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Homework (5 hp)

¢ In total 3-4 homework sets (HWs) will be assigned. You will need to do at least 3 HWs
to receive full credit.

e Each HW may consist of a number of theoretical problems and computer assignments:

* You are strongly encouraged to work in pairs and hand in a single report.
¢ Groups of more than 2 students are not allowed.

* You need to hand in a hard copy of your reports in class on due date.

* Do not send your reports by email.

¢ If you are going to miss a deadline, talk to me in advance.

HW Reports

* First page of your report must be a cover page, which should look like this:

HW 1
(Ue]

Student’s full name 1
Student’s full name 2

DATE

* Organize your report according to the order of questions.
(2nd page must start with question # 1 in HW and continue with questions #2, #3, ...)

* No Appendix! Do not put any appendix in your report.

Suggestions:

* The following strategy is recommended when writing answer to a question (if applicable):
1- What: write briefly what the question is (what you are asked to do)
2- How: write how you solve the question, and show your results (figures, tables, numbers, etc)
3- Why: discuss your results

* Try to use an editing program/document processor (Microsoft Word, Latex, efc.).
If you write by hand, make sure it is readable.




Final Project (2.5 hp)

* Afinal project MAY be assigned to you by the end of the course (October 25th).

* | may propose several topics and help you choose one that matches your
interests and goals. You are also welcome to propose a project that is of your
interest.

* In the end of the semester (by December 24th), you will need to send me a
written report by email. You will have 2 months to do the project. | will be
available to help as much as | can from distance.

* You are strongly encouraged to work on the projects in groups of two and
hand in a single report.

Lectures (tentative)

. Introduction to UQ

. Probability theory + Karhunen-Loeve expansion

. Stochastic ODEs/PDEs

. Monte Carlo (MC) sampling with cost-error analysis
. Multi-level MC sampling

. Multi-order MC sampling

. Orthogonal Polynomials + Stochastic collocation
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. Sparse computations + Stochastic Galerkin

Other potential topics:

* Bayesian inversion

* Markov chain Monte Carlo sampling

* Gibbs and Metropolis-Hastings sampling




Office hours:

Mondays 10.00 - 12.00 @ place will be announced later

If you cannot make it, you are welcome to email me and make an appointment.

Exceptionally on Monday Sep. 10th | will hold office hours @ Rum 2348

Email policy:

Please do not email me for scientific questions. | will not be able to answer your
scientific questions through email.

Email me only if you have a general, non-scientific question related to the course,
e.g. to make an appointment with me, or to let me know that you will be missing a
lecture, etc.

As the title of your email, please write UQ so that | easily distinguish it among
many other emails that | receive.

Now let’s talk science ...




Science

|

|

observation

theory

computation

systematic practices:

- reproducibility
- open access

l

- version control | ___——

(high performance) scientific computing
large projects > 1 TFLOP/s

numerical methods numerical analysis computer algorithms| |[computer simulations
(parallel computing)
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Science
observation theory computation

predictive computational science

An emerging, interdisciplinary field concerned with assessing the predictability of
mathematical and computational tools.

It is based on a systematic incorporation of all three pillars of the scientific method.




Some applications of Predictive Computational Science

earthquake engineering

aerospace industry radar technology astronomy

Predictive Computational Science

e Goal: to model/solve/design systems in science & engineering fields

e Example: Earth science / Earthquake engineering

e A
Observation (experiments)

Theory (mathematics & physics)

|

Is the model well-posed?

/ (existence & uniqueness)
Mathematical Model (ODE’s/PDE’s) \ H
-

Computational Science

Y

Solution of Mathematical Model

A

*Numerical Methods
. 4 *Numerical Analysis
Use the solution: *Computer Algorithms

¢ to make decisions _ Y,




Physical systems are often modeled by deterministic equations.

Input parameters : " .
(PDE coefficients & data)—> Mathematical Model (PDEs) |—> Output quantities of interest

S M Q

M. acoustic/elastic wave equ’s + IC’s + BC'’s

© : PDE coefficients (density & wave speed in each layer, location of layers)
Location of hypocenter (source term)

O : displacement, spectral acceleration, Arias intensity, energy, etc.

numerical simulation

M(©) =Q — M(©) =20

® Steps of numerical simulation task:

1- specify input parameters
2- discretize the PDE (select discretization approach & discretization parameters)
3- visualize & post-process the computed solution to obtain Qols

@ Assumptions:

(i) for the input parameters fixed, the PDE has a unique solution
(ii) the discrete model has a unique solution converging to the model solution
(iii) sufficiently small discretization errors can be achieved

@ Note: The above methodology reflects an idealized situation that may not be

always achieved in practice. In many cases, the input parameters may
not be completely specified or known.




Science

| |

observation theory computation

predictive computational science

An emerging, interdisciplinary field concerned with assessing the predictability of
mathematical and computational tools, particularly in the presence of inevitable
uncertainty and error.

It is based on a systematic incorporation of all three pillars of the scientific method.

Uncertainty (absence of certainty)

Aleatory (or random)

@ Inherent variations and randomness in a system
- earthquake hypocenters (location and intensity of the source)

- variability between patients in biomedical applications

Epistemic (or non-random)
e Lack of information

e limited experimental observations (scarce data)
e limited information about the mathematical model (PDESs)

e Variability of observational data

¢ data are extracted from different sources or standards/handbooks

* material come from different manufacturers and hence have different qualities
e Conflicting beliefs/opinions

e Partial truth (or ambiguity)




Many real-world problems exhibit a mixture of aleatoric and epistemic uncertainties.

Example: Earthquake motion
M acoustic/elastic wave equ’s + IC’s + BC'’s

® : PDE coefficients (density & wave speed in each layer, location of layers)
Location of hypocenter (source term)

Q : displacement, spectral acceleration, Arias intensity, energy, etc.

® Question: is the location of hypocenter deterministic or random?

e |t is random due to the nature of earthquakes (intrinsic variability in the system)

® Question: is the wave speed in each layer deterministic? YES!
do we perfectly know the wave speed in layers or the position of layers? NO!

® Speed is uncertain due to the lack of knowledge

@ Note: Uncertainties may have different origins.

Many real-world problems exhibit a mixture of aleatoric and epistemic uncertainties.

Example: Materials with hierarchical microstructure, e.g carbon fiber polymers

meso
composite plate (~1 m) ply thickness (~10-3 m) fiber diameter (~10=5 m)

) size of fibers
Sources of uncertainty:

2" 1000]

* Randomness in size & spatial distribution of fibers (aleatoric)
e Variability in material properties, e.g. modulus of elasticity (aleatoric)

* Random noise in experimental devices (aleatoric) modulus of fibers

¢ Scarcity in observational data (epistemic) £
¢ Experimental and literature-based variations (epistemic) 1

200-250  250-300 300-350 350-400 400 - 450
E, [GPa]




© In many real applications, parameters in the model are affected by uncertainty, either
because they are not perfectly known or because they are intrinsically variable.

e Input parameters © are uncertain.

e Need to include and treat uncertainty in the PDE model

Model Instead of a single predicted value,
% structure | > we obtain information about the
// range of values that Q may have

2 in light of uncertainty

. M

e Need to include and treat uncertainty in the PDE model

e Uncertainty Quantification is a process that enables us to identify and characterize
uncertainty in systems and propagate it through the model to obtain output predictions.

UQ in probabilistic framework

¢ Both types of uncertainty are often described in probabilistic framework.

® UQ major parts:

1. Identification (identify sources of uncertainty ---> input uncertain parameters)

2. Characterization (characterize input uncertainty by probability distributions)

3. Propagation (evolve input uncertainty through the model ---> distribution of outputs)
Model

strl?ct?]re ‘.-@@

&

v b

» Forward UQ (propagation of uncertainty):

given the probabilistic characterization of the input uncertain parameters,

quantify the uncertainty in the output quantities of interest (Qol): M (©) = Q

» Inverse UQ (characterization of uncertainty):
use available measurements on observables of the system to characterize (or to

improve the characterization of) uncertainty in input parameters: /\/l_l(Q) =0

20



Forward UQ in a probabilistic framework:

Model
% structure FK@
_

M

(1) Identify uncertain input parameters © = O(w)
W an element of a sample space with a given probability measure
(2) Characterize uncertainty in input parameters O(w) =~ O(Y (w)) = O(Y)

Y € RY an N-dimensional random vector of independent variables

(3) Propagate uncertainty in input parameters through the model

Q(Y) = Q(Y) = M(8(Y))

@ Monte Carlo Sampling (standard MC, Multi-Level MC, Multi-Order MC, ...)

@ Spectral methods (Stoch. Galerkin, Stoch. Collocation, Stoch. least squares, ...)
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Inverse UQ in probabilistic framework: /\/l_l(Q) =0

Use Bayesian approach: p(@‘ Q) - p(Q‘@) p(@)
posterior pdf o likelihood x prior pdf

Problem types:
Bayesian inference (Bayesian inversion)

Bayesian experimental design

Methods:
@ Markov Chain Monte Carlo method (MCMC)

* Gibbs sampling

* Metropolis-Hastings sampling

22



Example 1. Groundwater flow in random heterogeneous porous media

u=—k(x)Vp D
V-ou=f
+ BC’s on 0D

e The first equation is the Darcy’s law: the pressure gradient VP and the fluid
velocity 1 in a porous medium follow a linear relation.

e The second equation is the mass conservation relating sinks and sources of flow
to the velocity field.

o In most aquifers, permeabilities k(x) > 0 of the ground are not perfectly known.

o They can be described as a random field k(x,w):

The permeability k:(xl) at each point x; € I is arandom variable. Taking N

points {Xi}é\il the random variables {k(x;)}.\, are in general correlated.

e The solution is also a random field: u = u(x,w)

23

Main questions to be addressed by UQ:

1. How to characterize permeability by a random field?
2. How to guarantee positivity of the permeability random field?

3. How to numerically treat random fields?

4. How to solve the stochastic problem?

We will try to address (some of) these questions in this course ...

24



Example 2. Seismic waves in random layered media

o(x)uy —V-o(u) =1 in (0,7] xD
7 +1ICs and BC’s

o) =A(x)V-ul + pu(x) (Va4 Vu')

* Goal: to find the displacement of the medium U due to the propagation of elastic waves.

¢ Typically, the medium is made of N layers of different materials, whose mechanical

properties {(0i, \i, 11i) Y)Y are not perfectly known.

» Other parameters ( position of internal interfaces, location of earthquake hypocenter)
could also be uncertain.

* We therefore have a vector of at leas 3 N random variables Y.

* The solution also depends on the random vector: u = u(t,x,Y")

25

Example 3. Option pricing with uncertain volatility

of | of o’
Black-Scholes model: ot Os 2 0s?

(Nobel prize in economics 1997) f(s, T) = max(s — K,0),

=rf, 0<t<T,

The Royal Swedish Academy of Sciences:

Robert C. Merton and Myron S. Scholes have, in collaboration with the late Fischer Black,
developed a pioneering formula for the valuation of stock options.

* The value of an option (a financial contract): f: (0, T) x (0,00) = R
* The price of the stock: S € (0,0)

e |nterest rate: r

*The volatility o (a measure for variation of price of the stock) is often uncertain.

It corresponds to the standard deviation of stock’s price process (in time).

Goal: Quantify the impact of volatility uncertainty on option pricing.

26



UQ is not the whole story!

There are still many Grand challenges facing humankind:

* prediction of climate change

¢ the effects of various medical therapies

* performance of energy systems (energy development)
¢ prediction of economic crises

* dynamic response of modern/smart materials

UQ is not enough to deal with such challenges.

27

Science

| |

observation theory computation

predictive computational science

Both uncertainty and error are present.

Need a systematic incorporation of all three pillars of the scientific method.

Need UQ + Validation + Verification (UQVYV) in a systematic way.

28



Suppose we include uncertainty and employ UQ to find Qol.[The physical system

A main question:

» How reliable are the computational predictions (Qol)? l
Can they be trusted for decision-making or designing -
a crucial system? Mathematical Model

(PDEs w. uncertain parameters)

Errors typically arise from: ‘L
Computational Model

» the choice of the PDE model (Model error)

» the discretization schemes (Numerical error) A
Using the predictions (Qol)

« to design a system

In addition to UQ, we need two related processes: « to make a Decision

> Validation: are we solving the correct model?

> Verification: are we solving the model correctly?

@ To account for both uncertainties and errors, we need to rely on both UQ and VV.

29

Verification:

The goal of verification is to estimate and control the error in each Qol.

@ Solution verification is defined only in terms of specified Qol. Different Qol will be
affected differently by numerical errors.

- use a posteriori error estimates (numerical error estimates for specified Qol)
- perform self-convergence studies (Qols are computed at different levels of refinement)

@ Code verification: exploit the hierarchical composition of codes and mathematical

models, with verification performed first on the lowest-level building blocks and then on
successively more complex levels.

30




Validation:

Validation is defined only in terms of specified Qol. Different Qol will be affected
differently by errors.

A validation assessment provides information about model accuracy only in the
domain of physical observations (experimental/measured data).

Experimental data must be acquired and integrated into computer codes. They are used
for two main purposes:

» to identify and characterize values of unknown model parameters (calibration)

» to determine whether the model can correctly predict the Qol (validation)

® Note: Measured data are often scarce and uncertain. This must be taken into account.
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A conceptual diagram for UQVV:

UNCERTAINTY QUANTIFICATION

PREDICTION

THE UNIVERSE
of
PHYSICAL
REALITIES

Observational
Errors Lo h Discretization
Errors

COMPUTATIONAL
MODELS

..........

THEORY /
MATHEMATICAL
MODELS

! OBSERVATIONS
:

'
VALIDATION VERIFICATION
'

....................

* A systematic UQVV approach to science would bring not only confidence in the decisions one
needs to make about physical systems but also deeper knowledge about our physical world.

* UQVV processes have been recently the subject of considerable research activities in CSE

* Predictive modeling of physical phenomena based on UQVYV is a truly challenging problem.
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UQVV principals

v UQVV processes must focus on a set of specified Qols rather than on the full
solution of the model.

v UQVYV tasks are interrelated.

v’ Verification should come before Validation.

33

Calibration-Validation-Prediction pyramid/hierarchy

Prediction

Validation

= = == ==
= = == == == Calibration

o Calibration involves the characterization (and reduction) of uncertainty in the model parameters.

e Validation determines if the model is capable of predicting the Qol with sufficient accuracy.
e Ultimate prediction uses the valid model to predict the target Qol.
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Finally, is a probabilistic framework enough?

1. Can we represent epistemic uncertainty (lack of knowledge) by a precise
probability distribution (with known moments)?

Maybe not! We may need other frameworks: intervals, fuzzy sets, evidence theory

2. There is often no clear-cut distinction between aleatoric and epistemic
uncertainty in real-world problems. There may be a random quantity whose
parameters are partially known, or there may be an epistemically uncertain quantity
for which some values are more likely to occur than others. Consequently, it may

not be possible to simply model aleatoric uncertainty by probability distributions
and epistemic one by intervals or fuzzy sets.

We may need hybrid frameworks obtained by the synthesis of two models rather
than simply adding them: interval probability, fuzzy probability

35

A simple intuitive example

Consider rolling a die

Let us see the difference between

e precise probability
e imprecise probability

36
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Precise probability

Random event: E = rolling a six on a fair die

Probability: P(E) = 1/6 ~ 16.67%

Interpretation: we are willing to place 16.67 cents as the fair price for a bet that
returns $1 if we get a six, and nothing if we do not get a six.

37
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Imprecise probability

Random event: E = rolling a six on an unfair die

Probability: P(E)=? we do not know how unfair the die is (/ack of knowledge)

We ask a few (say 10) experts with possibly different opinions:
P1(E)=10%, P2(E)=12%, P3(E)=15%, .... P10(E)=20%
We have no information on how each expert obtained his/her value (/ack of knowledge)

For ex. each expert may run several (many or a few) experiments and use a different
approach (Bayesian, classic, etc.)

Probability: P(E) € [10%, 20%)] is given by an interval (taking min and max)
The true probability will lie in the interval

Interpretation: we are willing to bet $1 and get something between $5-$10 if we get a
six, and nothing if we do not get a six.

38
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A few good books

STOCHASTIC
TJ. Sullivan GAI"Gm"US
Introduction
to Uncertainty
Quantification
Q spriner

Bayesian Data Analysis
Third Edition

Statistical
Reasoning
with Imprecise
Probabilities

Peter Walley

Andrew Gelman, John B. Carlin, Hal S. Stern,
David B. Dunson, Aki Vehtari, and Donald B. Rubin
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Verification and
Validation in
Scientific Computing
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