column Name Value

1 sdmvstra Pseudo-stratum. These are groups of secondary sampling units
used for variance estimation on the publicly available data.
Pseudo-strata and pseudo-psus are released instead of the ac-
tual strata and psus to protect the con�dentiality of respon-
dents' information. Use sdmvstra as the variable de�ning the
strata.

2 sdmvpsu Pseudo-psu. Use sdmvpsu as the primary sampling unit (psu).
There are two pseudo-psus per pseudo-stratum, numbered 1
and 2.

3 wtint2yr Interview weight (use as weight for variables 5�12)
4 wtmec2yr Mobile Examination Center weight (use as weight for any anal-

ysis involving variables 13�25)
5 ridstatr Interview/examination status, = 1 if interviewed only, = 2 if

interviewed and had medical examination
6 ridageyr Age in years at screening, from 0 to 80. Anyone with age > 80

years is recorded (topcoded) as 80. No values are missing for
this variable.

7 ridagemn Age in months at screening (reported only for persons aged 24
months or younger at the time of exam, otherwise missing)

8 riagendr = 1 if male, 2 if female (no missing values)
9 ridreth3 Race/ethnicity code (no missing values)

1 = Mexican American
2 = Other Hispanic
3 = Non-Hispanic White
4 = Non-Hispanic Black
6 = Non-Hispanic Asian
7 = Other Race, Including Multi-Racial

10 dmdeduc2 Education level of person interviewed (given for adults age 20+
only)
1 = Less than 9th grade
2 = 9th to 11th grade (including 12th grade with no diploma)
3 = High school graduate (including GED)
4 = Some college or associate's degree
5 = College graduate or above
7 = Refused
9 = Don't know

11 dmdfmsiz Total number of people in the family. Values 1�6 indicate the
number of people is that number; value 7 indicates 7 or more
people in family. No missing values.

176 Data Set Descriptions

nhanes.csv (continued)

Column Name Value

12 indfmpir Ratio of family income to poverty guideline. A value less than
1 indicates the family is below the poverty threshold. Variable
indfmpir is a continuous variable where values between 0 and
4.99 indicate the actual poverty ratio. A value of 5 indicates
that the ratio of family income to the poverty guideline for
that family is 5 or more.

13 bmxwt Weight (kg)
14 bmxht Standing height (cm)
15 bmxbmi Body mass index (kg/m2), calculated as bmxwt/(bmxht/100)2

16 bmxwaist Waist circumference (cm)
17 bmxleg Upper leg length (cm)
18 bmxarml Upper arm length (cm)
19 bmxarmc Upper arm circumference (cm)
20 bmdavsad Average sagittal abdominal diameter (SAD, the distance from

the small of the back to the upper abdomen), in cm. Calculated
by averaging the SAD readings on the person (up to four).

21 lbxtc Serum total cholesterol (mg/dL)
22 bpxpls 60-second pulse
23 sbp Average systolic blood pressure (mm Hg)
24 dbp Average diastolic blood pressure (mm Hg)
25 bpread Number of blood pressure readings

nybight.csv Data collected in the New York Bight for June 1974 and June 1975. Two of the
original strata were combined because of insu�cient sample sizes. For variable �catchwt,�
weights less than 0.5 were recorded as 0.5 kg. Source: Wilk et al. (1977).

Column Name Value

1 year year of data collection, 1974 or 1975
2 stratum stratum membership, based on depth
3 catchnum number of �sh caught during trawl
4 catchwt total weight (kg) of �sh caught during trawl
5 numspp number of species of �sh caught during trawl
6 depth depth of station (m)
7 temp surface temperature (degrees C)

otters.csv Data on number of holts (dens) in Shetland, U.K., used in Kruuk et al. (1989).
Data courtesy of Hans Kruuk.

Column Name Value

1 section section of coastline
2 habitat type of habitat (stratum)
3 holts number of holts (dens)

ozone.csv Hourly ozone readings (parts per billion, ppb) from a site in Monterey County,
California, for 2018 and 2019. Source: https://aqs.epa.gov/aqsweb/airdata/download_
files.html#Raw, accessed November 19, 2020. Missing values are denoted by −9.

https://aqs.epa.gov/aqsweb/airdata/download_files.html#Raw
https://aqs.epa.gov/aqsweb/airdata/download_files.html#Raw

177

Column Name Value

1 year year of reading (2018 or 2019)
2 month month of reading (1�12)
3 day day of reading (1�31)
4 hr0 ozone reading (ppb) at 0:00 local time
5 hr1 ozone reading (ppb) at 1:00 local time
...

...
...

27 hr23 ozone reading (ppb) at 23:00 local time

pitcount.csv Fictional data from a �ctional point-in-time (PIT) survey taken to estimate
the number of persons experiencing homelessness.

Column Name Value

1 strat Stratum number (from 1 to 8)
2 division Geographic division, used to form strata
3 density Expected density of persons experiencing homelessness (char-

acter variable, with values High or Low)
4 popsize = Nh, the number of areas in the population for stratum h
5 sampsize = nh, the number of areas in the sample for stratum h
6 areawt = Nh/nh, the sampling weight for the area
7 y Number of persons experiencing unsheltered homelessness

found in the area during the PIT count

profresp.csv The data described in Zhang et al. (2020) were downloaded from http:

//doi.org/10.3886/E109021V1 on January 22, 2020, from �le survey4.rds. The data set
profresp.csv contains selected variables from the set of 2,407 respondents who completed
the survey and provided information on the demographic variables and the information
needed to calculate �professional respondent� status. The full data set survey4.rds contains
numerous additional questions about behavior that are not included here, as well as the data
from the partially completed surveys. The website also contains data for three other online
panel surveys. Because profresp.csv is a subset of the full data, statistics calculated from
it may di�er from those in Zhang et al. (2020).

Missing values are denoted by −9.

Column Name Value

1 prof_cat Level of professionalism
1 = novice, 2 = average, 3 = professional

2 panelnum Number of panels respondent has belonged to. A response
between 1 and 6 means that the person has belonged to that
number of panels; 7 means 7 or more.

3 survnum_cat How many Internet surveys have you completed before this
one? 1 = This is my �rst one, 2 = 1�5, 3 = 6�10, 4 = 11�15,
5 = 16�20, 6 = 21�30, 7 = More than 30

4 panelq1 Are you a member of any online survey panels besides this
one? 1 = yes, 2 = no

5 panelq2 To how many other online panels do you belong?

http://doi.org/10.3886/E109021V1
http://doi.org/10.3886/E109021V1

178 Data Set Descriptions

profresp.csv (continued)

Column Name Value

1 = None, 2 = 1 other panel, 3 = 2 others, 4 = 3 others, 5 = 4
others, 6 = 5 others, 7 = 6 others or more. This question has
a missing value if panelq1 = 2. If you want to estimate how
many panels a respondent belongs to, create a new variable
numpanel that equals panelq2 if panelq2 is not missing and
equals 1 if panelq1 = 2.

6 age4cat Age category. 1 = 18 to 34, 2 = 35 to 49, 3 = 50 to 64, 4 =
65 and over

7 edu3cat Education category. 1 = high school or less, 2 = some college
or associates' degree, 3 = college graduate or higher

8 gender Gender: 1 = male, 2 = female
9 non_white 1 = race is non-white, 0 = race is white
10 motive Which best describes your main reason for joining on-line sur-

vey panels? 1 = I want my voice to be heard, 2 = Completing
surveys is fun, 3 = To earn money, 4 = Other (Please specify)

11 freq_q1 During the PAST 12 MONTHS, how many times have you
seen a doctor or other health care professional about your
own health? Response is number between 0 and 999.

12 freq_q2 During the PAST MONTH, how many days have you felt you
did not get enough rest or sleep?

13 freq_q3 During the PAST MONTH, how many times have you eaten
in restaurants? Please include both full-service and fast food
restaurants.

14 freq_q4 During the PAST MONTH, how many times have you
shopped in a grocery store? If you shopped at more than one
grocery store on a single trip, please count them separately.

15 freq_q5 During the PAST 2 YEARS, how many overnight trips have
you taken?

profrespacs.csv Population estimates from the 2011 American Community Survey (ACS)
for age/gender/education categories measured in profresp.csv (Zhang et al., 2020). Note
that age3cat has 3 categories, while the age variable in profresp.csv has 4 categories.

Column Name Value

1 gender Gender: 1 = male, 2 = female
2 age3cat Age category. 1 = 18 to 34, 2 = 35 to 64, 3 = 65 and over
3 edu3cat Education category. 1 = high school or less, 2 = some college

or associates' degree, 3 = college graduate or higher
4 count Population size from ACS for the gender/age/education level

combination

radon.csv Radon readings for a strati�ed sample of 1003 homes in Minnesota. Source:
Nolan and Speed (2000). The data were downloaded in April 2008 from an earlier version
of the web site now located at www.stat.berkeley.edu/users/statlabs/labs.html.

www.stat.berkeley.edu/users/statlabs/labs.html

179

Column Name Value

1 countyname County Name
2 countynum County Number
3 sampsize Sample size in county
4 popsize Population size in county
5 radon Radon concentration (pCi/L)

rectlength.csv Lengths of rectangles.

Column Name Value

1 rectangle Rectangle number
2 length Rectangle length

rnt.csv Page from a random number table. Open the .csv �le in a text editor instead of
a spreadsheet, because a spreadsheet strips o� the leading zeroes. The columns have format
z5.0 in the SAS �le, and are character variables in the R �le, so that leading zeroes are
displayed in those formats.

Column Name Value

1 col1 Column of 5-digit random numbers
2 col2 Column of 5-digit random numbers
3 col3 Column of 5-digit random numbers
4 col4 Column of 5-digit random numbers
5 col5 Column of 5-digit random numbers
6 col6 Column of 5-digit random numbers

sample70.csv All possible simple random samples that can be generated from the popu-
lation in Example 2.2 of SDA.

Column Name Value

1 sampnum Sample number
2�5 u1�u4 Sampled units in S
6�9 y1�y4 Values of yi in sample S
10 total Estimated population total

santacruz.csv The number of seedlings in the sampled psus on Santa Cruz Island, Cali-
fornia, in 1992 and 1994. Source: Peart (1994).

Column Name Value

1 tree Tree number
2 seed92 Number of seedlings in 1992
3 seed94 Number of seedlings in 1994

schools.csv Math and reading test results from a two-stage cluster sample of tenth-grade
students. An SRS of 10 schools was selected from the 75 schools in the population, and
then 20 students were sampled from each school. These data are �ctional, but the summary
statistics are consistent with those seen in educational studies.

180 Data Set Descriptions

Column Name Value

1 schoolid School number (use as cluster variable)
2 gender Gender of student (character variable, F = female, M = male)
3 math Score on math test
4 reading Score on reading test
5 mathlevel Category level for math test score:

1 if 1 ≤ math <= 40
2 if 41 ≤ math

6 readlevel Category level for reading test score:
1 if 1 ≤ read <= 32
2 if 33 ≤ read <= 50

7 Mi Number of students in school, Mi

8 �nalwt Weight for student in sample

seals.csv Data on number of breathing holes found in sampled areas of Svalbard fjords,
reconstructed from summary statistics given in Lydersen and Ryg (1991).

Column Name Value

1 zone zone number for sampled area
2 holes number of breathing holes Imjak found in area

shapespop.csv Population of black and gray squares and circles.

Column Name Value

1 ID identi�cation number for object
2 shape shape of object (square or circle)
3 color color of object (gray or black)
4 area area of object (cm2)
5 conv = 1 if object can be reached through convenience sample, 0

otherwise

shorebirds.csv Two-phase sample of shorebird nests. These are arti�cial data constructed
from summary statistics given in Bart and Earnst (2002).

Column Name Value

1 plot Plot number
2 rapid Rapid-method count of number of birds in plot
3 intense Intensive-method count of number of nests in plot

= −9 if the plot is not in the phase II sample

sp500.csv Companies in the S&P 500® Stock Market Index as of September 15, 2020.

Source: Downloaded from https://fknol.com/list/eps-sp-500-index-companies.php

on September 19, 2020.

https://fknol.com/list/eps-sp-500-index-companies.php

181

Column Name Value

1 Company Company name (character variable, length 37)
2 Symbol Stock symbol (character variable, length 5)
3 MarketCap Market capitalization, in billions of U.S. dollars
4 StockPrice Price per share of stock
5 PE_Ratio Price-to-earnings ratio
6 EPS Earnings per share

spanish.csv Hypothetical cluster sample of introductory Spanish students.

Column Name Value

1 class Class number
2 score Score on vocabulary test (out of 100)
3 trip = 1 if plan a trip to a Spanish-speaking country, 0 otherwise

srs30.csv An SRS of size 30 taken from an arti�cial population of size 100.

Column Name Value

1 y Value of observation

ssc.csv SRS of 150 members of the Statistical Society of Canada, downloaded from ssc.ca

in August, 2006.

Column Name Value

1 gender m = male, f=female
2 occupation a = academic, g = government, i = industry, n = not deter-

mined
3 ASA = 1 if person is member of American Statistical Association,

0 otherwise

statepop.csv Data from an unequal-probability sample of 100 counties from the 1994
County and City Data Book (U.S. Census Bureau, 1994). The sample was selected with
probability proportional to population.

Column Name Value

1 county county name (character variable, length 14)
2 state state name (character variable)
3 landarea land area of county, 1990 (square miles)
4 popn population of county, 1992
5 phys number of physicians, 1990
6 farmpop farm population, 1990
7 numfarm number of farms, 1987
8 farmacre number of acres devoted to farming, 1987
9 veterans number of veterans, 1990
10 percviet percent of veterans from Vietnam era, 1990
11 psii ψi, probability of selection
12 wt sampling weight, = 1/(100ψi)

ssc.ca

182 Data Set Descriptions

statepps.csv Number of counties (or county equivalents; Alaska has boroughs, Louisiana
has parishes, and some states have independent cities), population estimates for 2019, land
area, and water area for the 50 states plus the District of Columbia. Total area for a state
can be calculated by summing land area and water area.

Source: Population estimates are from U.S. Census Bureau (2019). Land and water areas
are from U.S. Census Bureau (2012).

Column Name Value

1 state state name (character variable, length 20)
2 counties number of counties or county equivalents
3 pop2019 population of state, 2019
4 landarea land area of state (square kilometers)
5 waterarea water area of state (square kilometers)

swedishlcs.csv Data on call attempts from the Swedish Survey of Living Conditions.
Source: Lundquist and Särndal (2013).

Column Name Value

1 attempt call attempt number
2 resprate response rate at call attempt (percent)
3 bene�ts relative bias for variable bene�ts
4 income relative bias for variable income
5 employed relative bias for variable employed
6 note Character variable, length 25: notes about data collection

The variable attempt takes on values 1�25 for the initial �eldwork period. Values 31�40
denote the follow-up period, and value 45 gives the �nal estimates. The gaps in the attempt
variable allow one to see the separation of the periods on the graph.

syc.csv Selected variables from the Survey of Youth in Custody (Beck et al., 1988). Source:
U.S. Department of Justice (1989). Strata 6�16 each contain one facility; the psus in those
strata are residents. In strata 1�5, the psus are facilities. The number of facilities in the
population (Nh) for those �ve facilities are: N1 = 99, N2 = 39, N3 = 30, N4 = 13, N5 = 14.
Eleven facilities are sampled from stratum 1 and seven facilities are sampled from each of
strata 2 through 5.

The table gives missing value codes for individual variables in the .csv �le (these codes are
the same as in the original data source, but have been changed to the appropriate missing
value codes for the respective software packages in the SAS and R data �les).

Column Name Value

1 stratum stratum number
2 psu psu number, = facility number for residents in strata 1�5 and

person number for residents in strata 6�16
3 facility facility number
4 facsize number of eligible residents in psu
5 �nalwt �nal weight
6 randgrp random group number
7 age age of resident (99=missing)

183

syc.csv (continued)

Column Name Value

8 race race of resident
1 = white; 2 = Black; 3 = Asian/Paci�c Islander; 4 = Ameri-
can Indian, Aleut, Eskimo; 5 = Other; 9 = Missing

9 ethnicty 1 = Hispanic, 2 = not Hispanic, 9=missing
10 educ highest grade attended before sent to correctional institution

0 = Never attended school; 1�12 = highest grade attended;
13 = GED; 14 = Other

11 gender 1 = male, 2 = female
12 livewith Who did you live with most of the time you were growing up?

1 = Mother only, 2 = Father only 3 = Both mother and father,
4 = Grandparents, 5 = Other relatives, 6 = Friends, 7 = Foster
home,
8 = Agency or institution, 9 = Someone else, 99 = Blank

13 famtime Has anyone in your family, such as your mother, father,
brother, sister, ever served time in jail or prison?
1 = Yes, 2 = No, 7 = Don't know, 9 = Blank

14 crimtype most serious crime in current o�ense
1 = violent (e.g., murder, rape, robbery, assault)
2 = property (e.g. burglary, larceny, arson, fraud, motor vehicle
theft)
3 = drug (drug possession or tra�cking)
4 = public order (weapons violation, perjury, failure to appear
in court)
5 = juvenile status o�ense (truancy, running away, incorrigible
behavior)
9 = missing

15 everviol ever put on probation or sent to correctional inst for violent
o�ense: 1 = yes, 0 = no

16 numarr number of times arrested (99=missing)
17 probtn number of times on probation (99=missing)
18 corrinst number of times previously committed to correctional institu-

tion (99=missing)
19 evertime Prior to being sent here did you ever serve time in a correc-

tional institution?
1 = yes, 2 = no, 9 = missing

20 prviol =1 if previously arrested for violent o�ense, 0 otherwise
21 prprop =1 if previously arrested for property o�ense, 0 otherwise
22 prdrug =1 if previously arrested for drug o�ense, 0 otherwise
23 prpub =1 if previously arrested for public order o�ense, 0 otherwise
24 prjuv =1 if previously arrested for juvenile status o�ense, 0 otherwise
25 age�rst age �rst arrested (99=missing)
26 usewepn Did you use a weapon . . . for this incident?

1 = Yes, 2 = No, 9 = Blank
27 alcuse Did you drink alcohol at all during the year before being sent

here this time?
1 = Yes; 2 = No, didn't drink during year before; 3 = No,
don't drink at all, 9 = missing

28 everdrug Ever used illegal drugs; 0=no, 1=yes, 9=missing

184 Data Set Descriptions

teachers.csv Selected variables from a study on elementary school teacher workload in
Maricopa County, Arizona. Data courtesy of Rita Gnap (Gnap, 1995). The psu sizes are
given in �le teachmi.csv. The large stratum had 245 schools; the small/medium stratum
had 66 schools. Missing values are coded as -9.

Column Name Value

1 dist school district size. Character variable: large or med/small
2 school school identi�er
3 hrwork number of hours required to work at school per week
4 size class size
5 preprmin minutes spent per week in school on preparation
6 assist minutes per week that a teacher's aide works with the teacher

in the classroom

teachmi.csv Cluster sizes for data in teachers.csv.

Column Name Value

1 dist School district size: large or med/small
2 school school identi�er
3 popteach number of teachers in that school
4 ssteach number of surveys returned from that school

teachnr.csv Data from a follow-up study of nonrespondents from Gnap (1995).

Column Name Value

1 hrwork number of hours required to work at school per week
2 size class size
3 preprmin minutes spent per week in school on preparation
4 assist minutes per week that a teacher's aide works with the teacher

in the classroom

uneqvar.csv Arti�cial data used in exercises of Chapter 11.

Column Name Value

1 x x
2 y y

vietnam.csv Vietnam-service data from Stockford and Page (1984).

Column Name Value

1 apc APC stratum. Character variable with options �Yes,� �No,�
�NotAvail�

2 p2sample Indicator variable for phase II sample, = 1 if in phase II sam-
ple, 0 otherwise

3 vietnam = 1 if service in Vietnam, = 0 if service not in Vietnam, = −9
if not in phase II sample

185

vietnam.csv (continued)

Column Name Value

4 phase1wt weight for phase I sample
5 phase2wt conditional weight for phase II sample, calculated as (phase I

sample size in stratum) / (phase II sample size in stratum).
phase2wt = −9 for observations not in phase 2 sample.

6 �nalwt �nal weight for phase II sample, calculated as
phase1wt*phase2wt (= −9 for observations not in phase
II sample)

7 p1apcsize number of observations in the observation's APC stratum that
are in the phase I sample (nh)

8 p2apcsize number of observations in the observation's APC stratum that
are in the phase II sample (mh)

vius.csv Selected variables from the 2002 U.S. Vehicle Inventory and Use Survey (VIUS).
Source: Census:VIUS:2006. The data were downloaded from www.census.gov/svsd/www/

vius in May, 2006. The website from which the data were downloaded no longer exists,
and online information about VIUS may now be found at https://www.bts.gov/vius,
which provides a link to the archived 2002 data. The missing value of state for records with
adm_state = 42 was recoded to �PA,� the state that has code 42. This data set has 98,682
records, which may be too large for some software packages to handle; the �le viusca.csv
is a smaller data set, with the same columns described below, containing only vehicles from
California. The variable descriptions below are taken from the VIUS Data Dictionary.

Missing values are coded as −99. For some variables, the value is missing because the
question is not applicable or the vehicle is not in use; see the individual variable descriptions.

Note that a new VIUS is planned for 2022, with data to be released in 2023; see https:

//www.bts.gov/vius.

Column Name Value

1 stratum stratum number (contains all 255 strata)
2 adm_state state number
3 state state name
4 trucktype type of truck, used in strati�cation

1. pickups
2. minivans, other light vans, and sport utility vehicles
3. light single-unit trucks with gross vehicle weight less
than 26,000 pounds
4. heavy single-unit trucks with gross vehicle weight
greater than or equal to 26,000 pounds
5. truck-tractors

5 tabtrucks column of sampling weights
6 bodytype body type of vehicle

01. Pickup
02. Minivan
03. Light van other than minivan
04. Sport utility
05. Armored

www.census.gov/svsd/www/vius
www.census.gov/svsd/www/vius
https://www.bts.gov/vius
https://www.bts.gov/vius
https://www.bts.gov/vius

186 Data Set Descriptions

vius.csv (continued)

Column Name Value

06. Beverage
07. Concrete mixer
08. Concrete pumper
09. Crane
10. Curtainside
11. Dump
12. Flatbed, stake, platform, etc.
13. Low boy
14. Pole, logging, pulpwood, or pipe
15. Service, utility
16. Service, other
17. Street sweeper
18. Tank, dry bulk
19. Tank, liquids or gases
20. Tow/Wrecker
21. Trash, garbage, or recycling
22. Vacuum
23. Van, basic enclosed
24. Van, insulated non-refrigerated
25. Van, insulated refrigerated
26. Van, open top
27. Van, step, walk-in, or multistop
28. Van, other
99. Other not elsewhere classi�ed

7 adm_modelyear model year
01. 2003, 2002
02. 2001
03. 2000
04. 1999
05. 1998
06. 1997
07. 1996
08. 1995
09. 1994
10. 1993
11. 1992
12. 1991
13. 1990
14. 1989
15. 1988
16. 1987
17. Pre-1987

8 vius_gvw Gross vehicle weight based on average reported weight
01. Less than 6,001 lbs.
02. 6,001 to 8,500 lbs.
03. 8,501 to 10,000 lbs.
04. 10,001 to 14,000 lbs.
05. 14,001 to 16,000 lbs.

187

vius.csv (continued)

Column Name Value

06. 16,001 to 19,500 lbs.
07. 19,501 to 26,000 lbs.
08. 26,001 to 33,000 lbs.
09. 33,001 to 40,000 lbs.
10. 40,001 to 50,000 lbs.
11. 50,001 to 60,000 lbs.
12. 60,001 to 80,000 lbs.
13. 80,001 to 100,000 lbs.
14. 100,001 to 130,000 lbs.
15. 130,001 lbs. or more

9 miles_annl Number of Miles Driven During 2002
10 miles_life Number of Miles Driven Since Manufactured
11 mpg Miles Per Gallon averaged during 2002. Range from 0.3

to 35. -99 denotes not reported or not applicable.
12 opclass Operator Classi�cation With Highest Percent

1. Private
2. Motor carrier
3. Owner operator
4. Rental
5. Personal transportation
6. Not applicable (Vehicle not in use)

13 opclass_mtr Percent of Miles Driven as a Motor Carrier. -99 denotes
vehicle not in use

14 opclass_own Percent of Miles Driven as an Owner Operator. -99
denotes vehicle not in use

15 opclass_psl Percent of Miles Driven for Personal Transportation.
-99 denotes vehicle not in use

16 opclass_pvt Percent of Miles Driven as Private (Carry Own Goods
or Internal Company Business Only). -99 denotes vehi-
cle not in use

17 opclass_rnt Percent of Miles Driven as Rental. -99 denotes vehicle
not in use

18 transmssn Type of Transmission
1. Automatic
2. Manual
3. Semi-Automated Manual
4. Automated Manual

19 trip_primary Primary Range of Operation
1. O�-the-road
2. Less than 50 miles
3. 51 to 100 miles
4. 101 to 200 miles
5. 201 to 500 miles
6. 501 miles or more
7. Not reported
8. Not applicable (Vehicle not in use)

20 trip0_50 Percent of Annual Miles Accounted for with Trips
50 Miles or Less from the Home Base

188 Data Set Descriptions

vius.csv (continued)

Column Name Value

21 trip051_100 Percent of Annual Miles Accounted for with Trips
51 to 100 Miles from the Home Base

22 trip101_200 Percent of Annual Miles Accounted for with Trips
101 to 200 Miles from the Home Base

23 trip201_500 Percent of Annual Miles Accounted for with Trips
201 to 500 Miles from the Home Base

24 trip500more Percent of Annual Miles Accounted for with Trips
501 or More Miles from Home Base

25 adm_make Make of vehicle
01. Chevrolet
02. Chrysler
03. Dodge
04. Ford
05. Freightliner
06. GMC
07. Honda
08. International
09. Isuzu
10. Jeep
11. Kenworth
12. Mack
13. Mazda
14. Mitsubishi
15. Nissan
16. Peterbilt
17. Plymouth
18. Toyota
19. Volvo
20. White
21. Western Star
22. White GMC
23. Other (domestic)
24. Other (foreign)

26 business Business in which vehicle was most often used during
2002
01. For-hire transportation or warehousing
02. Vehicle leasing or rental
03. Agriculture, forestry, �shing, or hunting
04. Mining
05. Utilities
06. Construction
07. Manufacturing
08. Wholesale trade
09. Retail trade
10. Information services
11. Waste management, landscaping, or administra-
tive/support services
12. Arts, entertainment, or recreation services

189

vius.csv (continued)

Column Name Value

13. Accommodation or food services
14. Other services
-99. Not reported or not applicable

winter.csv Selected variables from the Arizona State University Winter Closure Survey,
taken in January 1995 (provided courtesy of the ASU O�ce of University Evaluation). This
survey was taken to investigate the attitudes and opinions of university employees towards
the closing of the university (for budgetary reasons) between December 25 and January 1.
For the yes/no questions, the responses are coded as 1 = No, 2 = Yes. The variables treatsta
and treatme are coded as 1=strongly agree, 2=agree, 3=undecided, 4=disagree, 5=strongly
disagree. The variables process and satbreak are coded as 1=very satis�ed, 2=satis�ed,
3=undecided, 4=dissatis�ed, 5=very dissatis�ed. Variables ownsupp through o�close are
coded 1 if the person checked that the statement applied to him/her, and 2 if the statement
was not checked.

Missing values are coded as 9.

Column Name Value

1 class stratum number
1 = faculty ; 2 = classi�ed sta�; 3= administrative sta�; 4 =
academic professional

2 yearasu number of years worked at ASU
1= 1-2 years; 2=3-4 years; 3=5-9 years; 4=10-14 years; 5 = 15
or more years

3 vacation In the past, have you usually taken vacation days the entire
period between December 25 and January 1?

4 work Did you work on campus during Winter Break Closure?
5 havedi� Did the Winter Break Closure cause you any di�culty/con-

cerns?
6 negae�e Did the Winter Break Closure negatively a�ect your work pro-

ductivity?
7 ownsupp I was unable to obtain sta� support in my department/o�ce
8 othersup I was unable to obtain sta� support in other departments/of-

�ces
9 utility I was unable to access computers, copy machine, etc. in my

department/o�ce
10 environ I was unable to endure environmental conditions, e.g., not

properly climatized
11 uniserve I was unable to access university services necessary to my work
12 workelse I was unable to work on my assignments because I work in

another department/o�ce
13 o�close I was unable to work on my assignments because my o�ce was

closed
14 treatsta Compared to other departments/o�ces, I feel sta� in my de-

partment/o�ce were treated fairly
15 treatme Compared to other people working in my department/o�ce, I

feel I was treated fairly

190 Data Set Descriptions

winter.csv (continued)

Column Name Value

16 process How satis�ed are you with the process used to inform sta�
about Winter Break Closure?

17 satbreak How satis�ed are you with the fact that ASU had a Winter
Break Closure this year?

18 breakaga Would you want to have Winter Break Closure again?

wtshare.csv Hypothetical sample of size 100, with indirect sampling. The data set has
multiple records for adults with more than one child; if adult 254 has 3 children, adult 254
is listed 3 times in the data set. Note that to obtain Lk, you need to take numadult +1.

Column Name Value

1 id Identi�cation number of adult in sample
2 child = 1 if record is for a child, 0 if adult has no children
3 preschool = 1 if child is in preschool, 0 otherwise
4 numadult number of other adults in population who link to that child

Bibliography

Allison, P. D. (2012). Logistic Regression using SAS®: Theory and Application. Cary, NC:
SAS Institute, Inc.

Arnold, T. W. (1991). Intraclutch variation in egg size of American coots. The Condor 93,
19�27.

Asian Development Bank (2020). Introduction to Small Area Estimation Techniques: A
Practical Guide for National Statistics O�ces. Asian Development Bank: Manila.

Azur, M. J., E. A. Stuart, C. Frangakis, and P. J. Leaf (2011). Multiple imputation by
chained equations: What is it and how does it work? International Journal of Methods
in Psychiatric Research 20 (1), 40�49.

Baillargeon, S. and L.-P. Rivest (2007). Rcapture: Loglinear models for capture-recapture
in R. Journal of Statistical Software 19 (5), 1�31.

Baillargeon, S. and L.-P. Rivest (2011). The construction of strati�ed designs in R with the
package strati�cation. Survey Methodology 37 (1), 53�65.

Barcaroli, G. (2014). SamplingStrata: An R package for the optimization of strati�ed
sampling. Journal of Statistical Software 61 (4), 1�24.

Barcaroli, G., M. Ballin, H. Odendaal, D. Pagliuca, E. Willighagen, and D. Zardetto
(2020). SamplingStrata: Optimal Strati�cation of Sampling Frames for Multipurpose
Sampling Surveys. R package version 1.5-1, https://CRAN.R-project.org/package=
SamplingStrata (accessed March 11, 2021).

Bart, J. and S. Earnst (2002). Double-sampling to estimate density and population trends
in birds. The Auk 119, 36�45.

Bates, D., M. Mächler, B. Bolker, and S. Walker (2015). Fitting linear mixed-e�ects models
using lme4. Journal of Statistical Software 67 (1), 1�48.

Bates, D., M. Mächler, B. Bolker, S. Walker, R. H. B. Christensen, H. Singmann, B. Dai,
F. Scheipl, G. Grothendieck, P. Green, J. Fox, A. Bauer, and P. N. Krivitsky (2020). lme4:
Linear Mixed-E�ects Models using `Eigen' and S4. R package version 1.1-26, https:
//CRAN.R-project.org/package=lme4 (accessed March 20, 2021).

Beck, A. J., S. A. Kline, and L. A. Greenfeld (1988). Survey of Youth in Custody. Technical
Report NCJ-113365, Bureau of Justice Statistics, Washington, DC.

Bretz, F., T. Hothorn, and P. Westfall (2016). Multiple Comparisons using R. Boca Raton,
FL: CRC Press.

Brewer, K. R. W. (1963). Ratio estimation and �nite populations: Some results deducible
from the assumption of an underlying stochastic process. The Australian Journal of
Statistics 5 (3), 93�105.

191

https://CRAN.R-project.org/package=SamplingStrata
https://CRAN.R-project.org/package=SamplingStrata
https://CRAN.R-project.org/package=lme4
https://CRAN.R-project.org/package=lme4

192 Bibliography

Brewer, K. R. W. (1975). A simple procedure for sampling πpswor. The Australian Journal
of Statistics 17, 166�172.

Brick, J. M., D. Morganstein, and R. Valliant (2000). Analysis of Complex Sample Data
Using Replication. Rockville, MD: Westat.

Bueno, E. (2020). optimStrat: Choosing the Sample Strategy. R package version 2.3. https:
//CRAN.R-project.org/package=optimStrat (accessed March 12, 2021).

Canty, A. J. and A. C. Davison (1999). Resampling-based variance estimation for labour
force surveys. The Statistician 48, 379�391.

Centers for Disease Control and Prevention (2017). NHANES Questionnaires, Datasets,
and Related Documentation. https://wwwn.cdc.gov/nchs/nhanes/ (accessed August
15, 2020).

Chao, A., K. H. Ma, T. C. Hsieh, and C.-H. Chiu (2016). SpadeR: Species-Richness Pre-
diction and Diversity Estimation with R. R package version 0.1.1, https://CRAN.R-
project.org/package=SpadeR (accessed March 15, 2021).

Chapman, D. G. (1951). Some properties of the hypergeometric distribution with applica-
tions to zoological sample censuses. University of California Publications in Statistics 1,
131�160.

Chauvet, G. and Y. Tillé (2006). A fast algorithm for balanced sampling. Computational
Statistics 21 (1), 53�62.

Cho, I., J.-K. Kim, J. Im, and Y. Yang (2020). FHDI: Fractional Hot Deck and Fully
E�cient Fractional Imputation. R package version 1.4.1, https://CRAN.R-project.
org/package=FHDI (accessed April 15, 2021).

Cormack, R. M. (1992). Interval estimation for mark-recapture studies of closed populations.
Biometrics 48, 567�576.

Dippo, C. S., R. E. Fay, and D. H. Morganstein (1984). Computing variances from complex
samples with replicate weights. In Proceedings of the Survey Research Methods Section,
Alexandria, VA, pp. 489�494. American Statistical Association.

Domingo-Salvany, A., R. L. Hartnoll, A. Maquire, J. M. Suelves, and J. M. Anto (1995). Use
of capture-recapture to estimate the prevalence of opiate addiction in Barcelona, Spain,
1989. American Journal of Epidemiology 141, 567�574.

Fienberg, S. E. and A. Rinaldo (2007). Three centuries of categorical data analysis: Log-
linear models and maximum likelihood estimation. Journal of Statistical Planning and
Inference 137 (11), 3430�3445.

Forman, S. L. (2004). Baseball-reference.com�Major league statistics and information.
www.baseball-reference.com (accessed November 2004).

Gambino, J. G. (2021). pps: PPS Sampling. R package version 1.0. https://CRAN.R-
project.org/package=pps (accessed March 12, 2021).

Gini, C. and L. Galvani (1929). Di una applicazione del metodo rappresentativo all'ultimo
censimento italiano della popolazione. Annali di Statistica 6 (4), 1�105.

Gnap, R. (1995). Teacher Load in Arizona Elementary School Districts in Maricopa County.
Ph. D. thesis, Arizona State University.

https://CRAN.R-project.org/package=optimStrat
https://CRAN.R-project.org/package=optimStrat
https://wwwn.cdc.gov/nchs/nhanes/
https://CRAN.R-project.org/package=SpadeR
https://CRAN.R-project.org/package=SpadeR
https://CRAN.R-project.org/package=FHDI
https://CRAN.R-project.org/package=FHDI
www.baseball-reference.com
https://CRAN.R-project.org/package=pps
https://CRAN.R-project.org/package=pps

Bibliography 193

Goga, C. (2018). Brief overview of survey sampling techniques with R. Romanian Statistical
Review 2018 (1), 83�94.

Grafström, A. and J. Lisic (2019). BalancedSampling: Balanced and Spatially Bal-
anced Sampling. R package version 1.5.5, https://CRAN.R-project.org/package=

BalancedSampling (accessed March 12, 2021).

Hand, D. J., F. Daly, A. D. Lunn, K. J. McConway, and E. Ostrowski (1994). A Handbook
of Small Data Sets. London: Chapman and Hall.

Hanurav, T. V. (1967). Optimum utilization of auxiliary information: πps sampling of two
units from a stratum. Journal of the Royal Statistical Society, Series B 29, 374�391.

Harmening, S., A.-K. Kreutzmann, S. Pannier, N. Rojas-Perilla, N. Salvati, T. Schmid,
M. Templ, N. Tzavidis, and N. Würz (2021). emdi: Estimating and Mapping Disaggre-
gated Indicators. R package version 2.0.2, https://CRAN.R-project.org/package=emdi
(accessed April 30, 2021).

Harrell, F. E. (2021). Hmisc: Harrell miscellaneous. R package version 4.5-0, https:
//CRAN.R-project.org/package=Hmisc (accessed April 7, 2021).

Hartley, H. O. and J. N. K. Rao (1962). Sampling with unequal probabilities and without
replacement. The Annals of Mathematical Statistics 33, 350�374.

Hayat, M. and T. Knapp (2017). Randomness and inference in medical and public health
research. Journal of the Georgia Public Health Association 7 (1), 7�11.

Haziza, D. (2009). Imputation and inference in the presence of missing data. In D. Pfe�er-
mann and C. R. Rao (Eds.), Sample Surveys: Design, Methods, and Applications. Hand-
book of Statistics, Volume 29A, pp. 215�246. Amsterdam: North-Holland.

Heck, P. R., D. J. Simons, and C. F. Chabris (2018). 65% of Americans believe they
are above average in intelligence: Results of two nationally representative surveys. PloS
One 13 (7), 1�11.

Hidiroglou, M. A., J.-F. Beaumont, and W. Yung (2019). Development of a small area
estimation system at Statistics Canada. Survey Methodology 45 (1), 101�126.

Horton, N. J. and K. Kleinman (2015). Using R and RStudio for Data Management,
Statistical Analysis, and Graphics, 2nd ed. Boca Raton, FL: CRC Press.

Horton, N. J., R. Pruim, and D. T. Kaplan (2018). A Student's Guide to R. Amherst, MA:
Project MOSAIC.

Hyndman, R. J. and Y. Fan (1996). Sample quantiles in statistical packages. The American
Statistician 50 (4), 361�365.

Im, J., I. H. Cho, and J.-K. Kim (2018). FHDI: An R package for fractional hot deck
imputation. R Journal 10 (1), 140�154.

Ismay, C. and P. C. Kennedy (2019). Getting Used to R, RStudio, and R Markdown.
https://rbasics.netlify.app/ (accessed March 2, 2021).

Jacoby, J. and A. H. Handlin (1991). Non-probability sampling designs for litigation surveys.
Trademark Reporter 81, 169�179.

https://CRAN.R-project.org/package=BalancedSampling
https://CRAN.R-project.org/package=BalancedSampling
https://CRAN.R-project.org/package=emdi
https://CRAN.R-project.org/package=Hmisc
https://CRAN.R-project.org/package=Hmisc
https://rbasics.netlify.app/

194 Bibliography

Judkins, D. (1990). Fay's method for variance estimation. Journal of O�cial Statistics 6,
223�240.

Kabaco�, R. I. (2021). R in Action, 3rd ed. Shelter Island, NY: Manning Publications.

Kim, J. K. (2011). Parametric fractional imputation for missing data analysis.
Biometrika 98 (1), 119�132.

Kim, J. K. and W. Fuller (2004). Fractional hot deck imputation. Biometrika 91 (3),
559�578.

Koch, G. G., D. H. Freeman, and J. L. Freeman (1975). Strategies in the multivariate
analysis of data from complex surveys. International Statistical Review 43, 59�78.

Koenker, R. (2005). Quantile Regression. Cambridge: Cambridge University Press.

Koenker, R., S. Portnoy, P. T. Ng, B. Melly, A. Zeileis, P. Grosjean, C. Moler, Y. Saad,
V. Chernozhukov, I. Fernandez-Val, and B. D. Ripley (2021). quantreg: Quantile Re-
gression. R package version 2.23-18, https://CRAN.R-project.org/package=quantreg
(accessed April 7, 2021).

Korn, E. L. and B. I. Graubard (1998). Con�dence intervals for proportions with small
expected number of positive counts estimated from survey data. Survey Methodology 24,
193�201.

Kott, P. S. (2012). Why one should incorporate the design weights when adjusting for unit
nonresponse using response homogeneity groups. Survey Methodology 38 (1), 95�99.

Kowarik, A. and M. Templ (2016). Imputation with the R package VIM. Journal of
Statistical Software 74 (7), 1�16.

Kreutzmann, A.-K., S. Pannier, N. Rojas-Perilla, T. Schmid, M. Templ, and N. Tzavidis
(2019). The R package emdi for estimating and mapping regionally disaggregated indi-
cators. Journal of Statistical Software 91, 1�33.

Kruuk, H., A. Moorhouse, J. W. H. Conroy, L. Durbin, and S. Frears (1989). An estimate
of numbers and habitat preferences of otters lutra lutra in Shetland, UK. Biological
Conservation 49, 241�254.

Little, R. J. and S. Vartivarian (2003). On weighting the rates in non-response weights.
Statistics in Medicine 22 (9), 1589�1599.

Lohr, S. L. (2022). SAS® Software Companion for Sampling: Design and Analysis, Third
Edition. Boca Raton, FL: CRC Press.

Lopez-Vizcaino, E., M. Lombardia, and D. Morales (2019). mme: Multinomial Mixed E�ects
Models. R package version 0.1-6. https://CRAN.R-project.org/package=mme (accessed
January 16, 2021).

Lu, Y. and S. L. Lohr (2021). SDAResources: Datasets and Functions for �Sampling: De-
sign and Analysis�. R package version 0.1.0. https://CRAN.R-project.org/package=
SDAResources (accessed May 17, 2021).

Lumley, T. (2004). Analysis of complex survey samples. Journal of Statistical Software 9 (1),
1�19.

Lumley, T. (2010). Complex Surveys: A Guide to Analysis using R. Hoboken, NJ: Wiley.

https://CRAN.R-project.org/package=quantreg
https://CRAN.R-project.org/package=mme
https://CRAN.R-project.org/package=SDAResources
https://CRAN.R-project.org/package=SDAResources

Bibliography 195

Lumley, T. (2020). survey: Analysis of Complex Survey Samples. R package version 4.0.
https://CRAN.R-project.org/package=survey (accessed September 20, 2020).

Lundquist, P. and C.-E. Särndal (2013). Aspects of responsive design with applications to
the Swedish Living Conditions Survey. Journal of O�cial Statistics 29 (4), 557�582.

Luraschi, J. (2021). Importing data with rstudio. https://support.rstudio.com/hc/en-
us/articles/218611977-Importing-Data-with-RStudio (accessed March 12, 2021).

Lydersen, C. and M. Ryg (1991). Evaluating breeding habitat and populations of ringed
seals phoca hispida in Svalbard fjords. Polar Record 27, 223�228.

Macdonell, W. R. (1901). On criminal anthropometry and the identi�cation of criminals.
Biometrika 1, 177�227.

Molina, I. and Y. Marhuenda (2015). sae: An R package for small area estimation. The R
Journal 7 (1), 1�98.

Molina, I. and Y. Marhuenda (2020). sae: Small Area Estimation. R package version 1.3.
https://CRAN.R-project.org/package=sae (accessed December 20, 2020).

National Center for Health Statistics (1987). Vital Statistics of the United States, Volume
3: Marriage and Divorce. Washington, DC: U.S. Government Printing O�ce.

Nolan, D. and T. Speed (2000). Stat Labs: Mathematical Statistics Through Applications.
New York: Springer.

Oetiker, T., H. Partl, I. Hyna, and E. Schlegl (2021). The Not So Short Introduction to
LATEX 2ε, Version 6.4. Olten, Switzerland: Tobias Oetiker. https://tobi.oetiker.ch/
lshort/lshort.pdf (accessed March 18, 2021).

Peart, D. (1994). Impacts of Feral Pig Activity on Vegetation Patterns Associated with
Quercus agrifolia on Santa Cruz Island, California. Tempe, AZ: Ph.D. dissertation,
Arizona State University.

Pinheiro, J., D. Bates, S. DebRoy, D. Sarkar, and R Core Team (2021). nlme: Linear and
Nonlinear Mixed E�ects Models. R package version 3.1-152, https://CRAN.R-project.
org/package=nlme (accessed March 20, 2021).

Pratesi, M. (Ed.) (2016). Analysis of Poverty Data by Small Area Estimation. Hoboken,
NJ: Wiley.

Preston, J. (2009). Rescaled bootstrap for strati�ed multistage sampling. Survey Method-
ology 35 (2), 227�234.

R Core Team (2021). R: A Language and Environment for Statistical Computing. Vi-
enna, Austria: R Foundation for Statistical Computing. Version 4.0.4, https://www.R-
project.org.

Rao, J. N. K. and I. Molina (2015). Small Area Estimation, 2nd ed. Hoboken, NJ: Wiley.

Rao, J. N. K. and A. J. Scott (1981). The analysis of categorical data from complex sample
surveys: Chi-squared tests for goodness of �t and independence in two-way tables. Journal
of the American Statistical Association 76, 221�230.

Rao, J. N. K. and A. J. Scott (1984). On chi-squared tests for multiway contingency tables
with cell proportions estimated from survey data. The Annals of Statistics 12, 46�60.

https://CRAN.R-project.org/package=survey
https://support.rstudio.com/hc/en-us/articles/218611977-Importing-Data-with-RStudio
https://support.rstudio.com/hc/en-us/articles/218611977-Importing-Data-with-RStudio
https://CRAN.R-project.org/package=sae
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://CRAN.R-project.org/package=nlme
https://CRAN.R-project.org/package=nlme
https://www.R-project.org
https://www.R-project.org

196 Bibliography

Rao, J. N. K., C. F. J. Wu, and K. Yue (1992). Some recent work on resampling methods
for complex surveys. Survey Methodology 18, 209�217.

Reiter, J. P., T. E. Raghunathan, and S. K. Kinney (2006). The importance of modeling
the sampling design in multiple imputation for missing data. Survey Methodology 32 (2),
143�149.

Rivest, L.-P. and S. Baillargeon (2017). strati�cation: Univariate Strati�cation of Sur-
vey Populations. R package version 2.2-6, https://CRAN.R-project.org/package=

stratification (accessed March 10, 2021).

Rivest, L.-P. and S. Baillargeon (2019). Rcapture: Loglinear Models for Capture-
Recapture Experiments. R package version 1.4-3, https://CRAN.R-project.org/

package=Rcapture (accessed March 15, 2021).

Roberts, R. J., Q. D. Sandifer, M. R. Evans, M. Z. Nolan-Ferrell, and P. M. Davis (1995).
Reasons for non-uptake of measles, mumps, and rubella catch up immunisation in a
measles epidemic and side e�ects of the vaccine. British Medical Journal 310, 1629�1632.

Ruggles, S., M. Sobek, T. Alexander, C. A. Fitch, R. Goeken, P. K. Hall, M. King, and
C. Ronnander (2004). Integrated Public Use Microdata Series: Version 3.0 [machine-
readable database]. www.ipums/org/usa (accessed September 17, 2008).

Sampford, M. R. (1967). On sampling without replacement with unequal probabilities of
selection. Biometrika 54, 499�513.

SAS Institute Inc. (2021). SAS/STAT® User's Guide. Cary, NC: SAS Institute Inc. https:
//documentation.sas.com/ (accessed April 27, 2021).

Stockford, D. D. and W. F. Page (1984). Double sampling and the misclassi�cation of
Vietnam service. In Proceedings of the Social Statistics Section, Alexandria, VA, pp.
261�264. American Statistical Association.

Talbot, N. L. C. (2012). LaTeX for Complete Novices. Saxlingham Nethergate, UK: Dicki-
maw Books. https://www.dickimaw-books.com/latex/novices/ (accessed March 10,
2021).

Templ, M., A. Kowarik, A. Alfons, G. de Cillia, B. Prantner, and W. Rannetbauer (2021).
VIM: Visualization and Imputation of Missing Values. R package version 6.1.0, https:
//CRAN.R-project.org/package=VIM (accessed April 21, 2021).

Thomas, D. R. and J. N. K. Rao (1987). Small-sample comparisons of level and power
for simple goodness-of-�t statistics under cluster sampling. Journal of the American
Statistical Association 82, 630�636.

Tillé, Y. (2006). Sampling Algorithms. New York: Springer.

Tillé, Y. and A. Matei (2010). Teaching survey sampling with the `sampling' R package. In
Proceedings of the 8th International Conference on Teaching Statistics (ICOTS), Auck-
land, NZ, pp. 1�6. International Association of Statistical Education.

Tillé, Y. and A. Matei (2021). sampling: Survey Sampling. R package version 2.9, https:
//CRAN.R-project.org/package=sampling (accessed March 12, 2021).

Tillé, Y. and M. Wilhelm (2017). Probability sampling designs: Principles for choice of
design and balancing. Statistical Science 32 (2), 176�189.

https://CRAN.R-project.org/package=stratification
https://CRAN.R-project.org/package=stratification
https://CRAN.R-project.org/package=Rcapture
https://CRAN.R-project.org/package=Rcapture
www.ipums/org/usa
https://documentation.sas.com/
https://documentation.sas.com/
https://www.dickimaw-books.com/latex/novices/
https://CRAN.R-project.org/package=VIM
https://CRAN.R-project.org/package=VIM
https://CRAN.R-project.org/package=sampling
https://CRAN.R-project.org/package=sampling

Bibliography 197

Tzavidis, N., L.-C. Zhang, A. Luna, T. Schmid, and N. Rojas-Perilla (2018). From start
to �nish: A framework for the production of small area o�cial statistics. Journal of the
Royal Statistical Society: Series A 181 (4), 927�979.

U.S. Bureau of the Census (1921). Fourteenth Census of the United States Taken in the
Year 1920. Washington, DC: U.S. Government Printing O�ce. https://www.census.

gov/library/publications/1921/dec/vol-01-population.html (accessed August 4,
2020).

U.S. Bureau of the Census (1995). 1992 Census of Agriculture, Volume 1: Geographic Area
Series. Washington, DC: U.S. Bureau of the Census.

U.S. Census Bureau (1994). County and City Data Book: 1994. Washington, DC: U.S.
Census Bureau.

U.S. Census Bureau (2012). United States Summary, 2010. Washington, DC: U.S. Census
Bureau. https://www.census.gov/prod/cen2010/cph-2-1.pdf (accessed October 3,
2020).

U.S. Census Bureau (2019). State population totals: 2010-2019. Table 1. Annual estimates
of the resident population for the United States, regions, states, and Puerto Rico: April
1, 2010 to July 1, 2019 (NST-EST2019-01). https://www.census.gov/data/datasets/
time-series/demo/popest/2010s-state-total.html (accessed August 3, 2020).

U.S. Department of Education (2020). College scorecard data. https://

collegescorecard.ed.gov/data/ (accessed August 25, 2020).

U.S. Department of Justice (1989). Survey of Youth in Custody, 1987, United States com-
puter �le, conducted by Department of Commerce, Bureau of the Census, 2nd ICPSR
ed. (accessed May 5, 1998).

Valliant, R., J. A. Dever, and F. Kreuter (2018). Practical Tools for Designing and Weighting
Survey Samples. New York: Springer.

Valliant, R., J. A. Dever, and F. Kreuter (2020). PracTools: Tools for Designing and
Weighting Survey Samples. R package version 1.2.2. https://CRAN.R-project.org/
package=PracTools (accessed March 12, 2021).

Valliant, R. and K. F. Rust (2010). Degrees of freedom approximations and rules-of-thumb.
Journal of O�cial Statistics 26 (4), 585�602.

van Buuren, S. (2018). Flexible Imputation of Missing Data. Boca Raton, FL: CRC Press.

van Buuren, S., K. Groothuis-Oudshoorn, G. Vink, R. Schouten, A. Robitzsch, P. Rocken-
schaub, L. Doove, S. Jolani, M. Moreno-Betancur, I. White, P. Ga�ert, F. Meinfelder,
B. Gray, and V. Arel-Bundock (2021). mice: Multivariate Imputation by Chained Equa-
tions. R package version 3.13.0, https://CRAN.R-project.org/package=mice (accessed
April 15, 2021).

Vijayan, K. (1968). An exact πps sampling scheme: Generalization of a method of Hanurav.
Journal of the Royal Statistical Society, Series B 30, 556�566.

Virginia Polytechnic and State University/Responsive Management (2006). An Assessment
of Public and Hunter Opinions and the Costs and Bene�ts to North Carolina of Sunday
Hunting. Blacksburg, VA: Virginia Polytechnic and State University.

https://www.census.gov/library/publications/1921/dec/vol-01-population.html
https://www.census.gov/library/publications/1921/dec/vol-01-population.html
https://www.census.gov/prod/cen2010/cph-2-1.pdf
https://www.census.gov/data/datasets/time-series/demo/popest/2010s-state-total.html
https://www.census.gov/data/datasets/time-series/demo/popest/2010s-state-total.html
https://collegescorecard.ed.gov/data/
https://collegescorecard.ed.gov/data/
https://CRAN.R-project.org/package=PracTools
https://CRAN.R-project.org/package=PracTools
https://CRAN.R-project.org/package=mice

198 Bibliography

Wand, M., C. Moler, and B. Ripley (2020). KernSmooth: Functions for Kernel Smoothing
Supporting Wand & Jones (1995). R package version 2.23-18, https://CRAN.R-project.
org/package=KernSmooth (accessed April 7, 2021).

Wand, M. P. and M. C. Jones (1995). Kernel Smoothing. London: Chapman & Hall.

Wang, J. (2021). The pseudo maximum likelihood estimator for quantiles of survey variables.
Journal of Survey Statistics and Methodology 9 (1), 185�201.

Wickham, H. (2015). R Packages: Organize, Test, Document, and Share Your Code. Se-
bastopol, CA: O'Reilly Media.

Wickham, H. (2019). Advanced R, 2nd ed. Boca Raton, FL: CRC Press.

Wickham, H., W. Chang, L. Henry, T. L. Pedersen, K. Takahashi, C. Wilke, K. Woo,
H. Yutani, and D. Dunnington (2020). ggplot2: Create Elegant Data Visualisations Using
the Grammar of Graphics. R package version 3.3.3, https://CRAN.R-project.org/
package=ggplot2 (accessed March 30, 2021).

Wikibooks contributors (2021). LaTeX. Wikibooks, The Free Textbook Project. https:

//en.wikibooks.org/wiki/LaTeX (accessed March 18, 2021).

Wilk, S. J., W. W. Morse, D. E. Ralph, and T. R. Azarovitz (1977). Fishes and Associated
Environmental Data Collected in New York Bight, June 1974�June 1975. NOAA Tech.
Rep. No. NMFS SSRF-716. Washington, DC: U.S. Government Printing O�ce.

Woodru�, R. S. (1952). Con�dence intervals for medians and other position measures.
Journal of the American Statistical Association 47, 636�646.

Xie, Y. (2015). Dynamic Documents with R and knitr, 2nd ed. Boca Raton, FL: CRC Press.

Yadav, M. L. and B. Roychoudhury (2018). Handling missing values: A study of popular
imputation packages in R. Knowledge-Based Systems 160, 104�118.

Zhang, C., C. Antoun, H. Y. Yan, and F. G. Conrad (2020). Professional respondents in
opt-in online panels: What do we really know? Social Science Computer Review 38 (6),
703�719.

Zhang, G., F. Christensen, and W. Zheng (2015). Nonparametric regression estimators in
complex surveys. Journal of Statistical Computation and Simulation 85 (5), 1026�1034.

https://CRAN.R-project.org/package=KernSmooth
https://CRAN.R-project.org/package=KernSmooth
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=ggplot2
https://en.wikibooks.org/wiki/LaTeX
https://en.wikibooks.org/wiki/LaTeX

Index

Allocation, strati�ed sampling, 26�28
Analysis of variance (ANOVA), 36, 50

Balanced repeated replication (BRR), 110,
113�121

Balanced sampling, 146
Bootstrap, 110, 113�121

capture-recapture estimation, 152�153
Boxplot

complex survey, 89�91, 97
domains, 143
strati�ed random sample, 32

Capture-recapture estimation, 151�153
Categorical variable, 22
Clopper-Pearson con�dence interval, 24, 36
Cluster sample

equal probabilities, 54�65
estimating means, 54�60
estimating proportions, 58
�nite population correction, 59�60
selection, 66�74
unequal probabilities, 66�80

Combined ratio estimator, 47
Contingency table, 125�127
Conventions used in book, 1
Cumulative distribution function, empirical,

100�102

Degrees of freedom (df)
bootstrap SRS, 120
bootstrap strati�ed random sample,

121
chi-square test, 125
domain estimation, 45, 116
jackknife cluster sampling, 119
jackknife SRS, 118
one-stage cluster sample, 54�56, 75
random group, 113
regression, 43, 135�136, 138
replicated samples, 112
simple random sample, 20
strati�ed random sample, 34

two-stage cluster sample, 57, 76
Design e�ect (de�), 89, 128�129
Domain, 44

comparison, 140�143
estimation, 44�46, 143

Empirical cumulative distribution function,
85, 100�102

Empirical probability mass function,
100�102

Examples in SDA
Example 02.05, 14�16
Example 02.06, 16, 18�23
Example 02.07, 18�23
Example 02.11, 18�23
Example 03.02, 29�36
Example 03.06, 31�36
Example 04.02, 39�40
Example 04.03, 39�40
Example 04.05, 40�42
Example 04.07, 42�43
Example 04.08, 44�45
Example 04.09, 46, 121�122
Example 04.11, 48�50
Example 04.12, 50�52
Example 05.02, 54�55
Example 05.06, 55�56
Example 05.07, 58�60
Example 05.08, 56�57
Example 05.12, 60
Example 05.14, 61�62
Example 06.02, 66�67
Example 06.04, 74�75
Example 06.06, 75�76
Example 06.08, 78
Example 06.09, 78�79
Example 06.10, 79�80
Example 06.11, 69�74, 76�77
Example 07.05, 100
Example 07.06, 85�86
Example 07.09, 87�89
Example 07.10, 90�92
Example 07.11, 90�92

199

200 Index

Example 07.12, 90�92
Example 08.09, 108
Example 08.10, 104
Example 09.03, 110�112
Example 09.04, 112�113
Example 09.05, 114�116, 123
Example 09.06, 116�117
Example 09.07, 117�119
Example 09.08, 119
Example 09.09, 119�120
Example 09.10, 120�121
Example 09.12, 86
Example 10.01, 125�126
Example 10.05, 126�127
Example 10.06, 127�129
Example 10.08, 129�131
Example 10.09, 131
Example 11.02, 134�135
Example 11.04, 135
Example 11.06, 136�137
Example 11.07, 137�140
Example 11.08, 141�142
Example 11.09, 142�143
Example 11.12, 144�145
Example 12.01, 149�151
Example 12.04, 149�151
Example 13.01, 151�153
Example 13.03, 153�155

Exercises in SDA
Exercise 02.27, 23
Exercise 02.32, 24
Exercise 02.34, 24
Exercise 05.40, 62
Exercise 06.36, 79
Exercise 06.45, 67
Exercise 07.19, 85
Exercise 11.36, 146

Finite population correction (fpc)
chi-square test, 127
one-stage cluster sampling, 55
regression coe�cients, 136
simple random sampling, 18, 20
strati�ed random sampling, 33�34
two-stage cluster sampling, 57�60
unequal-probability sampling, 74

Functions in R
anova, 131�133
apply, 78, 152�153
as.data.frame, 4
as.svrepdesign, 113�122, 136

attach, 56
axis, 145
binom.test, 24
box, 145
boxplot, 32, 91
calibrate, 107
captureci, 152, 154�155
chisq.test, 125, 129�130
cluster, 67�68
coef, 111�112
complete.cases, 104�105
con�nt, 42�43, 54�56, 114�122
cor, 39�42
cut, 97
data.frame, 75, 76, 114�116, 121�122,

129�130
degf, 32�34, 117�119, 135�136
density, 89�91
ecdf, 101�102
emppmf, 100�101
factor, 142
getdata, 16�17, 31, 72�73
glm, 42, 48�153
help, 4
help.search, 4
hist, 18, 152�153
inclusionprobabilities, 69, 72�73
install.packages, 3
intervals_ex40, 62�64
is.na, 104�105
jpeg, 9
length, 139�140
library, 3
lines, 89�92, 98�99, 139�140, 145
lm, 50, 52, 60, 108, 134�135
lme, 61
lmer, 61
locpoly, 98
matrix, 125
mean, 104�105
mstage, 68�72, 82�85
nobs, 138
order, 82
par, 89�91
pdf, 9
plot, 40, 48�52, 93�94, 145
postStratify, 46, 106, 121�122
predict, 39�40, 42�43, 48�52, 108,

139�140
rake, 106�107
read.csv, 6�7

Index 201

read.table, 6�7
regTermTest, 144�145
rep, 140�141
round, 97
rq, 99
sample, 14, 94
bootstrap for capture-recapture,
152�153

SRS, 14�15
strati�ed random sample, 29
unequal-probability sample, 66�67

seq, 139�140, 145
set.seed, 15, 111�112
sink (saving output), 7�8
source, 8
srswor, 14�17, 69, 111�112
srswor1, 24
srswr, 14�17, 69
stargazer, 8�9
strata, 30�31, 73
subset, 44�46, 88�89, 91, 96, 105, 145
summary, 126�127, 135�138, 141�145
svrepdesign, 123�124
svyboxplot, 89, 91�92, 97
svyby, 34�35, 45, 112�113, 140, 141
svycdf, 92, 101�102
svychisq, 126�130
svyciprop, 24, 36
svydesign, 14, 19, 97, 121�122
complex sample, 86�128, 137�138
one-stage cluster sample, 54�56
one-stage unequal probability
sample, 75

pps sampling without replacement,
79

random group method, 112�113
replicated sample design, 111�112
SRS, 20�21, 135�136, 151�152
two-stage cluster sample, 56
use in calculating replicate weights,
136

use in creating replicate weights,
114�117, 119�121

svyglm, 42�43, 134�138, 141�145
svyhist, 89�92
svyloglin, 129�133
svymean, 14, 19, 89�92, 104�105,

111�122, 127�129, 134, 149�151
complex sample, 86
one-stage cluster sample, 54�56
proportion, 21�23

proportions with strati�ed random
sample, 35�36

SRS, 20�21
strati�ed random sample, 32�34
two-stage cluster sample, 56
with replicate weights, 123

svyplot, 92, 95�96, 139�140
svyquantile, 85�89, 101, 116�117, 120
svyratio, 117�119, 151�152
one-stage unequal probability
sample, 75

SRS, 39�42
strati�ed sampling, 47�48

svysmooth, 89�92, 98
svytable, 104�105, 126�128, 131�133
svytotal, 14, 19, 121�122
one-stage cluster sample, 54�56
SRS, 20�21
strati�ed random sample, 32�36

svyvar, 89�92
t.test, 111�112
table, 26�27, 31, 104�105, 140�141
tapply, 29, 34�35, 54
trimWeights, 107
twophase, 149�151
unique, 26, 31
UPbrewer, 69
UPpoisson, 69
UPsampford, 69, 72�73
UPsampfordpi2, 77
UPsystematic, 69
write.csv, 9
write.table, 9

Histogram
complex survey, 89�91, 145
SRS, 18

Imputation, 107�109
Intraclass correlation coe�cient, 62

Jackknife, 110, 113�121

Lists, 70
Logistic regression, 144�145

Masking of R functions, 13
Missing data, 12�13, 87

regression analyses, 138�139
Mixed model, 61�62, 146
Multivariate imputation by chained

equations, 108

202 Index

National Health and Nutrition Examination
Survey (NHANES), 82, 86�89

graphs, 92�99
Nonresponse, 104�109
Numeric variable, 22

Odds ratio, 125�126, 145

Packages in R, 2
emdi, 156
FHDI, 108
ggplot2, 99
Hmisc, 108
installr, 2
kernSmooth, 98
knitr, 10
lme4, 61, 146
mice, 108
mme, 156
nlme, 61, 146
pps, 68
PracTools, 28
quantreg, 99
Rcapture, 155
sae, 155
sampling, iv, 3, 14, 26, 66, 82, 110
SamplingStrata, 28
SDAResources, 3, 7, 14, 26, 62, 100,

152
SpadeR, 155
stargazer, 8
strati�cation, 28
survey, iv, 3, 14, 26, 39, 54, 77, 85, 106,

110, 125, 134, 149
VIM, 108

Poststrati�cation, 46, 105�107
Probability proportional to size (pps)

sampling, 66

Quantiles, 85�86, 116, 120

R chunk, 10�11
R software, obtaining, 2
R-squared, 138
Raking, 105�107
Random e�ects model, 61�62
Random group method for estimating

variances, 110�113
Ratio estimation, 39�42

combined, 47
separate, 47�48
strati�ed sampling, 47�48

Regression
design-based, 135�140
model-based, 134�135

Regression estimation, 42�43
Reproducible research, 10
RStudio, 2, 10

Scatterplot
complex survey, 92�99, 139
SRS, 40�41

SDA, acronym for Sampling Design and
Analysis, iv, 1

SDAResources
agpop, 7, 16�17, 26�31
agpps, 79
agsrs, 18�23, 39�46, 48�50, 121�122
agstrat, 31�48
algebra, 55�56
anthsrs, 134�136
classes, 9, 66�72, 82�85
classeslong, 9, 82�85
classpps, 77
college, 111�112
collegerg, 117�119
coots, 56�57, 119
deadtrees, 42�43, 50�52
gpa, 54�55
htsrs, 85�86, 120
htstrat, 86, 89�91, 100�102, 120�121
impute, 104�105, 107�108
intervals_ex40, 62�64
nhanes, 86�89, 92, 116�117, 137�145
santacruz, 40�42
schools, 60, 62
syc, 112�113, 126�129, 131�133
vietnam, 149�151

Separate ratio estimator, 47�48
Simple random sample

selection, 14�17
weights, 17

Small area estimation, 155�156
Strati�ed sample

allocation, 26�28
computing estimates, 31�36
selection, 29�31

Sweave, 10�11

Trend line
quantiles, 99
smoothed for mean, 98

Wald test, 127, 132, 138, 145

Index 203

Website for book, iv
Weight

cluster sample, 68, 72
SRS, 17
strati�ed random sample, 31

Weighted least squares, 48
Weighting class adjustments for

nonresponse, 105�106

	Preface
	Getting Started
	Obtaining the Software
	Installing R packages
	R Basics
	Reading Data into R
	Saving Output
	Integrating R Output into LaTeX Documents
	Missing Data
	Summary, Tips, and Warnings

	Simple Probability Samples
	Selecting a Simple Random Sample
	Computing Statistics from an SRS
	Additional Code for Exercises
	Summary, Tips, and Warnings

	Stratified Sampling
	Allocation Methods
	Selecting a Stratified Random Sample
	Computing Statistics from a Stratified Random Sample
	Estimating Proportions from a Stratified Random Sample
	Additional Code for Exercises
	Summary, Tips, and Warnings

	Ratio and Regression Estimation
	Ratio Estimation
	Regression Estimation
	Domain Estimation
	Poststratification
	Ratio Estimation with Stratified Sampling
	Model-Based Ratio and Regression Estimation
	Summary, Tips, and Warnings

	Cluster Sampling with Equal Probabilities
	Estimates from One-Stage Cluster Samples
	Estimates from Multi-Stage Cluster Samples
	Model-Based Design and Analysis for Cluster Samples
	Additional Code for Exercises
	Summary, Tips, and Warnings

	Sampling with Unequal Probabilities
	Selecting a Sample with Unequal Probabilities
	Sampling With Replacement
	Sampling Without Replacement

	Selecting a Two-stage Cluster Sample
	Computing Estimates from an Unequal-Probability Sample
	Estimates from With-Replacement Samples
	Estimates from Without-Replacement Samples

	Summary, Tips, and Warnings

	Complex Surveys
	Selecting a Stratified Two-Stage Sample
	Estimating Quantiles
	Computing Estimates from Stratified Multistage Samples
	Univariate Plots from Complex Surveys
	Scatterplots from Complex Surveys
	Additional Code for Exercises
	Summary, Tips, and Warnings

	Nonresponse
	How R Functions Treat Missing Data
	Poststratification and Raking
	Imputation
	Summary, Tips, and Warnings

	Variance Estimation in Complex Surveys
	Replicate Samples and Random Groups
	Constructing Replicate Weights
	Balanced Repeated Replication
	Jackknife
	Bootstrap
	Replicate Weights and Nonresponse Adjustments

	Using Replicate Weights from a Survey Data File
	Summary, Tips, and Warnings

	Categorical Data Analysis in Complex Surveys
	Contingency Tables and Odds Ratios
	Chi-Square Tests
	Loglinear Models
	Summary, Tips, and Warnings

	Regression with Complex Survey Data
	Straight Line Regression in an SRS
	Linear Regression for Complex Survey Data
	Multiple Linear Regression

	Using Regression to Compare Domain Means
	Logistic Regression
	Additional Resources and Code
	Summary, Tips, and Warnings

	Additional Topics for Survey Data Analysis
	Two-Phase Sampling
	Estimating the Size of a Population
	Ratio Estimation of Population Size
	Loglinear Models with Multiple Lists

	Small Area Estimation
	Summary

	Data Set Descriptions
	Bibliography
	Index

