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Grading: Homework     5 hp        

Final Project   2.5 hp (??)

Prerequisites: Basic knowledge on

• Differential Equations (ODEs and PDEs)

• Calculus

• Probability 

• Numerics & Programming (e.g. MATLAB)

http://math.unm.edu/~motamed/UQ2018/uq.htmlCourse webpage:
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Homework (5 hp)

• You are strongly encouraged to work in pairs and hand in a single report.

• Groups of more than 2 students are not allowed.

• In total 3-4 homework sets (HWs) will be assigned. You will need to do at least 3 HWs 
to receive full credit.

• Each HW may consist of a number of theoretical problems and computer assignments:

• If you are going to miss a deadline, talk to me in advance.

• You need to hand in a hard copy of your reports in class on due date. 

• Do not send your reports by email. 
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HW Reports
• First page of your report must be a cover page, which should look like this:

HW 1
UQ

Student’s full name 1
Student’s full name 2

DATE

• Organize your report according to the order of questions. 
  (2nd page must start with question # 1 in HW and continue with questions #2, #3, ...) 

• No Appendix! Do not put any appendix in your report.

• The following strategy is recommended when writing answer to a question (if applicable):
  1- What: write briefly what the question is (what you are asked to do)
  2- How: write how you solve the question, and show your results (figures, tables, numbers, etc)
  3- Why: discuss your results
• Try to use an editing program/document processor (Microsoft Word, Latex, etc.).
   If you write by hand, make sure it is readable.  

Suggestions:
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Final Project (2.5 hp)

• A final project MAY be assigned to you by the end of the course (October 25th).

• You are strongly encouraged to work on the projects in groups of two and 
hand in a single report.

• I may propose several topics and help you choose one that matches your 
interests and goals. You are also welcome to propose a project that is of your 
interest. 

• In the end of the semester (by December 24th), you will need to send me a 
written report by email. You will have 2 months to do the project. I will be 
available to help as much as I can from distance. 
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Lectures (tentative)

1. Introduction to UQ 
2. Probability theory + Karhunen-Loeve expansion
3. Stochastic ODEs/PDEs
4. Monte Carlo (MC) sampling with cost-error analysis
5. Multi-level MC sampling
6. Multi-order MC sampling
7. Orthogonal Polynomials + Stochastic collocation
8. Sparse computations + Stochastic Galerkin

* Bayesian inversion
* Markov chain Monte Carlo sampling
* Gibbs and Metropolis-Hastings sampling

Other potential topics:
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Office hours:  

Mondays 10.00 - 12.00 @ place will be announced later

If you cannot make it, you are welcome to email me and make an appointment.

Exceptionally on Monday Sep. 10th I will hold office hours @ Rum 2348

Email policy:

Please do not email me for scientific questions. I will not be able to answer your 
scientific questions through email.

Email me only if you have a general, non-scientific question related to the course, 
e.g. to make an appointment with me, or to let me know that you will be missing a 
lecture, etc.

As the title of your email, please write UQ so that I easily distinguish it among 
many other emails that I receive.
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Now let’s talk science ...
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Science

observation theory computation

(high performance) scientific computing

(parallel computing)
computer simulationsnumerical analysisnumerical methods computer algorithms

systematic practices:
    - version control
    - reproducibility
    - open access

large projects > 1 TFLOP/s
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Science

observation theory computation

predictive computational science

An emerging, interdisciplinary field concerned with assessing the predictability of 
mathematical and computational tools. 

It is based on a systematic incorporation of all three pillars of the scientific method. 
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Some applications of Predictive Computational Science

earthquake engineering

Applications

• radar technology (electromagnetic radio waves)

• wireless communication (electromagnetic waves)

• seismic imaging (sound waves)

• ground motion simulation (seismic body waves)

• medical imaging

      - sonography (ultrasound waves)

      - MRI (radio waves)

      - CT (X-rays)

Saturday, October 8, 2011

Applications

• radar technology (electromagnetic radio waves)
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• seismic imaging (sound waves)

• ground motion simulation (seismic body waves)

• medical imaging

      - sonography (ultrasound waves)
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      - CT (X-rays)

Saturday, October 8, 2011

radar technology astronomyaerospace industry

tumor growth
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• Goal: to model/solve/design systems in science & engineering fields

Mathematical Model (ODE’s/PDE’s)

Solution of Mathematical Model

Use the solution:
• to design/build things
• to make decisions

•Numerical Methods
•Numerical Analysis
•Computer Algorithms
•Computer Simulation

Computational Science

• Example: Earth science / Earthquake engineering

Observation (experiments)
Theory (mathematics & physics)

Is the model well-posed?
  (existence & uniqueness)

Predictive Computational Science
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Mathematical Model (PDEs)Input parameters
(PDE coefficients & data)

Output quantities of interest

⇥ Q M M(⇥) = Q

2
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2

⇥ Q M M(⇥) = Q

2

⇥ Q M M(⇥) = Q
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⇥ Q M M(⇥) = Q

2

⇥ Q M M(⇥) = Q

2

:   elastostatic equ’s + BC’s

⇥ Q M M(⇥) = Q

2

:   PDE coefficients (Lame parameters, size and location of fibers)

⇥ Q M M(⇥) = Q

2

:   displacement, stress, etc.

the numerical homogenization [8, 16], the generalized finite element method
(GFEM) [1, 6, 3, 27], the variational multiscale method (VMS) [18], the
heterogeneous multiscale methods (HMM) [12, 13, 15], and the multiscale
finite element method (MsFEM) [17, 14].

In many engineering applications involving multiple scales, such as ma-
terials science, the main objective is to determine the local features of the
fields, e.g. the maximum stresses, inside a small part of the domain. Such
problems are amenable to global-local approaches, in which the homogenized
global solution is used to construct a local solution that captures the micro
scale features of the true multiscale solution. In such techniques, first a larger
domain inside the global domain and containing the local domain is selected.
Then, we employ a direct numerical method to solve the multiscale problem
on this larger domain. The boundary conditions for the larger domain are
obtained from the homogenized global solution, see e.g. [24, 28]. We also
refer to [4] which is based on the L2-projection of the homogenized global
solution onto function spaces spanned by solutions of local problems.

In this paper we consider a multiscale problem governed by the linear
stochastic elastic wave equation arising from fiber composites. We are in-
terested in the local features of the elastic field in regions of relatively small
size, e.g. hot spots or zones that are deemed vulnerable to failure. Motivated
and inspired by the work of [2], we assume that the diameter and position
of fibers are random. The basic statistics of these parameters are taken from
[2], which are obtained by carrying out a statistical analysis on a large set of
data. Figure 2 shows a part of the composite plate consisting of 16275 fibers
studied in [2].

Figure 2: A group of four uni-directional plies consisting of 16275 fibers, taken from [2].

Corresponding to the three scales (laminate, ply, fiber), we introduce
three levels (macro, meso, micro) and present a multilevel global-local ap-
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:   acoustic/elastic wave equ’s + IC’s + BC’s
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:   PDE coefficients (density & wave speed in each layer, location of layers)
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:   displacement, spectral acceleration, Arias intensity, energy, etc.

Examples:

    Location of hypocenter (source term)
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2

5

⇥ Q M M(⇥) = Q

2

๏ Steps of numerical simulation task:

1- specify input parameters
2- discretize the PDE (select discretization approach & discretization parameters)
3- visualize & post-process the computed solution to obtain QoIs            

๏ Assumptions: 

(i) for the input parameters fixed, the PDE has a unique solution
(ii) the discrete model has a unique solution converging to the model solution
(iii) sufficiently small discretization errors can be achieved

numerical simulation

u = �k(x)rp

r · u = f

in D + BC’s on @D

⇥ Q M M(⇥) = Q M�1(Q) = ⇥ M̃(⇥) = Q̃

[µm]

k(x,!) k(x) > 0 k(xi) xi 2 D

{xi}Ni=1 {k(xi)}Ni=1

%(x)utt �r · �(u) = f in (0, T ]⇥D

�(u) = �(x)r · u I + µ(x) (ru+ru>)

%(x,!)utt �r · �(u) = f in (0, T ]⇥D

�(u) = �(x,!)r · u I + µ(x,!) (ru+ru>)

�, µ f = (f1, f2, f3) Y = (�, µ, f1, f2, f3)

u = u(x, Y ) u = u(x,!) + IC’s and BC’s

{(%i,�i, µi)}Ni=1 u = u(t,x, Y )

u = u(t,x,!)

2

๏ Note: The above methodology reflects an idealized situation that may not be
              always achieved in practice. In many cases, the input parameters may
              not be completely specified or known. 
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Physical systems are often modeled by deterministic equations.
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Science

observation theory computation

predictive computational science

An emerging, interdisciplinary field concerned with assessing the predictability of 
mathematical and computational tools, particularly in the presence of inevitable 
uncertainty and error. 

It is based on a systematic incorporation of all three pillars of the scientific method. 
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Uncertainty (absence of certainty)

Partial truth (or ambiguity)

Conflicting beliefs/opinions

Aleatory (or random)
Inherent variations and randomness in a system

Epistemic (or non-random)

Lack of information

• limited experimental observations (scarce data)

• limited information about the mathematical model (PDEs)

Variability of observational data 

• material come from different manufacturers and hence have different qualities

Gaussian beams
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Gaussian profile (width ⇠

p
").

The simplest ("first order") Gaussian beams are of the form

v(t , y) = a0(t)e
i�(t ,y)/", �(t , y) = �(t , y � x(t)),

where
�(t , y) = �0(t) + y · p(t) +

1
2

y · M(t)y .

Coefficients �0, x , p, M, a0 solve ODEs
�0, p real, but =M(t) > 0 ) |v(t , y)| ⇠ e�|y�x(t)|2/",
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- earthquake hypocenters (location and intensity of the source)

- variability between patients in biomedical applications  

• data are extracted from different sources or standards/handbooks
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    Location of hypocenter (source term)

• Wave speeds in layers are uncertain due to the lack of knowledge.

Question: Do we perfectly know the wave speed in each layer or the position of layers?  

Question: Is the location of the hypocenter deterministic or random?   

• The location of hypocenter is random due to the nature of earthquakes.

๏ Note: Uncertainties may have different origins.
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Table 1 
Material constants of the composite under consideration 

E ,,her = 24 GPa 
qlhcr = 0.24 
Gm = E,,,,r’X + ~,t,cr) 
E rnatr,x = 3.6 GPa 
Twr,x = 0.3 
G mltrlx = Ernmx ‘Xl + Gt,,,) 

Fig. 2. The group of four unidirectional plies. Note the 
of the matrix-rich zones between the plies. 

visibility Fig. 3. Part of the complete large-size micrograph (a) Gray level 
image; (b) binary image. 

So far, we have considered only one cross-section. Although in our analysis we will assume that the fibers are 
perfectly aligned, in reality they exhibit misalignment about their average direction. This microstructural 
characteristic is often referred as fiber undulation or fiber waviness. To get information about the waviness, 15 
parallel cuts of the material were made, 50 pm apart with a precision of 2 km, and the positions of the fibers in 
these crossections were obtained by the technique described above. 

In Fig. 4 we show the centers of the fibers in the 15 sections in a window of 2000 fibers. The figure clearly 
shows clearly the waviness of the fibers. We see that in the matrix regions between plies (compare Fig. 2) the 
fiber undulations are large, most likely due to small numbers of neighboring fibers. The maximum angle 
between any fiber and the z-axis is 6” with the standard deviation 1.2”. 

The distribution of the fibers in the cross section was determinated by optical microscope. The size of the 
observation window was approximately 400 X 400 pm. 

The cross-section samples were carefully polished with several series of different sized diamond particles in 
standard equipment for metallographic specimen preparation. The final polishing was performed with a 1 pm 
diamond spray on a hard cloth in order to obtain the best possible edge sharpness between the two phases in 
digital images. 

The microstructure was digitized into an &bit digital image, i.e. a grey level image, by a CCD-camera located 
on a optical microscope. The images were then further processed by image processing and analysis software. 

After the image acquisition, some initial pre-processing of the raw image was performed, such as contrast 
enhancement and filtering. In this way the images become standardized, which facilitated the extraction of the 
size and location of each fiber from the image. Magnification was chosen so that one pixel in the acquired image 
corresponded to an actual physical square with side 0.26 km. 

The procedure after the image pre-processing involved separation of the fibers from the background of the 
matrix (image segmentation) and computing the location and.size of the fibers. In the microscope the fibers 
appear as objects of high brightness surrounded by a background with lower intensity corresponding to the 
matrix phase. The grey level distribution of the digitized image contained two peaks, corresponding to the 
matrix and the carbon fibers. The separation of the fibers from the background was performed by threshholding 
the grey level images. This operation allowed the fibers to be extracted from the matrix background. To assure 
reproducibility, the grey level threshold was chosen as the average of the gray levels at the two peaks. From the 
threshholding, a binary image was constructed in which the fiber and the matrix had different assigned values. 
However, in order to take into account the variation of the grey level distribution over the complete image, the 
threshholding was performed in a localized manner. Each image was divided into subimages, of approximate 
size 500 pixels by 500 pixels, where the threshhold levels were separately determined. 
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Question: Is the size of fibers deterministic? 

⇥ Q M M(⇥) = Q

[µm]
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• Fiber diameters need to be expressed by for ex. a (truncated) normal distribution.

Lets take a closer look:
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 Question: is the location of hypocenter deterministic or random? 

 It is random due to the nature of earthquakes (intrinsic variability in the system)

 Question: is the wave speed in each layer deterministic? YES!
                    do we perfectly know the wave speed in layers or the position of layers? NO!

 Speed is uncertain due to the lack of knowledge

⇥ Q M M(⇥) = Q

2

:   acoustic/elastic wave equ’s + IC’s + BC’s

⇥ Q M M(⇥) = Q

2

:   PDE coefficients (density & wave speed in each layer, location of layers)

⇥ Q M M(⇥) = Q

2

:   displacement, spectral acceleration, Arias intensity, energy, etc.

    Location of hypocenter (source term)

• Wave speeds in layers are uncertain due to the lack of knowledge.

Question: Do we perfectly know the wave speed in each layer or the position of layers?  

Question: Is the location of the hypocenter deterministic or random?   

• The location of hypocenter is random due to the nature of earthquakes.

๏ Note: Uncertainties may have different origins.

7

⇥ Q M M(⇥) = Q

2

:   elastostatic equ’s + BC’s

⇥ Q M M(⇥) = Q

2

:   PDE coefficients (density, Lame parameters, size and location of fibers)

⇥ Q M M(⇥) = Q

2

:   displacement, stress, etc.

the numerical homogenization [8, 16], the generalized finite element method
(GFEM) [1, 6, 3, 27], the variational multiscale method (VMS) [18], the
heterogeneous multiscale methods (HMM) [12, 13, 15], and the multiscale
finite element method (MsFEM) [17, 14].

In many engineering applications involving multiple scales, such as ma-
terials science, the main objective is to determine the local features of the
fields, e.g. the maximum stresses, inside a small part of the domain. Such
problems are amenable to global-local approaches, in which the homogenized
global solution is used to construct a local solution that captures the micro
scale features of the true multiscale solution. In such techniques, first a larger
domain inside the global domain and containing the local domain is selected.
Then, we employ a direct numerical method to solve the multiscale problem
on this larger domain. The boundary conditions for the larger domain are
obtained from the homogenized global solution, see e.g. [24, 28]. We also
refer to [4] which is based on the L2-projection of the homogenized global
solution onto function spaces spanned by solutions of local problems.

In this paper we consider a multiscale problem governed by the linear
stochastic elastic wave equation arising from fiber composites. We are in-
terested in the local features of the elastic field in regions of relatively small
size, e.g. hot spots or zones that are deemed vulnerable to failure. Motivated
and inspired by the work of [2], we assume that the diameter and position
of fibers are random. The basic statistics of these parameters are taken from
[2], which are obtained by carrying out a statistical analysis on a large set of
data. Figure 2 shows a part of the composite plate consisting of 16275 fibers
studied in [2].

Figure 2: A group of four uni-directional plies consisting of 16275 fibers, taken from [2].

Corresponding to the three scales (laminate, ply, fiber), we introduce
three levels (macro, meso, micro) and present a multilevel global-local ap-
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Material constants of the composite under consideration 
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qlhcr = 0.24 
Gm = E,,,,r’X + ~,t,cr) 
E rnatr,x = 3.6 GPa 
Twr,x = 0.3 
G mltrlx = Ernmx ‘Xl + Gt,,,) 

Fig. 2. The group of four unidirectional plies. Note the 
of the matrix-rich zones between the plies. 

visibility Fig. 3. Part of the complete large-size micrograph (a) Gray level 
image; (b) binary image. 

So far, we have considered only one cross-section. Although in our analysis we will assume that the fibers are 
perfectly aligned, in reality they exhibit misalignment about their average direction. This microstructural 
characteristic is often referred as fiber undulation or fiber waviness. To get information about the waviness, 15 
parallel cuts of the material were made, 50 pm apart with a precision of 2 km, and the positions of the fibers in 
these crossections were obtained by the technique described above. 

In Fig. 4 we show the centers of the fibers in the 15 sections in a window of 2000 fibers. The figure clearly 
shows clearly the waviness of the fibers. We see that in the matrix regions between plies (compare Fig. 2) the 
fiber undulations are large, most likely due to small numbers of neighboring fibers. The maximum angle 
between any fiber and the z-axis is 6” with the standard deviation 1.2”. 

The distribution of the fibers in the cross section was determinated by optical microscope. The size of the 
observation window was approximately 400 X 400 pm. 

The cross-section samples were carefully polished with several series of different sized diamond particles in 
standard equipment for metallographic specimen preparation. The final polishing was performed with a 1 pm 
diamond spray on a hard cloth in order to obtain the best possible edge sharpness between the two phases in 
digital images. 

The microstructure was digitized into an &bit digital image, i.e. a grey level image, by a CCD-camera located 
on a optical microscope. The images were then further processed by image processing and analysis software. 

After the image acquisition, some initial pre-processing of the raw image was performed, such as contrast 
enhancement and filtering. In this way the images become standardized, which facilitated the extraction of the 
size and location of each fiber from the image. Magnification was chosen so that one pixel in the acquired image 
corresponded to an actual physical square with side 0.26 km. 

The procedure after the image pre-processing involved separation of the fibers from the background of the 
matrix (image segmentation) and computing the location and.size of the fibers. In the microscope the fibers 
appear as objects of high brightness surrounded by a background with lower intensity corresponding to the 
matrix phase. The grey level distribution of the digitized image contained two peaks, corresponding to the 
matrix and the carbon fibers. The separation of the fibers from the background was performed by threshholding 
the grey level images. This operation allowed the fibers to be extracted from the matrix background. To assure 
reproducibility, the grey level threshold was chosen as the average of the gray levels at the two peaks. From the 
threshholding, a binary image was constructed in which the fiber and the matrix had different assigned values. 
However, in order to take into account the variation of the grey level distribution over the complete image, the 
threshholding was performed in a localized manner. Each image was divided into subimages, of approximate 
size 500 pixels by 500 pixels, where the threshhold levels were separately determined. 
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• Fiber diameters need to be expressed by for ex. a (truncated) normal distribution.

Lets take a closer look:
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Many real-world problems exhibit a mixture of aleatoric and epistemic uncertainties.
Example: Earthquake motion
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Many real-world problems exhibit a mixture of aleatoric and epistemic uncertainties.

Example: Materials with hierarchical microstructure, e.g carbon fiber polymers 

Sources of uncertainty:

• Randomness in size & spatial distribution of fibers (aleatoric)

• Variability in material properties, e.g. modulus of elasticity (aleatoric)

• Random noise in experimental devices (aleatoric)

• Scarcity in observational data (epistemic)

• Experimental and literature-based variations (epistemic)
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3.1 Characterization and Propagation of Uncertainty

In general, we can distinguish between two types of uncertainty:
• Aleatoric uncertainty arises from inherent variability or randomness in a system. It can be

described by random variables with a joint probability density function (PDF). Additional data
can only characterize the PDF more accurately, but cannot for instance reduce its variance.
Hence this type of uncertainty is irreducible.

• Epistemic uncertainty is due to limited information, for instance from inaccurate or insu�cient
data. It does not have a random nature and cannot be described by a probability distribution.
Additional information or accurate data can reduce this of type uncertainty.

In the particular case of fiber composites, uncertainty in material properties and damage parameters
has contributions from both types. Consequently, a correct characterization of uncertainty requires
the development of models that describe both random and no-random uncertainty. Three specific
examples related to the focus of this project follow.
Example 1. Variations in material properties of the constituents, such as the modulus of carbon
fibers Ef, are of random nature. Figure 2 shows variations in elastic moduli (between 220-440 GPa)
for 20 individual T800 fibers measured at the Co-PI’s lab. This inherent variability in Ef needs to
be accounted for in simulations. Using the manufacturer’s reported value 300 GPa, which is close to
average modulus in our measurements, may result in incorrect predictions. Moreover, despite the
random nature of variations, the characterization of uncertainty in Ef by probability distributions
would require many error-free measurements which may not be available. Consequently, uncertainty
in Ef has contributions from both inherent randomness and non-random measurement processes.
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Figure 2: Left: Variations in carbon fiber modulus. Right: Histogram of carbon fiber modulus.
Example 2. The characterization of the ply parameters, such as the moduli of a ply is even more
complex due to the presence of multiple phases (fiber, matrix, interface) and multiple length scales
(from micron to millimeter to meter). Such parameters cannot accurately be described by proba-
bility distributions; see Section 4.2 for a more detailed discussion. Moreover, variations in experi-
mental data, based on which material properties will be inferred, may be larger than the intrinsic
random experimental noise in any given experiment. These variations will introduce non-random
uncertainty in addition to the inherent random uncertainty present in material parameters.
Example 3. The critical energy release rate is a quantity that depends on both material properties
and crack multiplication and involves hybrid random and non-random uncertainty. The random
part is due to the inherent variations in material properties and the stochastic nature of crack
multiplication. The non-random part is due to variations, error, and scarcity in experimental data.

Current UQ and validation methodologies [18, 3, 17, 44, 102, 82] are based on probabilistic
models. In a probabilistic framework, the forward propagation of uncertainty is often performed
by Monte Carlo sampling [40, 31, 51, 49], stochastic Galerkin [104, 22], and stochastic collocation
[103, 73]. The inverse propagation of uncertainty is done by Bayesian inference [53, 91]. All these
approaches assume that uncertainties are precisely known and can be described by probability dis-
tributions. Hence, they cannot treat non-random uncertainties. As mentioned above, FRPs are
exposed to a mixture of random and non-random uncertainties. Beside uncertainty, another impor-
tant component in FRPs is the micro-structural e�ects. Although numerical homogenization and

3

modulus of fibers

18



 Need to include and treat uncertainty in the PDE model 

V&V framework SANDIA Static Frame Validation Problem Solution procedure Conclusions

Basic notions and definitions

The mathematical model only transforms the available
information into the prediction of the quantity of interest.

Q = M(⇥),

Q : quantity of interest

M : structure of the mathematical model

⇥ : input data

It can also map uncertainty ranges (sets) for input data into
corresponding uncertainty sets for the output quantity.

Model
structure

Θ Q

⇥ Q M M(⇥) = Q

2

 Input parameters       are uncertain.⇥ Q M M(⇥) = Q

2

Instead of a single predicted value, 
we obtain information about the 
range of values that Q may have 
in light of uncertainty

๏ In many real applications, parameters in the model are affected by uncertainty, either
   because they are not perfectly known or because they are intrinsically variable.  

 Uncertainty Quantification is a process that enables us to identify and characterize 
uncertainty in systems and propagate it through the model to obtain output predictions.

 Need to include and treat uncertainty in the PDE model 
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1. Identification (identify sources of uncertainty ---> input uncertain parameters)

2. Characterization (characterize input uncertainty by probability distributions)

3. Propagation (evolve input uncertainty through the model ---> distribution of outputs)

 UQ major parts:

UQ in probabilistic framework

V&V framework SANDIA Static Frame Validation Problem Solution procedure Conclusions

Basic notions and definitions

The mathematical model only transforms the available
information into the prediction of the quantity of interest.

Q = M(⇥),

Q : quantity of interest

M : structure of the mathematical model

⇥ : input data

It can also map uncertainty ranges (sets) for input data into
corresponding uncertainty sets for the output quantity.

Model
structure

Θ Q

⇥ Q M M(⇥) = Q

2

Forward UQ (propagation of uncertainty): 

given the probabilistic characterization of the input uncertain parameters, 

quantify the uncertainty in the output quantities of interest (QoI):  

u = �k(x)rp

r · u = f

in D + BC’s on @D

⇥ Q M M(⇥) = Q M�1(Q) = ⇥

[µm]

k(x,!) k(x) > 0 k(xi) xi 2 D

{xi}Ni=1 {k(xi)}Ni=1

%(x)utt �r · �(u) = f in (0, T ]⇥D

�(u) = �(x)r · u I + µ(x) (ru+ru>)

�, µ f = (f1, f2, f3) Y = (�, µ, f1, f2, f3)

u = u(x, Y ) u = u(x,!) + IC’s and BC’s

{(%i,�i, µi)}Ni=1 u = u(t,x, Y )

M(⇥) = Q

2

Inverse UQ (characterization of uncertainty): 

use available measurements on observables of the system to characterize (or to 

improve the characterization of) uncertainty in input parameters: 

Uncertainty Quantification (UQ) analysis
I Forward Uncertainty Quantification: given the probabilistic

characterization of the input uncertain parameters, quantify the
uncertainty in the output quantities.

I Global sensitivity anaysis: Find out which input random variables (or
combination of them) have the largest influence on the solution or
output quantity.
This is also strictly related to dimension reduction: retain in the
analysis only the most important random variables or
linear/nonlinear combination of them.

I Inverse Uncertainty Quantification / Data Assimilation: use
available measurements on observables of the system to improve the
uncertainty characterization of the input variables.
Strictly related is the Optimal Design of Experiments: figure out
which are the best measurements to acquire to reduce at most the
uncertainty on the input random variables.

I Optimization / Control under uncertainty: Assume that we can
control the system to minimize a given cost functional. The optimal
control should take into account the uncertainty on the input
parameters. One often refers to this as Robust Control.
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output quantity.
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analysis only the most important random variables or
linear/nonlinear combination of them.
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available measurements on observables of the system to improve the
uncertainty characterization of the input variables.
Strictly related is the Optimal Design of Experiments: figure out
which are the best measurements to acquire to reduce at most the
uncertainty on the input random variables.
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 Both types of uncertainty are often described in probabilistic framework.
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Forward UQ in a probabilistic framework:

(1) Identify uncertain input parameters

V&V framework SANDIA Static Frame Validation Problem Solution procedure Conclusions

Basic notions and definitions

The mathematical model only transforms the available
information into the prediction of the quantity of interest.

Q = M(⇥),

Q : quantity of interest

M : structure of the mathematical model

⇥ : input data

It can also map uncertainty ranges (sets) for input data into
corresponding uncertainty sets for the output quantity.

Model
structure

Θ Q

⇥ Q M M(⇥) = Q

2

(2) Characterize uncertainty in input parameters

(3) Propagate uncertainty in input parameters through the model
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 an element of a sample space with a given probability measure 
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๏ Monte Carlo Sampling (standard MC, Multi-Level MC, Multi-Order MC, ...)

๏ Spectral methods (Stoch. Galerkin, Stoch. Collocation, Stoch. least squares, ...)
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Inverse UQ in probabilistic framework:
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Use Bayesian approach:
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๏ Markov Chain Monte Carlo method (MCMC)

Problem types:

Bayesian inference (Bayesian inversion)

Bayesian experimental design

Methods:

posterior pdf likelihood prior pdf
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★ Gibbs sampling

★ Metropolis-Hastings sampling
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Example 1. Groundwater flow in random heterogeneous porous media

 In most aquifers, permeabilities                      of the ground are not perfectly known. 

 They can be described as a random field                 :                      

The permeability             at each point                   is a random variable. Taking N 

points                  the random variables                       are in general correlated. 

⇥ Q M M(⇥) = Q

[µm]

(x,!) (x) > 0 (xi) xi 2 D

{xi}Ni=1 {k(xi)}Ni=1

2

u = �k(x)rp

r · u = f

⇥ Q M M(⇥) = Q

[µm]

(x,!) (x) > 0 (xi) xi 2 D

{xi}Ni=1 {k(xi)}Ni=1

2

 The first equation is the Darcy’s law: the pressure gradient          and the fluid  
   velocity        in a porous medium follow a linear relation. 

Groundwater flow in a random heterogeneous porous
medium

According to Darcy’s law, the pressure gradient rp and the fluid velocity
u in a porous medium follow a linear relation, that is

(
u = �krp

div u = f
in D

+ boundary conds. on @D

The second equation (mass conservation) relates sinks and sources of
flow to the velocity field.

In most aquifers, the macroscopic properties (porosity and permeability)
of the ground are highly variable and never perfectly known.

They can be described as random fields, i.e. the permeability k(xi ) > 0
in each point xi 2 D is a random variable and, taken n points x1, . . . , xn,
the random variables k(x1), . . . , k(xn) are in general correlated.
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 The second equation is the mass conservation relating sinks and sources of flow
   to the velocity field.
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 The solution is also a random field:  
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2

11

Main questions:

1. How to guarantee positivity of the permeability random field?

2. How to treat random fields?

3. How to solve the stochastic problem?  

We will address these questions in the course ...

12
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We will try to address (some of) these questions in this course ...

Main questions to be addressed by UQ:

1. How to characterize permeability by a random field?

2. How to guarantee positivity of the permeability random field?

3. How to numerically treat random fields?

4. How to solve the stochastic problem?
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Example 4. Seismic waves in random layered media
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• Goal: to find the displacement of the medium     due to the propagation of elastic waves.
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• Typically, the medium is made of  N  layers of different materials, whose mechanical

   properties                                are not perfectly known.  
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• Other parameters ( position of internal interfaces, location of earthquake hypocenter)
   could also be uncertain. 

• We therefore have a vector of at leas  3 N  random variables      .
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• The solution also depends on the random vector:  
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Example 5. Fiber-reinforced composites in aerospace industry

Most fiber composites consist of stiff fibers in a matrix which is less stiff.
The objective is to make a component which is strong and stiff. High stiffness
and strength usually require a high proportion of fibers in the composite.
This is achieved by aligning a set of long unidirectional fibers (with a diameter
of approximately 5-10 µm) in a thin sheet (with a thickness of approximately
0.1-0.2 mm), called a lamina or ply. To achieve high strength and stiffness in
various directions, a number of sheets are stacked and welded together, each
having the fibers oriented in different directions. Such a stack is termed a
cross-plied laminate, see Fig. 1.

0◦

45◦

90◦

−45◦

0◦

(a) A laminate of plies (b) An individual ply

Figure 1: (a) A composite laminate of plies with different angles of long unidirectional
fibers. (b) One individual ply with unidirectional fibers with zero angle.

The long-term structural degradation of composite structures is largely
influenced by micro mechanical events. The construction of a reliable method
for predicting damage initiation and propagation has to be based on a multi-
scale approach. Moreover, due to the random character of the fiber locations
and diameters, material properties, and fracture parameters, most mechani-
cal quantities must be expressed in statistical terms, see [2].

The numerical approaches to multiscale problems are based on upscaling
methods. A variety of numerical techniques have been proposed, including
the numerical homogenization [8, 14], the generalized finite element method
(GFEM) [1, 6, 3, 23], the variational multiscale method (VMS) [16], the
heterogeneous multiscale methods (HMM) [10, 11, 13], and the multiscale
finite element method (MsFEM) [15, 12].
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An individual ply A laminate of plies

   Fiber composites = stiff fibers (carbon) + matrix material (epoxy)

• Computation of stress waves (elastodynamic equations) important for predicting 
   damage initiation and propagation
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Example 2. Seismic waves in random layered media
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Example 3. Option pricing with uncertain volatility

The Royal Swedish Academy of Sciences: 

Robert C. Merton and Myron S. Scholes have, in collaboration with the late Fischer Black, 
developed a pioneering formula for the valuation of stock options. 

Example 2. Linear elasticity with random elastic propertiesLinear elasticity with random elastic properties
Consider an elastic body, occupying the domain D ⇢ R3, with restricted
displacement u = 0 on a subset of its boundary, ⌃1.

10 cm

50 cm

20 cm

x

y

z

1 MPa

The (infinitesimal) displacement of the body u 2 [H1
⌃1
(D)]3 satisfies the

equation

Z

D
2µrsu : rsv +

Z

D
� div(u) div(v) =

Z

⌃2

P · v, 8v 2 [H1
⌃1
(D)]d

with rsu = ru+r
Tu

2 , � = E⌫
(1+⌫)(1�2⌫) , µ = E

2(1+⌫) (where E , ⌫ are the

Young modulus and Poisson ration, resp.)
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• Isotropic materials have only two independent elastic parameters      and      .
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• Goal: to find the (infinitesimal) displacement of the body      .
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• The Lame parameters            and the load vector                             may be uncertain
   and can be treated as random variables.        
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• The solution also depends on 5 random variables:  

• We therefore have a vector of 5 random variables                                        .
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Example 3. Option pricing with uncertain volatility
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The volatility is typically estimated from history matching and is often
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Goal: Quantify the impact of volatility uncertainty on option pricing
under Black-Scholes framework.
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•The volatility       (a measure for variation of price of the stock) is often uncertain.

  It corresponds to the standard deviation of stock’s price process (in time). 

Goal: Quantify the impact of volatility uncertainty on option pricing.
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Example 2. Linear elasticity with random elastic propertiesLinear elasticity with random elastic properties
Consider an elastic body, occupying the domain D ⇢ R3, with restricted
displacement u = 0 on a subset of its boundary, ⌃1.

10 cm

50 cm

20 cm

x

y

z

1 MPa

The (infinitesimal) displacement of the body u 2 [H1
⌃1
(D)]3 satisfies the

equation

Z

D
2µrsu : rsv +

Z

D
� div(u) div(v) =

Z

⌃2

P · v, 8v 2 [H1
⌃1
(D)]d

with rsu = ru+r
Tu

2 , � = E⌫
(1+⌫)(1�2⌫) , µ = E

2(1+⌫) (where E , ⌫ are the

Young modulus and Poisson ration, resp.)
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• The Lame parameters            and the load vector                             may be uncertain
   and can be treated as random variables.        
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• The solution also depends on 5 random variables:  

• We therefore have a vector of 5 random variables                                        .
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Example 3. Option pricing with uncertain volatility

Uncertainty Quantification in Option Pricing

The Black-Scholes model for the value f : (0,T ) ⇥ (0,1) ! R of a
European call option is the following linear parabolic partial di↵erential
equation 8

<

:

@f

@t
+ rs

@f

@s
+

�2s2

2

@2f

@s2
= rf , 0 < t < T ,

f (s,T ) = max(s � K , 0),
(1)

where the constants r and � denote the riskless interest rate and the
volatility, respectively.

The volatility is typically estimated from history matching and is often
uncertain. Parametric uncertainty, in the context of derivative pricing,
results in mis-pricing of contingent claims.

Goal: Quantify the impact of volatility uncertainty on option pricing
under Black-Scholes framework.

Remark: The same mathematical problem appears in the modeling of
flows in porous media with uncertain permeability.
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UQ is not the whole story!

There are still many Grand challenges facing humankind: 

• prediction of climate change
• the effects of various medical therapies 
• performance of energy systems (energy development)
• prediction of economic crises
• dynamic response of modern/smart materials

UQ is not enough to deal with such challenges.

27

Science

observation theory computation

predictive computational science

Need a systematic incorporation of all three pillars of the scientific method. 

Need UQ + Validation + Verification (UQVV) in a systematic way.

Both uncertainty and error are present.
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Mathematical Model 
(PDEs w. uncertain parameters)

Computational Model

Using the predictions (QoI)

• to design a system
• to make a Decision

The physical system

A main question:

‣ How reliable are the computational predictions (QoI)?
   Can they be trusted for decision-making or designing
   a crucial system?

In addition to UQ, we need two related processes:

Suppose we include uncertainty and employ UQ to find QoI.

Validation: are we solving the correct model?

Uncertainty Quantification (UQ) analysis
I Forward Uncertainty Quantification: given the probabilistic

characterization of the input uncertain parameters, quantify the
uncertainty in the output quantities.

I Global sensitivity anaysis: Find out which input random variables (or
combination of them) have the largest influence on the solution or
output quantity.
This is also strictly related to dimension reduction: retain in the
analysis only the most important random variables or
linear/nonlinear combination of them.

I Inverse Uncertainty Quantification / Data Assimilation: use
available measurements on observables of the system to improve the
uncertainty characterization of the input variables.
Strictly related is the Optimal Design of Experiments: figure out
which are the best measurements to acquire to reduce at most the
uncertainty on the input random variables.

I Optimization / Control under uncertainty: Assume that we can
control the system to minimize a given cost functional. The optimal
control should take into account the uncertainty on the input
parameters. One often refers to this as Robust Control.
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๏ To account for both uncertainties and errors, we need to rely on both UQ and VV.  

Errors typically arise from:

‣ the choice of the PDE model (Model error)

‣ the discretization schemes (Numerical error)

29

Verification:

๏ Solution verification is defined only in terms of specified QoI. Different QoI will be 
affected differently by numerical errors.

๏ Code verification: exploit the hierarchical composition of codes and mathematical 
models, with verification performed first on the lowest-level building blocks and then on 
successively more complex levels. 

   - use a posteriori error estimates (numerical error estimates for specified QoI)
   - perform self-convergence studies (QoIs are computed at different levels of refinement)

The goal of verification is to estimate and control the error in each QoI.
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Validation:

๏ Note: Measured data are often scarce and uncertain. This must be taken into account.

Validation is defined only in terms of specified QoI. Different QoI will be affected 
differently by errors.

A validation assessment provides information about model accuracy only in the 
domain of physical observations (experimental/measured data).

Experimental data must be acquired and integrated into computer codes. They are used 
for two main purposes:

‣ to identify and characterize values of unknown model parameters (calibration)

‣ to determine whether the model can correctly predict the QoI (validation)
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Figure 1: (Left) Conceptual diagram for UQ-VV [78]. (Right) Application to stochastic characterization of voltages induced on termina-
tions of cables located inside a cockpit. (a) Cockpit. (b) Locations of the cables located in the bay of the cockpit and the plane wave’s
angle of arrival are assumed stochastic variables. (c) Pdf of voltage induced on cable. (d) Snapshots of the normalized currents.

bottom line is that UQ processes should be systematic, computationally efficient, and reliable. This in turn calls
for the development of VV processes and their application to numerical solutions, mathematical models, and even
experiments.

Verification is the process of determining whether a computational model and its implementation produce pre-
dictions with sufficient accuracy, in other words, whether the difference (the error) between the exact (unavailable)
and approximate solutions of the model is sufficiently small. The verification procedure addresses the question
“Are we solving our equations correctly?" It consists of: (a) analysis of the numerical method based on a priori
convergence analysis and a posteriori error estimation with respect to the QoI (solution verification); (b) analysis
of the correctness of the implemented code (code verification). Verification is crucial to ensure that the output
of a mathematical problem is sufficiently accurate for meaningful comparisons with experimental data. Similarly,
verification should also be applied to experimental procedures to ensure that the data can be fully trusted.

Validation is the process of determining the accuracy by which a mathematical model can predict physical events
with respect to a decision that has to be made. It addresses the question “Are we solving the right equations?"
The validation process requires a sequence of experiments with increasing complexity that describes as closely
as possible the features of the desired prediction. Comparison of the experimental data with computational
outputs is performed based on a given metric that quantifies the difference between the two. A rejection criterion,
specified by a tolerance on the metric, is then used to assess the validity of the model. The metric and the criterion
should be selected with respect to the QoI and the decision based on it. The validation process provides a simple
result: whether a mathematical model should be rejected, or not, for the prediction of a QoI. If rejected, either
the model has to be changed or more experiments should be considered. If not rejected, additional validation
exercises should be performed until one reaches sufficient confidence in the model as a predictive tool. Note that
validation processes can never fully validate the model; it can, at best, not invalidate the model, as one can never
be sure whether there exist other experimental observations that would be in conflict with the model predictions.
Applying UQ-VV processes has proved to be extremely useful to better understand physical phenomena and
discover new avenues for improving models (mathematical and probabilistic models, discretization techniques,
or numerical solvers). The diagram on the left of Figure 1 describes the strong interactions between UQ and VV
as well as their underlying concepts. In particular, it emphasizes that mathematical and computational models
together with observations would yield reliable predictions, once all potential errors and uncertainties are recog-
nized and controlled via UQ and VV. Such a systematic approach to science would bring not only confidence in
the decisions one needs to make about physical systems but also deeper knowledge about our physical world.
However, predictive modeling of physical phenomena is a truly challenging problem. UQ-VV processes have been
recently the subject of considerable research activities in CS, as the reliability of computer predictions needs to
be assessed before any decision-making [74]. We strongly believe that the establishment of a KAUST SRI UQ
center is timely and urgent, as proven by the recent creation of UQ centers worldwide (see the Management

A conceptual diagram for UQVV:

• A systematic UQVV approach to science would bring not only confidence in the decisions one 
needs to make about physical systems but also deeper knowledge about our physical world.
 
• UQVV processes have been recently the subject of considerable research activities in CSE

• Predictive modeling of physical phenomena based on UQVV is a truly challenging problem. 
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✓ Verification should come before Validation.

✓ UQVV processes must focus on a set of specified QoIs rather than on the full 
solution of the model.

UQVV principals

✓ UQVV tasks are interrelated.

33

Calibration-Validation-Prediction pyramid/hierarchy

Prediction

Validation

Calibration

Resolving many real-world problems, such as the NSF Grand Challenges [39], requires major
breakthroughs and the development of more sophisticated predictive models beyond probabilistic
approaches and soft computing. One breakthrough we propose is hybrid fuzzy-stochastic prediction,
a novel and unique approach with the potential of improving predictive power in engineering and
science. There are very few publications (in engineering communities) on the synthesis of fuzzy sets
and probability distributions [59, 26, 32]. The fuzzy-random distributions proposed in these works
do not promote mathematical and computational predictive models mainly because the epistemic
nature of the fuzzy approach and its interplay with the probability theory are mathematically ill-
understood [36]. The PI and his collaborator, Ivo Babuöka, are the first mathematicians to develop
the mathematical foundations of hybrid fuzzy-stochastic quantities [63]. In what follows, we will
establish the main concepts of the new framework to solve a complex problem in materials science.
2.2 An Illustrative Model Problem and Need for New Tools
Manufacturing composite materials is a multibillion-dollar industry that will reach $105 billion by
2021 [1]. Major drivers in the market include increased demand for wind energy and lightweight,
fuel-e�cient vehicles and aircrafts, upgrade of old infrastructures, and growth in new construction
[1]. Despite decades of R&D on predictive modeling of composites, costly and time-consuming exper-
iments have remained the major strategy for verifying composite performance [29, 83]. Developing
more advanced, viable predictive models is timely and could improve the reliability of composite
manufacturing and further boost the market, employment, and economic growth.
2.2.1 Problem description and goal of prediction. Fiber composites consist of a large number
of sti� fibers in a matrix which is less sti�. Fiber composites are fabricated based on their response
to external forces. Let D µ R2 be a global domain representing an orthogonal cross section of a
composite subject to external force. The ultimate goal of prediction is to compute a QoI, denoted
by Q, e.g. maximum stress or energy, over a region DQ inside a local domain D0 µ D; see Fig. 1.
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(or equivalently its –-cuts). This is challenging partly due to the interaction between the input fuzzy
arguments. Despite significant applications of fuzzy set theory in engineering sciences, e�cient tools
for the computation of fuzzy functions and fuzzy operations are not well developed. A majority
of available methods simply ignore interaction. As a part of the proposed project, we will develop
such e�cient computational tools taking interaction into account; see Task 4.

4.2 A New Hybrid Fuzzy-Stochastic Multiscale Algorithm. Algorithm 1 outlines a new
multiscale global-local technique in a hybrid fuzzy-stochastic framework; see also Figure 7.
Algorithm 1 A new multiscale algorithm in a fuzzy-stochastic framework

0. Goal: compute a QoI supported on a small domain DQ where |DQ|π |D|.

1. Select a local domain D0 µ D which contains the support of the QoI.

2. Construct the local fuzzy-stochastic PDE model on D0.

3. Construct the global fuzzy-stochastic PDE model on D.

4. Solve the global and local problems simultaneously:
• Compute the boundary data for the local problem from the global solution.
• Compute the QoI from the local solution.
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Figure 7: QoI’s support and local and global do-
mains.

According to the four steps of the algorithm,
we divide the project into four research tasks
and outline detailed research plans. The choice
of ordering is not meant to indicate priority.
Tasks 1–3 are in collaboration with Ivo Babu�ka
(UT Asutin), and Task 4 will be partially in col-
laboration with Daniel Appelö (UNM), Fabio
Nobile (EPFL), and Raúl Tempone (KAUST).

DQ µ D0 µ D

Task 1: Selection of the local domain. Generally speaking, the size of the local domain
D0 must be: (1) su�ciently large compared to the size of microstructure for the approach to
be accurate; and (2) small enough for computations to be feasible. Finding an optimal size is a
challenging task and a key step in the multiscale algorithm. To select the optimal size of D0, we
will propose a strategy by utilizing the concept of representative volume elements (RVEs) [19] and
numerical homogenization [5]. An RVE is a representative cell of the whole structure on average.
More precisely, the e�ective properties of the RVE represent the overall macroscopic properties of
the structure. We select the size LRVE◊LRVE of a square representative element as the size of D0.
The RVE length LRVE will be computed as follows.

1. Generate a sequence of increasing element lengths 10µm < L1 < L2 < . . . < Lr π |D|.
2. On each domain Di of size Li ◊ Li:

• Use M bootstrap discrete samples {bm(xj)}Mm=1, with {xj}Nx
j=1

œ Di, and apply two-
dimensional numerical homogenization with homogenization length H = Li to obtain M
discrete samples {bHm(xj)}Mm=1 of the e�ective parameter (see below).
• Compute sample mean µi(xj) and sample standard deviation �i(xj) of the e�ective param-
eter, and take their average over all discrete points {xj}Nx

j=1
to compute µ̄i and �̄i.

• Compute the variations of the e�ective parameter on the domain: ÁLi := �̄i/µ̄i.
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Figure 1: A schematic representation of
support of QoI and local-global domains.

Consider the abstract form of the problem Q = M(◊),
where the mathematical modelM, consisting of constitu-
tive equations and initial-boundary conditions, maps the
input material parameters ◊ into the output QoI Q. This
challenging problem exhibits both multiple length scales
and various types of uncertainty. The length scale spans
from the diameter of fibers (≥10 micron) to the size of the
composite (≥1 meter). Moreover, while the inherent variations in material properties and the spatial
distribution of fibers are random, the scarcity and variability of observational data and limited infor-
mation about the model are non-random. This model problem illustrates one of the most challenging
aspects of current UQ approaches lying in the fact that the model M and probability distribution
of ◊ are not known.
2.2.2 Real experimental data. The characterization of uncertainty in ◊ and the validation ofM
are carried out based on observational data. We consider a small piece of HTA/6376 fiber composite
[17], consisting of four plies containing 13688 carbon fibers with a volume fraction of 63% in epoxy
matrix. Fig. 2 shows a map of fibers obtained by an optical microscope. This particular map serves
as a realistic prototype of fiber distributions in our studies. The modulus of elasticity E and Poisson’s
ratio ‹ of the composite given by the manufacturer are shown in Table 1.
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Table 1 
Material constants of the composite under consideration 

E ,,her = 24 GPa 
qlhcr = 0.24 
Gm = E,,,,r’X + ~,t,cr) 
E rnatr,x = 3.6 GPa 
Twr,x = 0.3 
G mltrlx = Ernmx ‘Xl + Gt,,,) 

Fig. 2. The group of four unidirectional plies. Note the 
of the matrix-rich zones between the plies. 

visibility Fig. 3. Part of the complete large-size micrograph (a) Gray level 
image; (b) binary image. 

So far, we have considered only one cross-section. Although in our analysis we will assume that the fibers are 
perfectly aligned, in reality they exhibit misalignment about their average direction. This microstructural 
characteristic is often referred as fiber undulation or fiber waviness. To get information about the waviness, 15 
parallel cuts of the material were made, 50 pm apart with a precision of 2 km, and the positions of the fibers in 
these crossections were obtained by the technique described above. 

In Fig. 4 we show the centers of the fibers in the 15 sections in a window of 2000 fibers. The figure clearly 
shows clearly the waviness of the fibers. We see that in the matrix regions between plies (compare Fig. 2) the 
fiber undulations are large, most likely due to small numbers of neighboring fibers. The maximum angle 
between any fiber and the z-axis is 6” with the standard deviation 1.2”. 

The distribution of the fibers in the cross section was determinated by optical microscope. The size of the 
observation window was approximately 400 X 400 pm. 

The cross-section samples were carefully polished with several series of different sized diamond particles in 
standard equipment for metallographic specimen preparation. The final polishing was performed with a 1 pm 
diamond spray on a hard cloth in order to obtain the best possible edge sharpness between the two phases in 
digital images. 

The microstructure was digitized into an &bit digital image, i.e. a grey level image, by a CCD-camera located 
on a optical microscope. The images were then further processed by image processing and analysis software. 

After the image acquisition, some initial pre-processing of the raw image was performed, such as contrast 
enhancement and filtering. In this way the images become standardized, which facilitated the extraction of the 
size and location of each fiber from the image. Magnification was chosen so that one pixel in the acquired image 
corresponded to an actual physical square with side 0.26 km. 

The procedure after the image pre-processing involved separation of the fibers from the background of the 
matrix (image segmentation) and computing the location and.size of the fibers. In the microscope the fibers 
appear as objects of high brightness surrounded by a background with lower intensity corresponding to the 
matrix phase. The grey level distribution of the digitized image contained two peaks, corresponding to the 
matrix and the carbon fibers. The separation of the fibers from the background was performed by threshholding 
the grey level images. This operation allowed the fibers to be extracted from the matrix background. To assure 
reproducibility, the grey level threshold was chosen as the average of the gray levels at the two peaks. From the 
threshholding, a binary image was constructed in which the fiber and the matrix had different assigned values. 
However, in order to take into account the variation of the grey level distribution over the complete image, the 
threshholding was performed in a localized manner. Each image was divided into subimages, of approximate 
size 500 pixels by 500 pixels, where the threshhold levels were separately determined. 

1.7 mm

0.5
mm

2

4 5 6 7 8 9 100

500

1000

1500

2000

# 
fib

er
s

fiber’s diameter [       ]

2 Problem Statement

Reliable mathematical and computational models for predicting the response of fiber compos-
ites due to external forces must be designed based on and backed by real experimental data.
In this section, we first present the real data that is used throughout this work. We then
consider the deformation of fiber composites and describe the mathematical formulation of a
simplified one-dimensional problem. Finally, we briefly address di�erent models for treating
uncertainty in the problem.

2.1 Real data

The real data that we use are obtained from a small piece of a HTA/6376 carbon fiber-
reinforced epoxy composite plate [11, 15] with a rectangular cross section of size 1.7◊0.5 mm2,
and consisting of four plies containing 13688 unidirectional fibers with a volume fraction of
63%. Fiber diameters vary between 4µm to 10µm. Figure 2 shows a map of the size and
position of fibers in an orthogonal cross section of the composite obtained by an optical mi-
croscope. In the present work, this particular map serves as a prototype of fiber distributions
in fiber composites.

Figure 2: Left: A 1.7 ◊ 0.5 mm2 rectangular orthogonal cross section of a small piece of a
fiber composite laminate consisting of four uni-directional plies containing 13688 fibers with
a volume fraction of 63%. Right: A binary image of a small part of the whole micrograph.

The Young’s modulus of elasticity and Poisson’s ratio of the fiber composite under con-
sideration are given in Table 1.

Table 1: Material constants for the composite under consideration.

composite phases a ‹

fiber 24 [GPa] 0.24
matrix 3.6 [GPa] 0.3

2.2 Mathematical formulation: a one-dimensional problem

The deformation of elastic materials is given by the elastic partial di�erential equations
(PDEs) in three dimensions. In the particular case of plane strain, where the length of
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Figure 2: Optical image of a small piece of a fiber composite.

phase E [GPa] ‹

fiber 24 0.24
matrix 3.6 0.3

Table 1: Material constants.

3

Resolving many real-world problems, such as the NSF Grand Challenges [39], requires major
breakthroughs and the development of more sophisticated predictive models beyond probabilistic
approaches and soft computing. One breakthrough we propose is hybrid fuzzy-stochastic prediction,
a novel and unique approach with the potential of improving predictive power in engineering and
science. There are very few publications (in engineering communities) on the synthesis of fuzzy sets
and probability distributions [59, 26, 32]. The fuzzy-random distributions proposed in these works
do not promote mathematical and computational predictive models mainly because the epistemic
nature of the fuzzy approach and its interplay with the probability theory are mathematically ill-
understood [36]. The PI and his collaborator, Ivo Babuöka, are the first mathematicians to develop
the mathematical foundations of hybrid fuzzy-stochastic quantities [63]. In what follows, we will
establish the main concepts of the new framework to solve a complex problem in materials science.
2.2 An Illustrative Model Problem and Need for New Tools
Manufacturing composite materials is a multibillion-dollar industry that will reach $105 billion by
2021 [1]. Major drivers in the market include increased demand for wind energy and lightweight,
fuel-e�cient vehicles and aircrafts, upgrade of old infrastructures, and growth in new construction
[1]. Despite decades of R&D on predictive modeling of composites, costly and time-consuming exper-
iments have remained the major strategy for verifying composite performance [29, 83]. Developing
more advanced, viable predictive models is timely and could improve the reliability of composite
manufacturing and further boost the market, employment, and economic growth.
2.2.1 Problem description and goal of prediction. Fiber composites consist of a large number
of sti� fibers in a matrix which is less sti�. Fiber composites are fabricated based on their response
to external forces. Let D µ R2 be a global domain representing an orthogonal cross section of a
composite subject to external force. The ultimate goal of prediction is to compute a QoI, denoted
by Q, e.g. maximum stress or energy, over a region DQ inside a local domain D0 µ D; see Fig. 1.

b̃(x,y(�)) b(x, �,y) = F�1
� � �(b̃(x,y)) F�

�1 �2 � = (�1, �2) y

b̃(x,y, z) = ��1(z) � �(G(x,y))

�(z)

d

dx

�
b�1(x)

du

dx
(x)

�
= 0 b�1(L)

du

dx
(L) = 1

M h, p M0, M1, . . . , ML h, p0, p1, . . . , pL

h0, h1, . . . , hL, p h M � 1 1 µm

S(�1) S(�2) S(�) �1 �2 � 0 1

z µ(z) S(0) S(1)

u(1, x, y) E[u(1, x, .)] y = 0.1 y = 0.6

D0 D DQ

22

b̃(x,y(�)) b(x, �,y) = F�1
� � �(b̃(x,y)) F�

�1 �2 � = (�1, �2) y

b̃(x,y, z) = ��1(z) � �(G(x,y))

�(z)

d

dx

�
b�1(x)

du

dx
(x)

�
= 0 b�1(L)

du

dx
(L) = 1

M h, p M0, M1, . . . , ML h, p0, p1, . . . , pL

h0, h1, . . . , hL, p h M � 1 1 µm

S(�1) S(�2) S(�) �1 �2 � 0 1

z µ(z) S(0) S(1)

u(1, x, y) E[u(1, x, .)] y = 0.1 y = 0.6

D0 D DQ

22

b̃(x,y(�)) b(x, �,y) = F�1
� � �(b̃(x,y)) F�

�1 �2 � = (�1, �2) y

b̃(x,y, z) = ��1(z) � �(G(x,y))

�(z)

d

dx

�
b�1(x)

du

dx
(x)

�
= 0 b�1(L)

du

dx
(L) = 1

M h, p M0, M1, . . . , ML h, p0, p1, . . . , pL

h0, h1, . . . , hL, p h M � 1 1 µm

S(�1) S(�2) S(�) �1 �2 � 0 1

z µ(z) S(0) S(1)

u(1, x, y) E[u(1, x, .)] y = 0.1 y = 0.6

D0 D DQ

22

(or equivalently its –-cuts). This is challenging partly due to the interaction between the input fuzzy
arguments. Despite significant applications of fuzzy set theory in engineering sciences, e�cient tools
for the computation of fuzzy functions and fuzzy operations are not well developed. A majority
of available methods simply ignore interaction. As a part of the proposed project, we will develop
such e�cient computational tools taking interaction into account; see Task 4.

4.2 A New Hybrid Fuzzy-Stochastic Multiscale Algorithm. Algorithm 1 outlines a new
multiscale global-local technique in a hybrid fuzzy-stochastic framework; see also Figure 7.
Algorithm 1 A new multiscale algorithm in a fuzzy-stochastic framework

0. Goal: compute a QoI supported on a small domain DQ where |DQ|π |D|.

1. Select a local domain D0 µ D which contains the support of the QoI.

2. Construct the local fuzzy-stochastic PDE model on D0.

3. Construct the global fuzzy-stochastic PDE model on D.

4. Solve the global and local problems simultaneously:
• Compute the boundary data for the local problem from the global solution.
• Compute the QoI from the local solution.
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Figure 7: QoI’s support and local and global do-
mains.

According to the four steps of the algorithm,
we divide the project into four research tasks
and outline detailed research plans. The choice
of ordering is not meant to indicate priority.
Tasks 1–3 are in collaboration with Ivo Babu�ka
(UT Asutin), and Task 4 will be partially in col-
laboration with Daniel Appelö (UNM), Fabio
Nobile (EPFL), and Raúl Tempone (KAUST).

DQ µ D0 µ D

Task 1: Selection of the local domain. Generally speaking, the size of the local domain
D0 must be: (1) su�ciently large compared to the size of microstructure for the approach to
be accurate; and (2) small enough for computations to be feasible. Finding an optimal size is a
challenging task and a key step in the multiscale algorithm. To select the optimal size of D0, we
will propose a strategy by utilizing the concept of representative volume elements (RVEs) [19] and
numerical homogenization [5]. An RVE is a representative cell of the whole structure on average.
More precisely, the e�ective properties of the RVE represent the overall macroscopic properties of
the structure. We select the size LRVE◊LRVE of a square representative element as the size of D0.
The RVE length LRVE will be computed as follows.

1. Generate a sequence of increasing element lengths 10µm < L1 < L2 < . . . < Lr π |D|.
2. On each domain Di of size Li ◊ Li:

• Use M bootstrap discrete samples {bm(xj)}Mm=1, with {xj}Nx
j=1

œ Di, and apply two-
dimensional numerical homogenization with homogenization length H = Li to obtain M
discrete samples {bHm(xj)}Mm=1 of the e�ective parameter (see below).
• Compute sample mean µi(xj) and sample standard deviation �i(xj) of the e�ective param-
eter, and take their average over all discrete points {xj}Nx

j=1
to compute µ̄i and �̄i.

• Compute the variations of the e�ective parameter on the domain: ÁLi := �̄i/µ̄i.
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Figure 1: A schematic representation of
support of QoI and local-global domains.

Consider the abstract form of the problem Q = M(◊),
where the mathematical modelM, consisting of constitu-
tive equations and initial-boundary conditions, maps the
input material parameters ◊ into the output QoI Q. This
challenging problem exhibits both multiple length scales
and various types of uncertainty. The length scale spans
from the diameter of fibers (≥10 micron) to the size of the
composite (≥1 meter). Moreover, while the inherent variations in material properties and the spatial
distribution of fibers are random, the scarcity and variability of observational data and limited infor-
mation about the model are non-random. This model problem illustrates one of the most challenging
aspects of current UQ approaches lying in the fact that the model M and probability distribution
of ◊ are not known.
2.2.2 Real experimental data. The characterization of uncertainty in ◊ and the validation ofM
are carried out based on observational data. We consider a small piece of HTA/6376 fiber composite
[17], consisting of four plies containing 13688 carbon fibers with a volume fraction of 63% in epoxy
matrix. Fig. 2 shows a map of fibers obtained by an optical microscope. This particular map serves
as a realistic prototype of fiber distributions in our studies. The modulus of elasticity E and Poisson’s
ratio ‹ of the composite given by the manufacturer are shown in Table 1.
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Table 1 
Material constants of the composite under consideration 

E ,,her = 24 GPa 
qlhcr = 0.24 
Gm = E,,,,r’X + ~,t,cr) 
E rnatr,x = 3.6 GPa 
Twr,x = 0.3 
G mltrlx = Ernmx ‘Xl + Gt,,,) 

Fig. 2. The group of four unidirectional plies. Note the 
of the matrix-rich zones between the plies. 

visibility Fig. 3. Part of the complete large-size micrograph (a) Gray level 
image; (b) binary image. 

So far, we have considered only one cross-section. Although in our analysis we will assume that the fibers are 
perfectly aligned, in reality they exhibit misalignment about their average direction. This microstructural 
characteristic is often referred as fiber undulation or fiber waviness. To get information about the waviness, 15 
parallel cuts of the material were made, 50 pm apart with a precision of 2 km, and the positions of the fibers in 
these crossections were obtained by the technique described above. 

In Fig. 4 we show the centers of the fibers in the 15 sections in a window of 2000 fibers. The figure clearly 
shows clearly the waviness of the fibers. We see that in the matrix regions between plies (compare Fig. 2) the 
fiber undulations are large, most likely due to small numbers of neighboring fibers. The maximum angle 
between any fiber and the z-axis is 6” with the standard deviation 1.2”. 

The distribution of the fibers in the cross section was determinated by optical microscope. The size of the 
observation window was approximately 400 X 400 pm. 

The cross-section samples were carefully polished with several series of different sized diamond particles in 
standard equipment for metallographic specimen preparation. The final polishing was performed with a 1 pm 
diamond spray on a hard cloth in order to obtain the best possible edge sharpness between the two phases in 
digital images. 

The microstructure was digitized into an &bit digital image, i.e. a grey level image, by a CCD-camera located 
on a optical microscope. The images were then further processed by image processing and analysis software. 

After the image acquisition, some initial pre-processing of the raw image was performed, such as contrast 
enhancement and filtering. In this way the images become standardized, which facilitated the extraction of the 
size and location of each fiber from the image. Magnification was chosen so that one pixel in the acquired image 
corresponded to an actual physical square with side 0.26 km. 

The procedure after the image pre-processing involved separation of the fibers from the background of the 
matrix (image segmentation) and computing the location and.size of the fibers. In the microscope the fibers 
appear as objects of high brightness surrounded by a background with lower intensity corresponding to the 
matrix phase. The grey level distribution of the digitized image contained two peaks, corresponding to the 
matrix and the carbon fibers. The separation of the fibers from the background was performed by threshholding 
the grey level images. This operation allowed the fibers to be extracted from the matrix background. To assure 
reproducibility, the grey level threshold was chosen as the average of the gray levels at the two peaks. From the 
threshholding, a binary image was constructed in which the fiber and the matrix had different assigned values. 
However, in order to take into account the variation of the grey level distribution over the complete image, the 
threshholding was performed in a localized manner. Each image was divided into subimages, of approximate 
size 500 pixels by 500 pixels, where the threshhold levels were separately determined. 
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2 Problem Statement

Reliable mathematical and computational models for predicting the response of fiber compos-
ites due to external forces must be designed based on and backed by real experimental data.
In this section, we first present the real data that is used throughout this work. We then
consider the deformation of fiber composites and describe the mathematical formulation of a
simplified one-dimensional problem. Finally, we briefly address di�erent models for treating
uncertainty in the problem.

2.1 Real data

The real data that we use are obtained from a small piece of a HTA/6376 carbon fiber-
reinforced epoxy composite plate [11, 15] with a rectangular cross section of size 1.7◊0.5 mm2,
and consisting of four plies containing 13688 unidirectional fibers with a volume fraction of
63%. Fiber diameters vary between 4µm to 10µm. Figure 2 shows a map of the size and
position of fibers in an orthogonal cross section of the composite obtained by an optical mi-
croscope. In the present work, this particular map serves as a prototype of fiber distributions
in fiber composites.

Figure 2: Left: A 1.7 ◊ 0.5 mm2 rectangular orthogonal cross section of a small piece of a
fiber composite laminate consisting of four uni-directional plies containing 13688 fibers with
a volume fraction of 63%. Right: A binary image of a small part of the whole micrograph.

The Young’s modulus of elasticity and Poisson’s ratio of the fiber composite under con-
sideration are given in Table 1.

Table 1: Material constants for the composite under consideration.

composite phases a ‹

fiber 24 [GPa] 0.24
matrix 3.6 [GPa] 0.3

2.2 Mathematical formulation: a one-dimensional problem

The deformation of elastic materials is given by the elastic partial di�erential equations
(PDEs) in three dimensions. In the particular case of plane strain, where the length of
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Figure 2: Optical image of a small piece of a fiber composite.

phase E [GPa] ‹

fiber 24 0.24
matrix 3.6 0.3

Table 1: Material constants.

3

Resolving many real-world problems, such as the NSF Grand Challenges [39], requires major
breakthroughs and the development of more sophisticated predictive models beyond probabilistic
approaches and soft computing. One breakthrough we propose is hybrid fuzzy-stochastic prediction,
a novel and unique approach with the potential of improving predictive power in engineering and
science. There are very few publications (in engineering communities) on the synthesis of fuzzy sets
and probability distributions [59, 26, 32]. The fuzzy-random distributions proposed in these works
do not promote mathematical and computational predictive models mainly because the epistemic
nature of the fuzzy approach and its interplay with the probability theory are mathematically ill-
understood [36]. The PI and his collaborator, Ivo Babuöka, are the first mathematicians to develop
the mathematical foundations of hybrid fuzzy-stochastic quantities [63]. In what follows, we will
establish the main concepts of the new framework to solve a complex problem in materials science.
2.2 An Illustrative Model Problem and Need for New Tools
Manufacturing composite materials is a multibillion-dollar industry that will reach $105 billion by
2021 [1]. Major drivers in the market include increased demand for wind energy and lightweight,
fuel-e�cient vehicles and aircrafts, upgrade of old infrastructures, and growth in new construction
[1]. Despite decades of R&D on predictive modeling of composites, costly and time-consuming exper-
iments have remained the major strategy for verifying composite performance [29, 83]. Developing
more advanced, viable predictive models is timely and could improve the reliability of composite
manufacturing and further boost the market, employment, and economic growth.
2.2.1 Problem description and goal of prediction. Fiber composites consist of a large number
of sti� fibers in a matrix which is less sti�. Fiber composites are fabricated based on their response
to external forces. Let D µ R2 be a global domain representing an orthogonal cross section of a
composite subject to external force. The ultimate goal of prediction is to compute a QoI, denoted
by Q, e.g. maximum stress or energy, over a region DQ inside a local domain D0 µ D; see Fig. 1.
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(or equivalently its –-cuts). This is challenging partly due to the interaction between the input fuzzy
arguments. Despite significant applications of fuzzy set theory in engineering sciences, e�cient tools
for the computation of fuzzy functions and fuzzy operations are not well developed. A majority
of available methods simply ignore interaction. As a part of the proposed project, we will develop
such e�cient computational tools taking interaction into account; see Task 4.

4.2 A New Hybrid Fuzzy-Stochastic Multiscale Algorithm. Algorithm 1 outlines a new
multiscale global-local technique in a hybrid fuzzy-stochastic framework; see also Figure 7.
Algorithm 1 A new multiscale algorithm in a fuzzy-stochastic framework

0. Goal: compute a QoI supported on a small domain DQ where |DQ|π |D|.

1. Select a local domain D0 µ D which contains the support of the QoI.

2. Construct the local fuzzy-stochastic PDE model on D0.

3. Construct the global fuzzy-stochastic PDE model on D.

4. Solve the global and local problems simultaneously:
• Compute the boundary data for the local problem from the global solution.
• Compute the QoI from the local solution.
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Figure 7: QoI’s support and local and global do-
mains.

According to the four steps of the algorithm,
we divide the project into four research tasks
and outline detailed research plans. The choice
of ordering is not meant to indicate priority.
Tasks 1–3 are in collaboration with Ivo Babu�ka
(UT Asutin), and Task 4 will be partially in col-
laboration with Daniel Appelö (UNM), Fabio
Nobile (EPFL), and Raúl Tempone (KAUST).

DQ µ D0 µ D

Task 1: Selection of the local domain. Generally speaking, the size of the local domain
D0 must be: (1) su�ciently large compared to the size of microstructure for the approach to
be accurate; and (2) small enough for computations to be feasible. Finding an optimal size is a
challenging task and a key step in the multiscale algorithm. To select the optimal size of D0, we
will propose a strategy by utilizing the concept of representative volume elements (RVEs) [19] and
numerical homogenization [5]. An RVE is a representative cell of the whole structure on average.
More precisely, the e�ective properties of the RVE represent the overall macroscopic properties of
the structure. We select the size LRVE◊LRVE of a square representative element as the size of D0.
The RVE length LRVE will be computed as follows.

1. Generate a sequence of increasing element lengths 10µm < L1 < L2 < . . . < Lr π |D|.
2. On each domain Di of size Li ◊ Li:

• Use M bootstrap discrete samples {bm(xj)}Mm=1, with {xj}Nx
j=1

œ Di, and apply two-
dimensional numerical homogenization with homogenization length H = Li to obtain M
discrete samples {bHm(xj)}Mm=1 of the e�ective parameter (see below).
• Compute sample mean µi(xj) and sample standard deviation �i(xj) of the e�ective param-
eter, and take their average over all discrete points {xj}Nx

j=1
to compute µ̄i and �̄i.

• Compute the variations of the e�ective parameter on the domain: ÁLi := �̄i/µ̄i.

7

Figure 1: A schematic representation of
support of QoI and local-global domains.

Consider the abstract form of the problem Q = M(◊),
where the mathematical modelM, consisting of constitu-
tive equations and initial-boundary conditions, maps the
input material parameters ◊ into the output QoI Q. This
challenging problem exhibits both multiple length scales
and various types of uncertainty. The length scale spans
from the diameter of fibers (≥10 micron) to the size of the
composite (≥1 meter). Moreover, while the inherent variations in material properties and the spatial
distribution of fibers are random, the scarcity and variability of observational data and limited infor-
mation about the model are non-random. This model problem illustrates one of the most challenging
aspects of current UQ approaches lying in the fact that the model M and probability distribution
of ◊ are not known.
2.2.2 Real experimental data. The characterization of uncertainty in ◊ and the validation ofM
are carried out based on observational data. We consider a small piece of HTA/6376 fiber composite
[17], consisting of four plies containing 13688 carbon fibers with a volume fraction of 63% in epoxy
matrix. Fig. 2 shows a map of fibers obtained by an optical microscope. This particular map serves
as a realistic prototype of fiber distributions in our studies. The modulus of elasticity E and Poisson’s
ratio ‹ of the composite given by the manufacturer are shown in Table 1.
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Table 1 
Material constants of the composite under consideration 

E ,,her = 24 GPa 
qlhcr = 0.24 
Gm = E,,,,r’X + ~,t,cr) 
E rnatr,x = 3.6 GPa 
Twr,x = 0.3 
G mltrlx = Ernmx ‘Xl + Gt,,,) 

Fig. 2. The group of four unidirectional plies. Note the 
of the matrix-rich zones between the plies. 

visibility Fig. 3. Part of the complete large-size micrograph (a) Gray level 
image; (b) binary image. 

So far, we have considered only one cross-section. Although in our analysis we will assume that the fibers are 
perfectly aligned, in reality they exhibit misalignment about their average direction. This microstructural 
characteristic is often referred as fiber undulation or fiber waviness. To get information about the waviness, 15 
parallel cuts of the material were made, 50 pm apart with a precision of 2 km, and the positions of the fibers in 
these crossections were obtained by the technique described above. 

In Fig. 4 we show the centers of the fibers in the 15 sections in a window of 2000 fibers. The figure clearly 
shows clearly the waviness of the fibers. We see that in the matrix regions between plies (compare Fig. 2) the 
fiber undulations are large, most likely due to small numbers of neighboring fibers. The maximum angle 
between any fiber and the z-axis is 6” with the standard deviation 1.2”. 

The distribution of the fibers in the cross section was determinated by optical microscope. The size of the 
observation window was approximately 400 X 400 pm. 

The cross-section samples were carefully polished with several series of different sized diamond particles in 
standard equipment for metallographic specimen preparation. The final polishing was performed with a 1 pm 
diamond spray on a hard cloth in order to obtain the best possible edge sharpness between the two phases in 
digital images. 

The microstructure was digitized into an &bit digital image, i.e. a grey level image, by a CCD-camera located 
on a optical microscope. The images were then further processed by image processing and analysis software. 

After the image acquisition, some initial pre-processing of the raw image was performed, such as contrast 
enhancement and filtering. In this way the images become standardized, which facilitated the extraction of the 
size and location of each fiber from the image. Magnification was chosen so that one pixel in the acquired image 
corresponded to an actual physical square with side 0.26 km. 

The procedure after the image pre-processing involved separation of the fibers from the background of the 
matrix (image segmentation) and computing the location and.size of the fibers. In the microscope the fibers 
appear as objects of high brightness surrounded by a background with lower intensity corresponding to the 
matrix phase. The grey level distribution of the digitized image contained two peaks, corresponding to the 
matrix and the carbon fibers. The separation of the fibers from the background was performed by threshholding 
the grey level images. This operation allowed the fibers to be extracted from the matrix background. To assure 
reproducibility, the grey level threshold was chosen as the average of the gray levels at the two peaks. From the 
threshholding, a binary image was constructed in which the fiber and the matrix had different assigned values. 
However, in order to take into account the variation of the grey level distribution over the complete image, the 
threshholding was performed in a localized manner. Each image was divided into subimages, of approximate 
size 500 pixels by 500 pixels, where the threshhold levels were separately determined. 
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2 Problem Statement

Reliable mathematical and computational models for predicting the response of fiber compos-
ites due to external forces must be designed based on and backed by real experimental data.
In this section, we first present the real data that is used throughout this work. We then
consider the deformation of fiber composites and describe the mathematical formulation of a
simplified one-dimensional problem. Finally, we briefly address di�erent models for treating
uncertainty in the problem.

2.1 Real data

The real data that we use are obtained from a small piece of a HTA/6376 carbon fiber-
reinforced epoxy composite plate [11, 15] with a rectangular cross section of size 1.7◊0.5 mm2,
and consisting of four plies containing 13688 unidirectional fibers with a volume fraction of
63%. Fiber diameters vary between 4µm to 10µm. Figure 2 shows a map of the size and
position of fibers in an orthogonal cross section of the composite obtained by an optical mi-
croscope. In the present work, this particular map serves as a prototype of fiber distributions
in fiber composites.

Figure 2: Left: A 1.7 ◊ 0.5 mm2 rectangular orthogonal cross section of a small piece of a
fiber composite laminate consisting of four uni-directional plies containing 13688 fibers with
a volume fraction of 63%. Right: A binary image of a small part of the whole micrograph.

The Young’s modulus of elasticity and Poisson’s ratio of the fiber composite under con-
sideration are given in Table 1.

Table 1: Material constants for the composite under consideration.

composite phases a ‹

fiber 24 [GPa] 0.24
matrix 3.6 [GPa] 0.3

2.2 Mathematical formulation: a one-dimensional problem

The deformation of elastic materials is given by the elastic partial di�erential equations
(PDEs) in three dimensions. In the particular case of plane strain, where the length of
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Figure 2: Optical image of a small piece of a fiber composite.

phase E [GPa] ‹

fiber 24 0.24
matrix 3.6 0.3

Table 1: Material constants.
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Resolving many real-world problems, such as the NSF Grand Challenges [39], requires major
breakthroughs and the development of more sophisticated predictive models beyond probabilistic
approaches and soft computing. One breakthrough we propose is hybrid fuzzy-stochastic prediction,
a novel and unique approach with the potential of improving predictive power in engineering and
science. There are very few publications (in engineering communities) on the synthesis of fuzzy sets
and probability distributions [59, 26, 32]. The fuzzy-random distributions proposed in these works
do not promote mathematical and computational predictive models mainly because the epistemic
nature of the fuzzy approach and its interplay with the probability theory are mathematically ill-
understood [36]. The PI and his collaborator, Ivo Babuöka, are the first mathematicians to develop
the mathematical foundations of hybrid fuzzy-stochastic quantities [63]. In what follows, we will
establish the main concepts of the new framework to solve a complex problem in materials science.
2.2 An Illustrative Model Problem and Need for New Tools
Manufacturing composite materials is a multibillion-dollar industry that will reach $105 billion by
2021 [1]. Major drivers in the market include increased demand for wind energy and lightweight,
fuel-e�cient vehicles and aircrafts, upgrade of old infrastructures, and growth in new construction
[1]. Despite decades of R&D on predictive modeling of composites, costly and time-consuming exper-
iments have remained the major strategy for verifying composite performance [29, 83]. Developing
more advanced, viable predictive models is timely and could improve the reliability of composite
manufacturing and further boost the market, employment, and economic growth.
2.2.1 Problem description and goal of prediction. Fiber composites consist of a large number
of sti� fibers in a matrix which is less sti�. Fiber composites are fabricated based on their response
to external forces. Let D µ R2 be a global domain representing an orthogonal cross section of a
composite subject to external force. The ultimate goal of prediction is to compute a QoI, denoted
by Q, e.g. maximum stress or energy, over a region DQ inside a local domain D0 µ D; see Fig. 1.
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(or equivalently its –-cuts). This is challenging partly due to the interaction between the input fuzzy
arguments. Despite significant applications of fuzzy set theory in engineering sciences, e�cient tools
for the computation of fuzzy functions and fuzzy operations are not well developed. A majority
of available methods simply ignore interaction. As a part of the proposed project, we will develop
such e�cient computational tools taking interaction into account; see Task 4.

4.2 A New Hybrid Fuzzy-Stochastic Multiscale Algorithm. Algorithm 1 outlines a new
multiscale global-local technique in a hybrid fuzzy-stochastic framework; see also Figure 7.
Algorithm 1 A new multiscale algorithm in a fuzzy-stochastic framework

0. Goal: compute a QoI supported on a small domain DQ where |DQ|π |D|.

1. Select a local domain D0 µ D which contains the support of the QoI.

2. Construct the local fuzzy-stochastic PDE model on D0.

3. Construct the global fuzzy-stochastic PDE model on D.

4. Solve the global and local problems simultaneously:
• Compute the boundary data for the local problem from the global solution.
• Compute the QoI from the local solution.
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Figure 7: QoI’s support and local and global do-
mains.

According to the four steps of the algorithm,
we divide the project into four research tasks
and outline detailed research plans. The choice
of ordering is not meant to indicate priority.
Tasks 1–3 are in collaboration with Ivo Babu�ka
(UT Asutin), and Task 4 will be partially in col-
laboration with Daniel Appelö (UNM), Fabio
Nobile (EPFL), and Raúl Tempone (KAUST).

DQ µ D0 µ D

Task 1: Selection of the local domain. Generally speaking, the size of the local domain
D0 must be: (1) su�ciently large compared to the size of microstructure for the approach to
be accurate; and (2) small enough for computations to be feasible. Finding an optimal size is a
challenging task and a key step in the multiscale algorithm. To select the optimal size of D0, we
will propose a strategy by utilizing the concept of representative volume elements (RVEs) [19] and
numerical homogenization [5]. An RVE is a representative cell of the whole structure on average.
More precisely, the e�ective properties of the RVE represent the overall macroscopic properties of
the structure. We select the size LRVE◊LRVE of a square representative element as the size of D0.
The RVE length LRVE will be computed as follows.

1. Generate a sequence of increasing element lengths 10µm < L1 < L2 < . . . < Lr π |D|.
2. On each domain Di of size Li ◊ Li:

• Use M bootstrap discrete samples {bm(xj)}Mm=1, with {xj}Nx
j=1

œ Di, and apply two-
dimensional numerical homogenization with homogenization length H = Li to obtain M
discrete samples {bHm(xj)}Mm=1 of the e�ective parameter (see below).
• Compute sample mean µi(xj) and sample standard deviation �i(xj) of the e�ective param-
eter, and take their average over all discrete points {xj}Nx

j=1
to compute µ̄i and �̄i.

• Compute the variations of the e�ective parameter on the domain: ÁLi := �̄i/µ̄i.
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Figure 1: A schematic representation of
support of QoI and local-global domains.

Consider the abstract form of the problem Q = M(◊),
where the mathematical modelM, consisting of constitu-
tive equations and initial-boundary conditions, maps the
input material parameters ◊ into the output QoI Q. This
challenging problem exhibits both multiple length scales
and various types of uncertainty. The length scale spans
from the diameter of fibers (≥10 micron) to the size of the
composite (≥1 meter). Moreover, while the inherent variations in material properties and the spatial
distribution of fibers are random, the scarcity and variability of observational data and limited infor-
mation about the model are non-random. This model problem illustrates one of the most challenging
aspects of current UQ approaches lying in the fact that the model M and probability distribution
of ◊ are not known.
2.2.2 Real experimental data. The characterization of uncertainty in ◊ and the validation ofM
are carried out based on observational data. We consider a small piece of HTA/6376 fiber composite
[17], consisting of four plies containing 13688 carbon fibers with a volume fraction of 63% in epoxy
matrix. Fig. 2 shows a map of fibers obtained by an optical microscope. This particular map serves
as a realistic prototype of fiber distributions in our studies. The modulus of elasticity E and Poisson’s
ratio ‹ of the composite given by the manufacturer are shown in Table 1.
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Table 1 
Material constants of the composite under consideration 

E ,,her = 24 GPa 
qlhcr = 0.24 
Gm = E,,,,r’X + ~,t,cr) 
E rnatr,x = 3.6 GPa 
Twr,x = 0.3 
G mltrlx = Ernmx ‘Xl + Gt,,,) 

Fig. 2. The group of four unidirectional plies. Note the 
of the matrix-rich zones between the plies. 

visibility Fig. 3. Part of the complete large-size micrograph (a) Gray level 
image; (b) binary image. 

So far, we have considered only one cross-section. Although in our analysis we will assume that the fibers are 
perfectly aligned, in reality they exhibit misalignment about their average direction. This microstructural 
characteristic is often referred as fiber undulation or fiber waviness. To get information about the waviness, 15 
parallel cuts of the material were made, 50 pm apart with a precision of 2 km, and the positions of the fibers in 
these crossections were obtained by the technique described above. 

In Fig. 4 we show the centers of the fibers in the 15 sections in a window of 2000 fibers. The figure clearly 
shows clearly the waviness of the fibers. We see that in the matrix regions between plies (compare Fig. 2) the 
fiber undulations are large, most likely due to small numbers of neighboring fibers. The maximum angle 
between any fiber and the z-axis is 6” with the standard deviation 1.2”. 

The distribution of the fibers in the cross section was determinated by optical microscope. The size of the 
observation window was approximately 400 X 400 pm. 

The cross-section samples were carefully polished with several series of different sized diamond particles in 
standard equipment for metallographic specimen preparation. The final polishing was performed with a 1 pm 
diamond spray on a hard cloth in order to obtain the best possible edge sharpness between the two phases in 
digital images. 

The microstructure was digitized into an &bit digital image, i.e. a grey level image, by a CCD-camera located 
on a optical microscope. The images were then further processed by image processing and analysis software. 

After the image acquisition, some initial pre-processing of the raw image was performed, such as contrast 
enhancement and filtering. In this way the images become standardized, which facilitated the extraction of the 
size and location of each fiber from the image. Magnification was chosen so that one pixel in the acquired image 
corresponded to an actual physical square with side 0.26 km. 

The procedure after the image pre-processing involved separation of the fibers from the background of the 
matrix (image segmentation) and computing the location and.size of the fibers. In the microscope the fibers 
appear as objects of high brightness surrounded by a background with lower intensity corresponding to the 
matrix phase. The grey level distribution of the digitized image contained two peaks, corresponding to the 
matrix and the carbon fibers. The separation of the fibers from the background was performed by threshholding 
the grey level images. This operation allowed the fibers to be extracted from the matrix background. To assure 
reproducibility, the grey level threshold was chosen as the average of the gray levels at the two peaks. From the 
threshholding, a binary image was constructed in which the fiber and the matrix had different assigned values. 
However, in order to take into account the variation of the grey level distribution over the complete image, the 
threshholding was performed in a localized manner. Each image was divided into subimages, of approximate 
size 500 pixels by 500 pixels, where the threshhold levels were separately determined. 
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2 Problem Statement

Reliable mathematical and computational models for predicting the response of fiber compos-
ites due to external forces must be designed based on and backed by real experimental data.
In this section, we first present the real data that is used throughout this work. We then
consider the deformation of fiber composites and describe the mathematical formulation of a
simplified one-dimensional problem. Finally, we briefly address di�erent models for treating
uncertainty in the problem.

2.1 Real data

The real data that we use are obtained from a small piece of a HTA/6376 carbon fiber-
reinforced epoxy composite plate [11, 15] with a rectangular cross section of size 1.7◊0.5 mm2,
and consisting of four plies containing 13688 unidirectional fibers with a volume fraction of
63%. Fiber diameters vary between 4µm to 10µm. Figure 2 shows a map of the size and
position of fibers in an orthogonal cross section of the composite obtained by an optical mi-
croscope. In the present work, this particular map serves as a prototype of fiber distributions
in fiber composites.

Figure 2: Left: A 1.7 ◊ 0.5 mm2 rectangular orthogonal cross section of a small piece of a
fiber composite laminate consisting of four uni-directional plies containing 13688 fibers with
a volume fraction of 63%. Right: A binary image of a small part of the whole micrograph.

The Young’s modulus of elasticity and Poisson’s ratio of the fiber composite under con-
sideration are given in Table 1.

Table 1: Material constants for the composite under consideration.

composite phases a ‹

fiber 24 [GPa] 0.24
matrix 3.6 [GPa] 0.3

2.2 Mathematical formulation: a one-dimensional problem

The deformation of elastic materials is given by the elastic partial di�erential equations
(PDEs) in three dimensions. In the particular case of plane strain, where the length of
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Figure 2: Optical image of a small piece of a fiber composite.

phase E [GPa] ‹

fiber 24 0.24
matrix 3.6 0.3

Table 1: Material constants.

3

Resolving many real-world problems, such as the NSF Grand Challenges [39], requires major
breakthroughs and the development of more sophisticated predictive models beyond probabilistic
approaches and soft computing. One breakthrough we propose is hybrid fuzzy-stochastic prediction,
a novel and unique approach with the potential of improving predictive power in engineering and
science. There are very few publications (in engineering communities) on the synthesis of fuzzy sets
and probability distributions [59, 26, 32]. The fuzzy-random distributions proposed in these works
do not promote mathematical and computational predictive models mainly because the epistemic
nature of the fuzzy approach and its interplay with the probability theory are mathematically ill-
understood [36]. The PI and his collaborator, Ivo Babuöka, are the first mathematicians to develop
the mathematical foundations of hybrid fuzzy-stochastic quantities [63]. In what follows, we will
establish the main concepts of the new framework to solve a complex problem in materials science.
2.2 An Illustrative Model Problem and Need for New Tools
Manufacturing composite materials is a multibillion-dollar industry that will reach $105 billion by
2021 [1]. Major drivers in the market include increased demand for wind energy and lightweight,
fuel-e�cient vehicles and aircrafts, upgrade of old infrastructures, and growth in new construction
[1]. Despite decades of R&D on predictive modeling of composites, costly and time-consuming exper-
iments have remained the major strategy for verifying composite performance [29, 83]. Developing
more advanced, viable predictive models is timely and could improve the reliability of composite
manufacturing and further boost the market, employment, and economic growth.
2.2.1 Problem description and goal of prediction. Fiber composites consist of a large number
of sti� fibers in a matrix which is less sti�. Fiber composites are fabricated based on their response
to external forces. Let D µ R2 be a global domain representing an orthogonal cross section of a
composite subject to external force. The ultimate goal of prediction is to compute a QoI, denoted
by Q, e.g. maximum stress or energy, over a region DQ inside a local domain D0 µ D; see Fig. 1.

b̃(x,y(�)) b(x, �,y) = F�1
� � �(b̃(x,y)) F�

�1 �2 � = (�1, �2) y

b̃(x,y, z) = ��1(z) � �(G(x,y))

�(z)

d

dx

�
b�1(x)

du

dx
(x)

�
= 0 b�1(L)

du

dx
(L) = 1

M h, p M0, M1, . . . , ML h, p0, p1, . . . , pL

h0, h1, . . . , hL, p h M � 1 1 µm

S(�1) S(�2) S(�) �1 �2 � 0 1

z µ(z) S(0) S(1)

u(1, x, y) E[u(1, x, .)] y = 0.1 y = 0.6

D0 D DQ

22

b̃(x,y(�)) b(x, �,y) = F�1
� � �(b̃(x,y)) F�

�1 �2 � = (�1, �2) y

b̃(x,y, z) = ��1(z) � �(G(x,y))

�(z)

d

dx

�
b�1(x)

du

dx
(x)

�
= 0 b�1(L)

du

dx
(L) = 1

M h, p M0, M1, . . . , ML h, p0, p1, . . . , pL

h0, h1, . . . , hL, p h M � 1 1 µm

S(�1) S(�2) S(�) �1 �2 � 0 1

z µ(z) S(0) S(1)

u(1, x, y) E[u(1, x, .)] y = 0.1 y = 0.6

D0 D DQ

22

b̃(x,y(�)) b(x, �,y) = F�1
� � �(b̃(x,y)) F�

�1 �2 � = (�1, �2) y

b̃(x,y, z) = ��1(z) � �(G(x,y))

�(z)

d

dx

�
b�1(x)

du

dx
(x)

�
= 0 b�1(L)

du

dx
(L) = 1

M h, p M0, M1, . . . , ML h, p0, p1, . . . , pL

h0, h1, . . . , hL, p h M � 1 1 µm

S(�1) S(�2) S(�) �1 �2 � 0 1

z µ(z) S(0) S(1)

u(1, x, y) E[u(1, x, .)] y = 0.1 y = 0.6

D0 D DQ

22

(or equivalently its –-cuts). This is challenging partly due to the interaction between the input fuzzy
arguments. Despite significant applications of fuzzy set theory in engineering sciences, e�cient tools
for the computation of fuzzy functions and fuzzy operations are not well developed. A majority
of available methods simply ignore interaction. As a part of the proposed project, we will develop
such e�cient computational tools taking interaction into account; see Task 4.

4.2 A New Hybrid Fuzzy-Stochastic Multiscale Algorithm. Algorithm 1 outlines a new
multiscale global-local technique in a hybrid fuzzy-stochastic framework; see also Figure 7.
Algorithm 1 A new multiscale algorithm in a fuzzy-stochastic framework

0. Goal: compute a QoI supported on a small domain DQ where |DQ|π |D|.

1. Select a local domain D0 µ D which contains the support of the QoI.

2. Construct the local fuzzy-stochastic PDE model on D0.

3. Construct the global fuzzy-stochastic PDE model on D.

4. Solve the global and local problems simultaneously:
• Compute the boundary data for the local problem from the global solution.
• Compute the QoI from the local solution.
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Figure 7: QoI’s support and local and global do-
mains.

According to the four steps of the algorithm,
we divide the project into four research tasks
and outline detailed research plans. The choice
of ordering is not meant to indicate priority.
Tasks 1–3 are in collaboration with Ivo Babu�ka
(UT Asutin), and Task 4 will be partially in col-
laboration with Daniel Appelö (UNM), Fabio
Nobile (EPFL), and Raúl Tempone (KAUST).

DQ µ D0 µ D

Task 1: Selection of the local domain. Generally speaking, the size of the local domain
D0 must be: (1) su�ciently large compared to the size of microstructure for the approach to
be accurate; and (2) small enough for computations to be feasible. Finding an optimal size is a
challenging task and a key step in the multiscale algorithm. To select the optimal size of D0, we
will propose a strategy by utilizing the concept of representative volume elements (RVEs) [19] and
numerical homogenization [5]. An RVE is a representative cell of the whole structure on average.
More precisely, the e�ective properties of the RVE represent the overall macroscopic properties of
the structure. We select the size LRVE◊LRVE of a square representative element as the size of D0.
The RVE length LRVE will be computed as follows.

1. Generate a sequence of increasing element lengths 10µm < L1 < L2 < . . . < Lr π |D|.
2. On each domain Di of size Li ◊ Li:

• Use M bootstrap discrete samples {bm(xj)}Mm=1, with {xj}Nx
j=1

œ Di, and apply two-
dimensional numerical homogenization with homogenization length H = Li to obtain M
discrete samples {bHm(xj)}Mm=1 of the e�ective parameter (see below).
• Compute sample mean µi(xj) and sample standard deviation �i(xj) of the e�ective param-
eter, and take their average over all discrete points {xj}Nx

j=1
to compute µ̄i and �̄i.

• Compute the variations of the e�ective parameter on the domain: ÁLi := �̄i/µ̄i.
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Figure 1: A schematic representation of
support of QoI and local-global domains.

Consider the abstract form of the problem Q = M(◊),
where the mathematical modelM, consisting of constitu-
tive equations and initial-boundary conditions, maps the
input material parameters ◊ into the output QoI Q. This
challenging problem exhibits both multiple length scales
and various types of uncertainty. The length scale spans
from the diameter of fibers (≥10 micron) to the size of the
composite (≥1 meter). Moreover, while the inherent variations in material properties and the spatial
distribution of fibers are random, the scarcity and variability of observational data and limited infor-
mation about the model are non-random. This model problem illustrates one of the most challenging
aspects of current UQ approaches lying in the fact that the model M and probability distribution
of ◊ are not known.
2.2.2 Real experimental data. The characterization of uncertainty in ◊ and the validation ofM
are carried out based on observational data. We consider a small piece of HTA/6376 fiber composite
[17], consisting of four plies containing 13688 carbon fibers with a volume fraction of 63% in epoxy
matrix. Fig. 2 shows a map of fibers obtained by an optical microscope. This particular map serves
as a realistic prototype of fiber distributions in our studies. The modulus of elasticity E and Poisson’s
ratio ‹ of the composite given by the manufacturer are shown in Table 1.
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Table 1 
Material constants of the composite under consideration 

E ,,her = 24 GPa 
qlhcr = 0.24 
Gm = E,,,,r’X + ~,t,cr) 
E rnatr,x = 3.6 GPa 
Twr,x = 0.3 
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Fig. 2. The group of four unidirectional plies. Note the 
of the matrix-rich zones between the plies. 

visibility Fig. 3. Part of the complete large-size micrograph (a) Gray level 
image; (b) binary image. 

So far, we have considered only one cross-section. Although in our analysis we will assume that the fibers are 
perfectly aligned, in reality they exhibit misalignment about their average direction. This microstructural 
characteristic is often referred as fiber undulation or fiber waviness. To get information about the waviness, 15 
parallel cuts of the material were made, 50 pm apart with a precision of 2 km, and the positions of the fibers in 
these crossections were obtained by the technique described above. 

In Fig. 4 we show the centers of the fibers in the 15 sections in a window of 2000 fibers. The figure clearly 
shows clearly the waviness of the fibers. We see that in the matrix regions between plies (compare Fig. 2) the 
fiber undulations are large, most likely due to small numbers of neighboring fibers. The maximum angle 
between any fiber and the z-axis is 6” with the standard deviation 1.2”. 

The distribution of the fibers in the cross section was determinated by optical microscope. The size of the 
observation window was approximately 400 X 400 pm. 

The cross-section samples were carefully polished with several series of different sized diamond particles in 
standard equipment for metallographic specimen preparation. The final polishing was performed with a 1 pm 
diamond spray on a hard cloth in order to obtain the best possible edge sharpness between the two phases in 
digital images. 

The microstructure was digitized into an &bit digital image, i.e. a grey level image, by a CCD-camera located 
on a optical microscope. The images were then further processed by image processing and analysis software. 

After the image acquisition, some initial pre-processing of the raw image was performed, such as contrast 
enhancement and filtering. In this way the images become standardized, which facilitated the extraction of the 
size and location of each fiber from the image. Magnification was chosen so that one pixel in the acquired image 
corresponded to an actual physical square with side 0.26 km. 

The procedure after the image pre-processing involved separation of the fibers from the background of the 
matrix (image segmentation) and computing the location and.size of the fibers. In the microscope the fibers 
appear as objects of high brightness surrounded by a background with lower intensity corresponding to the 
matrix phase. The grey level distribution of the digitized image contained two peaks, corresponding to the 
matrix and the carbon fibers. The separation of the fibers from the background was performed by threshholding 
the grey level images. This operation allowed the fibers to be extracted from the matrix background. To assure 
reproducibility, the grey level threshold was chosen as the average of the gray levels at the two peaks. From the 
threshholding, a binary image was constructed in which the fiber and the matrix had different assigned values. 
However, in order to take into account the variation of the grey level distribution over the complete image, the 
threshholding was performed in a localized manner. Each image was divided into subimages, of approximate 
size 500 pixels by 500 pixels, where the threshhold levels were separately determined. 
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2 Problem Statement

Reliable mathematical and computational models for predicting the response of fiber compos-
ites due to external forces must be designed based on and backed by real experimental data.
In this section, we first present the real data that is used throughout this work. We then
consider the deformation of fiber composites and describe the mathematical formulation of a
simplified one-dimensional problem. Finally, we briefly address di�erent models for treating
uncertainty in the problem.

2.1 Real data

The real data that we use are obtained from a small piece of a HTA/6376 carbon fiber-
reinforced epoxy composite plate [11, 15] with a rectangular cross section of size 1.7◊0.5 mm2,
and consisting of four plies containing 13688 unidirectional fibers with a volume fraction of
63%. Fiber diameters vary between 4µm to 10µm. Figure 2 shows a map of the size and
position of fibers in an orthogonal cross section of the composite obtained by an optical mi-
croscope. In the present work, this particular map serves as a prototype of fiber distributions
in fiber composites.

Figure 2: Left: A 1.7 ◊ 0.5 mm2 rectangular orthogonal cross section of a small piece of a
fiber composite laminate consisting of four uni-directional plies containing 13688 fibers with
a volume fraction of 63%. Right: A binary image of a small part of the whole micrograph.

The Young’s modulus of elasticity and Poisson’s ratio of the fiber composite under con-
sideration are given in Table 1.

Table 1: Material constants for the composite under consideration.

composite phases a ‹

fiber 24 [GPa] 0.24
matrix 3.6 [GPa] 0.3

2.2 Mathematical formulation: a one-dimensional problem

The deformation of elastic materials is given by the elastic partial di�erential equations
(PDEs) in three dimensions. In the particular case of plane strain, where the length of
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Figure 2: Optical image of a small piece of a fiber composite.

phase E [GPa] ‹

fiber 24 0.24
matrix 3.6 0.3

Table 1: Material constants.

3

Resolving many real-world problems, such as the NSF Grand Challenges [39], requires major
breakthroughs and the development of more sophisticated predictive models beyond probabilistic
approaches and soft computing. One breakthrough we propose is hybrid fuzzy-stochastic prediction,
a novel and unique approach with the potential of improving predictive power in engineering and
science. There are very few publications (in engineering communities) on the synthesis of fuzzy sets
and probability distributions [59, 26, 32]. The fuzzy-random distributions proposed in these works
do not promote mathematical and computational predictive models mainly because the epistemic
nature of the fuzzy approach and its interplay with the probability theory are mathematically ill-
understood [36]. The PI and his collaborator, Ivo Babuöka, are the first mathematicians to develop
the mathematical foundations of hybrid fuzzy-stochastic quantities [63]. In what follows, we will
establish the main concepts of the new framework to solve a complex problem in materials science.
2.2 An Illustrative Model Problem and Need for New Tools
Manufacturing composite materials is a multibillion-dollar industry that will reach $105 billion by
2021 [1]. Major drivers in the market include increased demand for wind energy and lightweight,
fuel-e�cient vehicles and aircrafts, upgrade of old infrastructures, and growth in new construction
[1]. Despite decades of R&D on predictive modeling of composites, costly and time-consuming exper-
iments have remained the major strategy for verifying composite performance [29, 83]. Developing
more advanced, viable predictive models is timely and could improve the reliability of composite
manufacturing and further boost the market, employment, and economic growth.
2.2.1 Problem description and goal of prediction. Fiber composites consist of a large number
of sti� fibers in a matrix which is less sti�. Fiber composites are fabricated based on their response
to external forces. Let D µ R2 be a global domain representing an orthogonal cross section of a
composite subject to external force. The ultimate goal of prediction is to compute a QoI, denoted
by Q, e.g. maximum stress or energy, over a region DQ inside a local domain D0 µ D; see Fig. 1.
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(or equivalently its –-cuts). This is challenging partly due to the interaction between the input fuzzy
arguments. Despite significant applications of fuzzy set theory in engineering sciences, e�cient tools
for the computation of fuzzy functions and fuzzy operations are not well developed. A majority
of available methods simply ignore interaction. As a part of the proposed project, we will develop
such e�cient computational tools taking interaction into account; see Task 4.

4.2 A New Hybrid Fuzzy-Stochastic Multiscale Algorithm. Algorithm 1 outlines a new
multiscale global-local technique in a hybrid fuzzy-stochastic framework; see also Figure 7.
Algorithm 1 A new multiscale algorithm in a fuzzy-stochastic framework

0. Goal: compute a QoI supported on a small domain DQ where |DQ|π |D|.

1. Select a local domain D0 µ D which contains the support of the QoI.

2. Construct the local fuzzy-stochastic PDE model on D0.

3. Construct the global fuzzy-stochastic PDE model on D.

4. Solve the global and local problems simultaneously:
• Compute the boundary data for the local problem from the global solution.
• Compute the QoI from the local solution.
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Figure 7: QoI’s support and local and global do-
mains.

According to the four steps of the algorithm,
we divide the project into four research tasks
and outline detailed research plans. The choice
of ordering is not meant to indicate priority.
Tasks 1–3 are in collaboration with Ivo Babu�ka
(UT Asutin), and Task 4 will be partially in col-
laboration with Daniel Appelö (UNM), Fabio
Nobile (EPFL), and Raúl Tempone (KAUST).

DQ µ D0 µ D

Task 1: Selection of the local domain. Generally speaking, the size of the local domain
D0 must be: (1) su�ciently large compared to the size of microstructure for the approach to
be accurate; and (2) small enough for computations to be feasible. Finding an optimal size is a
challenging task and a key step in the multiscale algorithm. To select the optimal size of D0, we
will propose a strategy by utilizing the concept of representative volume elements (RVEs) [19] and
numerical homogenization [5]. An RVE is a representative cell of the whole structure on average.
More precisely, the e�ective properties of the RVE represent the overall macroscopic properties of
the structure. We select the size LRVE◊LRVE of a square representative element as the size of D0.
The RVE length LRVE will be computed as follows.

1. Generate a sequence of increasing element lengths 10µm < L1 < L2 < . . . < Lr π |D|.
2. On each domain Di of size Li ◊ Li:

• Use M bootstrap discrete samples {bm(xj)}Mm=1, with {xj}Nx
j=1

œ Di, and apply two-
dimensional numerical homogenization with homogenization length H = Li to obtain M
discrete samples {bHm(xj)}Mm=1 of the e�ective parameter (see below).
• Compute sample mean µi(xj) and sample standard deviation �i(xj) of the e�ective param-
eter, and take their average over all discrete points {xj}Nx

j=1
to compute µ̄i and �̄i.

• Compute the variations of the e�ective parameter on the domain: ÁLi := �̄i/µ̄i.
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Figure 1: A schematic representation of
support of QoI and local-global domains.

Consider the abstract form of the problem Q = M(◊),
where the mathematical modelM, consisting of constitu-
tive equations and initial-boundary conditions, maps the
input material parameters ◊ into the output QoI Q. This
challenging problem exhibits both multiple length scales
and various types of uncertainty. The length scale spans
from the diameter of fibers (≥10 micron) to the size of the
composite (≥1 meter). Moreover, while the inherent variations in material properties and the spatial
distribution of fibers are random, the scarcity and variability of observational data and limited infor-
mation about the model are non-random. This model problem illustrates one of the most challenging
aspects of current UQ approaches lying in the fact that the model M and probability distribution
of ◊ are not known.
2.2.2 Real experimental data. The characterization of uncertainty in ◊ and the validation ofM
are carried out based on observational data. We consider a small piece of HTA/6376 fiber composite
[17], consisting of four plies containing 13688 carbon fibers with a volume fraction of 63% in epoxy
matrix. Fig. 2 shows a map of fibers obtained by an optical microscope. This particular map serves
as a realistic prototype of fiber distributions in our studies. The modulus of elasticity E and Poisson’s
ratio ‹ of the composite given by the manufacturer are shown in Table 1.
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Table 1 
Material constants of the composite under consideration 

E ,,her = 24 GPa 
qlhcr = 0.24 
Gm = E,,,,r’X + ~,t,cr) 
E rnatr,x = 3.6 GPa 
Twr,x = 0.3 
G mltrlx = Ernmx ‘Xl + Gt,,,) 

Fig. 2. The group of four unidirectional plies. Note the 
of the matrix-rich zones between the plies. 

visibility Fig. 3. Part of the complete large-size micrograph (a) Gray level 
image; (b) binary image. 

So far, we have considered only one cross-section. Although in our analysis we will assume that the fibers are 
perfectly aligned, in reality they exhibit misalignment about their average direction. This microstructural 
characteristic is often referred as fiber undulation or fiber waviness. To get information about the waviness, 15 
parallel cuts of the material were made, 50 pm apart with a precision of 2 km, and the positions of the fibers in 
these crossections were obtained by the technique described above. 

In Fig. 4 we show the centers of the fibers in the 15 sections in a window of 2000 fibers. The figure clearly 
shows clearly the waviness of the fibers. We see that in the matrix regions between plies (compare Fig. 2) the 
fiber undulations are large, most likely due to small numbers of neighboring fibers. The maximum angle 
between any fiber and the z-axis is 6” with the standard deviation 1.2”. 

The distribution of the fibers in the cross section was determinated by optical microscope. The size of the 
observation window was approximately 400 X 400 pm. 

The cross-section samples were carefully polished with several series of different sized diamond particles in 
standard equipment for metallographic specimen preparation. The final polishing was performed with a 1 pm 
diamond spray on a hard cloth in order to obtain the best possible edge sharpness between the two phases in 
digital images. 

The microstructure was digitized into an &bit digital image, i.e. a grey level image, by a CCD-camera located 
on a optical microscope. The images were then further processed by image processing and analysis software. 

After the image acquisition, some initial pre-processing of the raw image was performed, such as contrast 
enhancement and filtering. In this way the images become standardized, which facilitated the extraction of the 
size and location of each fiber from the image. Magnification was chosen so that one pixel in the acquired image 
corresponded to an actual physical square with side 0.26 km. 

The procedure after the image pre-processing involved separation of the fibers from the background of the 
matrix (image segmentation) and computing the location and.size of the fibers. In the microscope the fibers 
appear as objects of high brightness surrounded by a background with lower intensity corresponding to the 
matrix phase. The grey level distribution of the digitized image contained two peaks, corresponding to the 
matrix and the carbon fibers. The separation of the fibers from the background was performed by threshholding 
the grey level images. This operation allowed the fibers to be extracted from the matrix background. To assure 
reproducibility, the grey level threshold was chosen as the average of the gray levels at the two peaks. From the 
threshholding, a binary image was constructed in which the fiber and the matrix had different assigned values. 
However, in order to take into account the variation of the grey level distribution over the complete image, the 
threshholding was performed in a localized manner. Each image was divided into subimages, of approximate 
size 500 pixels by 500 pixels, where the threshhold levels were separately determined. 
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2 Problem Statement

Reliable mathematical and computational models for predicting the response of fiber compos-
ites due to external forces must be designed based on and backed by real experimental data.
In this section, we first present the real data that is used throughout this work. We then
consider the deformation of fiber composites and describe the mathematical formulation of a
simplified one-dimensional problem. Finally, we briefly address di�erent models for treating
uncertainty in the problem.

2.1 Real data

The real data that we use are obtained from a small piece of a HTA/6376 carbon fiber-
reinforced epoxy composite plate [11, 15] with a rectangular cross section of size 1.7◊0.5 mm2,
and consisting of four plies containing 13688 unidirectional fibers with a volume fraction of
63%. Fiber diameters vary between 4µm to 10µm. Figure 2 shows a map of the size and
position of fibers in an orthogonal cross section of the composite obtained by an optical mi-
croscope. In the present work, this particular map serves as a prototype of fiber distributions
in fiber composites.

Figure 2: Left: A 1.7 ◊ 0.5 mm2 rectangular orthogonal cross section of a small piece of a
fiber composite laminate consisting of four uni-directional plies containing 13688 fibers with
a volume fraction of 63%. Right: A binary image of a small part of the whole micrograph.

The Young’s modulus of elasticity and Poisson’s ratio of the fiber composite under con-
sideration are given in Table 1.

Table 1: Material constants for the composite under consideration.

composite phases a ‹

fiber 24 [GPa] 0.24
matrix 3.6 [GPa] 0.3

2.2 Mathematical formulation: a one-dimensional problem

The deformation of elastic materials is given by the elastic partial di�erential equations
(PDEs) in three dimensions. In the particular case of plane strain, where the length of
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Figure 2: Optical image of a small piece of a fiber composite.

phase E [GPa] ‹

fiber 24 0.24
matrix 3.6 0.3

Table 1: Material constants.

3

handle epistemic uncertainty, they su�er from the non-propagation of uncertainty across scales, as
illustrated in [80]. We propose a third option beyond the framework of probability.
2.2.5 A new hybrid fuzzy-stochastic framework. To accurately characterize and propagate the
hybrid uncertainties, we propose to represent the compliance by a hybrid model: a non-Gaussian

random field with fuzzy moments. This is motivated by the shape of the histogram of each moment,
which resembles a fuzzy set [101]. The new model will amount to a new class of PDEs, coined
fuzzy-stochastic PDEs, for which forward and inverse computational tools will be developed.
2.3 Mathematical Foundations of Fuzzy-Stochastic Quantities
This section provides a brief overview of fuzzy-stochastic quantities. We refer to [63] for details.
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Figure 4: Fuzzy vs. crisp sets.
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Figure 5: –-cut representation.

Fuzzy variables (or fuzzy sets) [101] generalize the notion of crisp
sets. In a crisp set, the membership of an element is given by the
characteristic function: 0 (not a member) or 1 (a member). In a
fuzzy set, elements can partially be in the set. Each element is
given a membership degree from 0 to 1; see Fig. 4. We define
a fuzzy variable by a set of pairs z̃ = {(z, µz̃(z)), z œ Z, µz̃ :
Z æ [0, 1]}, where Z µ R is a compact, convex set, and µz̃ is a
continuous quasi-concave membership function. The membership
function µz̃ can be represented by a family {S z̃

–µZ, –œ[0, 1]} of its
–-level sets, or –-cuts. The –-cuts are compact, connected intervals
with the inclusion property S z̃

–2µS z̃
–1 for 0Æ–1 <–2Æ 1; see Fig.

5. Analogous to correlation between random variables, we need to
consider interaction between fuzzy variables. Let z̃ = (z̃1, . . . , z̃n)
be a vector of n fuzzy variables on a compact, convex set Z µ Rn,
with one-dimensional (or marginal) –-cut intervals S z̃i

– , i = 1, . . . , n. The fuzzy variables are non-

interactive if their joint –-cut S z̃
– is the hyperrectangle

rn
i=1

S z̃i
– = S z̃1

– ◊ . . .◊S z̃n
– , and interactive if

their joint –-cut is a continuous curve embedded in
rn

i=1
S z̃i
– . We denote the set of all fuzzy vectors

on Z by F(Z).
Fuzzy functions are defined as crisp maps with fuzzy arguments generating output fuzzy variables.
Let z̃ œ F(Z), and let u : F(Z) æ F(V ), with V µ R, be a continuous map so that ũ = u(z̃) œ F(V )
is an output fuzzy variable. The computation of the output membership function µũ amounts to the
computation of its output –-cuts Sũ

–, given by the function-set identity [73, 41]
Sũ
– = u(S z̃

–) = [min
zœSz̃

–

u(z), max
zœSz̃

–

u(z)], ’– œ [0, 1]. (1)
Crucially, this allows us to decompose fuzzy computations into several interval computations.
Fuzzy-stochastic variables generalize the notion of random variables [44]. A fuzzy-stochastic
variable ỹ:� æ F(V ), with V µR, is a fuzzy-valued measurable function on a sample space �. Every
realization ỹ(Ê), for some Ê œ �, is a fuzzy variable, rather than a real number. The fuzzy-valued
probability measure on ỹ is described by a fuzzy CDF, represented by a nested set of left and right
envelopes (extrema) of a set of parameterized CDFs with fuzzy parameters; see Fig. 9.
Fuzzy-stochastic functions are crisp maps with fuzzy and random vectors as arguments, gener-
ating output fuzzy-stochastic variables. The computation of a fuzzy-stochastic function amounts to
computing the fuzzy CDF of its output.
3 Research Plan
3.1 The Hybrid Fuzzy-Stochastic Predictive Algorithm
We present a systematic calibration-validation-prediction approach within a hybrid fuzzy-stochastic
framework, outlined in Algorithm 1. We first distinguish between three processes:
• Calibration involves the characterization (and reduction) of uncertainty in the model parameters.
• Validation determines if the model is capable of predicting the QoI with su�cient accuracy.
• Ultimate prediction uses the valid model to predict the target QoI.
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2. There is often no clear-cut distinction between aleatoric and epistemic 
uncertainty in real-world problems. There may be a random quantity whose 
parameters are partially known, or there may be an epistemically uncertain quantity 
for which some values are more likely to occur than others. Consequently, it may 
not be possible to simply model aleatoric uncertainty by probability distributions 
and epistemic one by intervals or fuzzy sets.

We may need hybrid frameworks obtained by the synthesis of  two models rather 
than simply adding them: interval probability, fuzzy probability

Finally, is a probabilistic framework enough?

1. Can we represent epistemic uncertainty (lack of knowledge) by a precise 
probability distribution (with known moments)? 

Maybe not! We may need other frameworks: intervals, fuzzy sets, evidence theory
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Consider rolling a die

• precise probability
• imprecise probability

Let us see the difference between

A simple intuitive example
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Random event:  E = rolling a six on a fair die

Probability:    P(E) = 1/6 ~ 16.67%

Interpretation: we are willing to place 16.67 cents as the fair price for a bet that 
returns $1 if we get a six, and nothing if we do not get a six.

Precise probability

37
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Random event:  E = rolling a six on an unfair die

Probability:    P(E) = ?     we do not know how unfair the die is (lack of knowledge)

We ask a few (say 10) experts with possibly different opinions:

P1(E) = 10%,       P2(E) = 12%,      P3(E) = 15%,     ….     P10(E) = 20%

Probability:  P(E)      [10%, 20%] is given by an interval (taking min and max)
The true probability will lie in the interval

For ex. each expert may run several (many or a few) experiments and use a different 
approach (Bayesian, classic, etc.)

Imprecise probability

Interpretation: we are willing to bet $1 and get something between $5-$10 if we get a 
six, and nothing if we do not get a six. 

We have no information on how each expert obtained his/her value (lack of knowledge) 

0 1 ↵1 ↵2 S(0) S(1) S(↵1) S(↵2) Su(0) Su(1) Su(↵1) Su(↵2)

z µ(z) u µout(u) ũ = u(z̃)

w w⇤ µ(F (w⇤))F (w)

z z⇤ z↵,l z↵,r z⇤↵,l z⇤↵,r

{M1, M2, M3, . . . } ⇥ Q = M(⇥)

x = (x1, x2) a(x1, x2) 1015

z̃ = (z̃1, z̃2, z̃3, z̃4)

a(x,y, z̃) =  �1(z̃) ��(G(x,y))

w(!), ! 2 ⌦ w̃(!), ! 2 ⌦ L = 1[m]

@x(a(x,y, z̃) @xu(x,y, z̃)) = 0 u(0,y, z̃) = 0 a(L,y, z̃) @xu(L,y, z̃) = 1

a(x) = E�1(x) G(x,y)
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A few good books
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