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Abstract
Weconsider themotion of ideal incompressible fluidwith free surface.Weanalyzed the
exact fluid dynamics through the time-dependent conformal mapping z = x + iy =
z(w, t) of the lower complex half plane of the conformal variable w into the area
occupied by fluid. We established the exact results on the existence vs. nonexistence
of the pole and power lawbranch point solutions for 1/zw and the complex velocity.We
also proved the nonexistence of the time-dependent rational solution of that problem
for the second- and the first-order moving pole.

Keywords Water waves · Complex singularities · Conformal map · Fluid dynamics

1 Introduction

Consider an ideal incompressible fluid with free surface which occupies the infinite
region −∞ < x < ∞ in the horizontal direction x and extends down to y → −∞ in
the vertical direction y as schematically shown in the left panel of Fig. 1. It is assumed
that there is no dependence on the third spatial dimension, i.e., the fluid motion is
exactly two dimensional. The bulk of fluid is at the rest, i.e., there is no motion both at
|x | → ±∞ and y → −∞. A potential motion of the ideal incompressible fluid with
free surface can be addressed by a time-dependent conformal mapping:

z(w, t) = x(w, t) + iy(w, t) (1)
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Fig. 1 Shaded area represents the domain occupied by fluid in the physical plane z = x + iy (left) and the
same domain in w = u + iv plane (right). Thick solid lines correspond to the fluid’s free surface

of the lower complex half-plane C
− of the auxiliary complex variable w ≡ u +

iv, −∞ < u < ∞, into the area in (x, y) plane occupied by the fluid. Here, the real
line v = 0 is mapped into the fluid free surface (see Fig. 1) and C

− is defined by the
condition −∞ < v ≤ 0. The time-dependent fluid free surface is represented in the
parametric form as:

x = x(u, t), y = y(u, t). (2)

Adecay of perturbation of fluid beyondflat surface at x(u, t) → ±∞ and/or y → −∞
requires that:

z(w, t) → w for |w| → ∞, w ∈ C
−. (3)

The conformal mapping (1) implies that z(w, t) is the analytic function of w ∈ C
−

and:
zw �= 0 for any w ∈ C

−. (4)

To account for the fluid motion, one considers a complex velocity potentialΠ(z, t):

Π = Φ + iΘ, (5)

where Φ(r, t) is the velocity potential determined by the condition that the fluid
velocity v is the potential one, v = ∇Φ, and Θ is the stream function Θ defined by:

Θx = −Φy and Θy = Φx . (6)

The incompressibility condition ∇ · v = 0 implies the Laplace equation ∇2Φ = 0
inside fluid, i.e., Φ is the harmonic function inside fluid. Equation (6) represents the
Cauchy-Riemann equations ensuring the analyticity of Π(z, t) in the domain of z
plane occupied by the fluid, so Θ is the harmonic conjugate of Φ. Without loss of
generality, we assume a zero Dirichlet boundary condition (BC) for Π as:

Π → 0 for |x | → ∞ or y → −∞. (7)

The conformal mapping (1) ensures that the function Π(z, t) (5) transforms into
Π(w, t) which is the analytic function of w for w ∈ C

− (in the bulk of fluid). Here
and below, we abuse the notation and use the same symbols for functions of either
w or z (in other words, we assume that, e.g., Π̃(w, t) = Π(z(w, t), t) and remove ˜
sign). The conformal transformation (1) also ensures the Cauchy–Riemann equations
Θu = −Φv, Θv = Φu in w plane.
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BCs at the free surface are time-dependent and consist of kinematic and dynamic
BCs. A kinematic BC ensures that free surface moves with the normal velocity com-
ponent vn of fluid particles at the free surface. Motion of the free surface is determined
by a time derivative of the parameterization (2), while the kinematic BC is given by a
projection of v into the normal direction as:

n · (xt , yt ) = vn ≡ n · ∇Φ|x=x(u,t), y=y(u,t), (8)

where n = (−yu ,xu)

(x2u+y2u )1/2
is the outward unit normal vector to the free surface and sub-

scripts here and below mean partial derivatives, xt ≡ ∂x(u,t)
∂t , etc.

A dynamic BC is given by the time-dependent Bernoulli equation (see, e.g., [25])
at the free surface:

(
Φt + 1

2
(∇Φ)2 + gy

)∣∣∣∣
x=x(u,t), y=y(u,t)

= −Pα, (9)

where g is the acceleration due to gravity and Pα = −α(xu yuu−xuu yu)

(x2u+yu)3/2
is the pressure

jump at the free surface due to the surface tension coefficient α. Here, without loss of
generality, we assumed that pressure is zero above the free surface (i.e., in vacuum).
Also below in this paper, we assume zero surface tension α = 0. All results below
apply both to the surface gravity wave case (g > 0) and the Rayleigh–Taylor problem
(g < 0).

Equations (8) and (9) together with the analyticity (with respect to the independent
variable w) of both z(w, t) and Π(w, t) inside fluid form a closed set of equations
which is equivalent to Euler equations for dynamics of ideal fluid with free surface.
The idea of using time-dependent conformal transformation like (1) to address free
surface dynamics of ideal fluid was exploited by several authors including [8–10,16,
32,34,38,39,43]. We follow the approach of Refs. [16,17,41] to transform from the
unknowns z(w, t) and Π(w, t) into new equivalent “Dyachenko” variables [13]:

R = 1

zw

, (10)

V = i
∂Π

∂z
= iRΠw. (11)

Then, the dynamical equations at the real linew = u take the following complex form
[13]:

∂ R

∂t
= i (U Ru − RUu) , (12)

U = P̂−(RV̄ + R̄V ), B = P̂−(V V̄ ), (13)

∂V

∂t
= i [U Vu − RBu] + g(R − 1), (14)
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where

P̂− = 1

2
(1 + iĤ) and P̂+ = 1

2
(1 − iĤ) (15)

are the projector operators of a function q(u) (defined at the real line w = u) into
functions q+(u) and q−(u) analytic in w ∈ C

− and w ∈ C
+, respectively, such that

q = q+ + q−, i.e., P̂+(q+ + q−) = q+ and P̂−(q+ + q−) = q−. Here, we assume
that q(u) → 0 for u → ±∞. Also the bar means complex conjugation and:

Ĥ f (u) = 1

π
p.v.

∫ +∞

−∞
f (u′)

u′ − u
du′ (16)

is the Hilbert transformwith p.v. meaning a Cauchy principal value of the integral. The
nonlocal operator (15) appears in the dynamical equations [Eqs. (12)–(14)], because
at each given moment of time, one has to find the relation between the value of Φ

at the free surface and its normal derivative to evolve the free surface in the physical
plane z using the kinematic BC (8). Such relation is nothing more then the Dirichlet–
Neumann operator [12] which can be found in w plane explicitly through the Hilbert
transform (16) (see, e.g., Ref. [17] for more discussion on that).

It was found in Ref. [14] that the system (12)–(14) has an arbitrary number of
the nontrivial integrals of motion beyond the natural integrals like the Hamiltonian
and the horizonal momentum (see Ref. [17]). Many of these integrals commute with
each other with respect of the noncanonical Poisson bracket found in Ref. [17]. It was
suggested in Ref. [14] that the existence of such commuting integrals of motion might
be a sign of the Hamiltonian integrability of the free surface hydrodynamics.

In this paper, we aim to address the complimentary question (beyond the pos-
sible Hamiltonian integrability) which is to study allowed vs. not allowed classes of
solutions in the system (12)–(14). To answer that question, we consider analytical con-
tinuation of Eqs. (10)–(14) into the complex plane w ∈ C. In particular, it amounts
to straightforward replacing of u by w in the integral representation of P̂+q(w) and
P̂−q(w) as detailed in Ref. [17]. A complex conjugation f̄ (w) of f (w) in Eqs. (12)–
(14) and throughout this paper is understood as applied with the assumption that f (w)

is the complex-valued function of the real argument w even if w takes the complex
values, so that:

f̄ (w) ≡ f (w̄). (17)

That definition ensures the analytical continuation of f (w) from the real axis w = u
into the complex plane ofw ∈ C.We also notice that in Eqs. (12)–(14) and throughout
this paper, we use the partial derivatives over w and u interchangeably by assuming
the analyticity in w.

Previous work focused primary on branch point singularities in Refs. [1–7,11,15,
20–24,31,33,35,38,39,47,48] in different versions of fluid dynamic equations. Also
pole solutions of zw and Πw were found in Ref. [14] which corresponds to zeros of
R. The question of extending the allowed classes of exact solution remains extremely
to understand the generic dynamics of free surface.

The goal of this paper is to analyze the existence of complex singularities of both R
and V in the complex plane w during the nonzero duration of time. The singularities
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are not allowed for w ∈ C
−, because both z and Π are analytic there (inside the

fluid domain) and the zeros of zw are also excluded for w ∈ C
−, because (1) is the

conformal map. However, the singularities are generally allowed for w ∈ C
+, i.e.,

outside of the fluid domain. One can trivially have any singularity (including poles,
branchpoints, etc.) for both R andV forw ∈ C

+ at the initial time t = 0.The important
question which we analyze if there are singularities that keep their nature in the course
of evolution to at least any finite duration of time. We refer to such singularities as
“persistent”. We found that there are severe restrictions on the existence of persistent
poles of arbitrary order. These restriction are given by the following theorems which
are proven below in Sect. 2:

Theorem 1 Assume that R has the pole of the highest order nmax,R ≥ 1 and V has
the pole of the highest order nmax,V ≥ 0 at z = a(t), a ∈ C

+ with the corresponding
Laurent series:

R =
−1∑

j=−nmax,R

R j (t)(w − a) j + Rreg, nmax,R ≥ 1 (18)

and

V =

⎧⎪⎨
⎪⎩

−1∑
j=−nmax,V

Vj (t)(w − a) j + Vreg for nmax,V ≥ 1,

Vreg for nmax,V = 0,

(19)

where

Rreg =
∞∑
j=0

R j (t)(w − a) j (20)

and

Vreg =
∞∑
j=0

Vj (t)(w − a) j (21)

are the regular parts of R and V (these regular parts are the analytic functions at
w = a(t)). It is assumed that R−nmax,R (t) and V−nmax,V (t) are nonzero. We also define
the Taylor series representations at w = a of the functions R̄ and V̄ (these functions
are analytic at w = a from the definition (17), because both R and V are analytic at
w = ā) as follows:

R̄(w, t) ≡ Rc(t) +
∞∑
j=1

Rc, j (t)(w − a) j . (22)

and

V̄ (w, t) ≡ Vc(t) +
∞∑
j=1

Vc, j (t)(w − a) j , (23)
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where Rc(t) = Rc,0(t) ≡ R̄(w, t)|w=a and Vc(t) = Vc,0(t) ≡ V̄ (w, t)|w=a are zero-
order terms and Rc, j (t), Vc, j (t) are the coefficients of the higher order terms of the
respective power series. Then, Eqs. (12)–(14) can have persistent in time pole solution
(18)–(21), such that both R and V have only simple poles singularities at a moving
point w = a(t) only if the following conditions are all satisfied:

(a) nmax,V < nmax,R , i.e., the order of the highest poles of V is always lower than the
order nmax,R of the highest pole of R.

(b) Moreover, nmax,V ≤ nmax,R −m −1, where m = (nmax,R −2)/2 for nmax,R even
and m = (nmax,R − 1)/2 for nmax,R odd.

(c) The coefficients of Eq. (23) must satisfy the conditions Vc,1 = Vc,2 = · · · =
Vc,m = 0 provided nmax,R ≥ 3, where m is defined in (b).

(d) The coefficient of the highest nonzero pole of V is given by V−nmax,R+m+1 =
− R−nmax,R Vc,m+1

Rc
provided nmax,R ≥ 2, where m is defined in (b).

Remark 1 For the particular case of nmax,R = 0, Theorem 1 recovers Theorem 1 of
Ref. [14].

Remark 2 Rc in the denominator in (d) does not create any problem, because the
conformal map (1) and the definition (10) imply that R(w) �= 0 for w ∈ C

− and,
respectively:

R̄c = R(w)|w=a �= 0 for a ∈ C
+. (24)

This is a fact of essential importance for the proof of Theorem 1.

Remark 3 In addition to the expression in (d) in Theorem 1, it is possible to provide the
explicit expressions for the coefficients V−nmax,R+m+2, . . . , V−1 provided nmax,R ≥ 4.
These coefficients are fully determined by the coefficients in Eqs. (18), (22), and (23)
only (and depend neither on time derivatives of these coefficients or at and g). In
particular:

V−nmax,R+m+2 = R−nmax,R (Rc,1Vc,m+1 − RcVc,m+2) − R−nmax,R+1RcVc,m+1

(Rc)2
. (25)

However, the other explicit expressions for V−nmax,R+m+3, . . . , V−1 turn increasingly
bulky with the increase of nmax,R , so we do not provide them here. Equation (25) is
derived as the byproduct of the proof of Theorem 1 in Sect. 2.

Remark 4 Theorem 1 provides only the necessary conditions for the existence of the
persistent pole solutions. These necessary conditions are quite restrictive and it appears
likely that except very rear exceptions, such persistent pole solutions do not exist. The
only known exception is the trivial case:

g = 0,
∂ R

∂t
≡ 0, and V ≡ 0, (26)

i.e., a stationary solution of fluid at rest without gravity. In Eqs. (12)–(14), the zero
velocity V ≡ 0 implies that U = B ≡ 0. Then, Eq. (12) is satisfied by ∂ R

∂t ≡ 0, while
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Eq. (14) reduces to g(R − 1) ≡ 0. Then, either R ≡ 1, i.e., a flat-free surface (which
we do not consider as absolutely trivial) or g = 0 as in Eq. (26). Any singularity of R
for w ∈ C

+ is allowed for the stationary solution (26). In the sense of the existence of
such trivial solution, Theorem 1 cannot be improved at least for g = 0 to fully exclude
pole solutions in R. If g �= 0, then for the initial conditions with the zero velocity
V ≡ 0 and pole(s) in R, it is generally expected a formation of logarithmic branch
point(s) in infinitely small time in line with the results of Ref. [39]. The detailed study
of such logarithmic singularity is, however, beyond the scope of this paper.

Another way to strengthen Theorem 1 is to address the existence of the purely
rational time-dependent solutions of Eqs. (12)–(14). It would be generally extremely
attractive to find rational solutions containing only pole-type singularities in w. There
are examples of different reductions/models of free surface hydrodynamics which
allows such rational solutions. They include a free surface dynamics for the quantum
Kelvin–Helmholtz instability between two components of superfluid Helium [29,30];
an interface dynamic between ideal fluid and light highly viscous fluid [26], and a
motion of the dielectric fluid with a charged and ideally conducting free surface in
the vertical electric field [44–46]. The general case of the ideal fluid with free surface
considered in this paper, however, appears to resists heavily to the existence of such
rational solutions. The following theorem is proven in Sect. 3:

Theorem 2 Assume the following rational solution of Eqs. (12)–(14):

R = R−2(t)

(w − a(t))2
+ R−1(t)

(w − a(t))
+ 1,

V = V−1(t)

(w − a(t))
. (27)

Then, beyond the trivial solution (26), all possible solutions of Eqs. (12)–(14) have one
or two zeros of R(w, t) either for w ∈ R or for w ∈ C

−. It implies the singularity of
the conformal map (1) through the definition (10) contradicting the assumption of the
mapping of C− into the area occupied by fluid. Thus, no non-trivial rational solution
(27) exists. In other words, the explicit family of nontrivial rational solutions obtained
in the proof of this theorem is nonphysical because of the violation of the condition
R(w) �= 0.

Remark 5 The rational solution (27), however, satisfies Theorem 1 by allowing up
to the second-order pole in R and the first-order pole in V . This is the example that
Theorem 1 provides only necessary conditions for the existence of the solutions with
poles in R and V .

Remark 6 The last term in the right-hand side (r.h.s.) of the first equation of (27) is
chosen to satisfy R → 1 as required from Eq. (3) at w → ∞, w ∈ C

−. Also the
second equation in (27) satisfies the decaying BC (7).

Remark 7 Theorem 1 is the local results, becausewe use the Laurent series of solutions
of free surface hydrodynamics at any moving point w = a(t), Im(a) > 0. It means
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that we are not restricted to rational solutions, because such local analysis does not
exclude the existence of branch points forw �= a(t), w ∈ C

+. In contrast, Theorem 2
is the global results, because it fully excludes the existence of the rational solution
(27) valid for any w ∈ C.

Remark 8 The exact rational solutions of Eqs. (12)–(14) were obtained in Refs. [14,
40,42,47] for the non-decaying BCs, i.e., for the infinite energy of the fluid.

In contrast to the solution with pole singularities, we show, in Sect. 4, that power
law branch points are persistent with Eqs. (12)–(14) which is consistent with the previ-
ous results of Refs. [1–7,11,14,20–24,31,33,35,38–40,42,47,48] obtained by various
analytic and numerical techniques.

2 Non-persistence of Poles in R and V Variables

In this section, we prove Theorem 1.

Proof We start the proof by recalling Remark 1 that R(w) �= 0 for w ∈ C
−, see

Eq. (24). Here and below, we often omit the second argument t when we focus on
analytical properties in w.

All four functions R, V , U , and B of Eqs. (12)–(14) must have singularities in
the upper half-plane w ∈ C

+ while being analytic for w ∈ C
−. To understand that,

consider the Laurent series (18) and (19) and, similar, the Laurent series:

U =
−1∑

j=−max(nmax,V ,nmax,R)

U j (w − a) j + Ureg, Ureg =
∞∑
j=0

U j (w − a) j , (28)

B =
−1∑

j=−nmax,V

B j (w − a) j + Breg, Breg =
∞∑
j=0

B j (w − a) j . (29)

To understand validity of these equations, we notice that using Eq. (15), we can rewrite
the definitions (13) as:

U = RV̄ + R̄V − P̂+(RV̄ + R̄V ),

B = V V̄ − P̂+(V V̄ ). (30)

The functions P̂+(RV̄ + R̄V ) and P̂+(V V̄ ) are analytic at w = a ∈ C
+; thus,

they only contribute to the regular parts Ureg and Breg, respectively. The functions
R̄ and V̄ are also analytic at w = a with the Taylor series representations (22) and
(23). The sum of two terms RV̄ + R̄V in r.h.s. of the first equation in (30) also
explains why the summation in r.h.s. of Eq. (28) starts from the most singular term
with j = −max(nmax,V , nmax,R). Equations (18),(19),(22),(23), and (28)–(30) imply
that generally U and B have the same types of singularities as R and V except special
cases when poles of either R or V are canceled out.
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If nmax,R ≤ nmax,V , then the most singular term in Eqs. (12)–(14) is −i nmax,V
RcV 2−nmax,V

(w − a)−2nmax,V −1 in r.h.s of Eq. (14), where we used Eqs. (18)–(23) and
(28)–(30). It implies that V−nmax,V = 0 and, respectively, we must set that nmax,R >

nmax,V which completes the proof of the statement (a) of Theorem 1 as well as it
fully covers Theorem 1 for nmax,R = 1, so in the remaining part of the proof, we
assume that nmax,R ≥ 2. Also the power of the most singular term in Eq. (28) turns
into j = −max(nmax,V , nmax,R) = −nmax,R .

The most singular terms in the left-hand side (l.h.s.) of Eqs. (12) and (14) result
from the differentiation of a over t and they have the orders (w − a)−nmax,R−1 and
(w−a)−nmax,V −1, respectively. Thus, they can be ignored for the leading order analysis,
because they are much less singular than the leading terms in r.h.s. of these equations.

The term of the order (w − a)−2nmax,R is identically zero in Eq. (14) because
of nmax,R > nmax,V . Now, the most singular term is −iR−nmax,R [RcV−nmax,R+1 +
R−nmax,R Vc,1] (w − a)−2nmax,R in r.h.s of Eq. (12) which results in:

V−nmax,R+1 = −R−nmax,R Vc,1/Rc, nmax,R ≥ 2, (31)

because R−nmax,R �= 0 by the assumptions of Theorem 1. For nmax,R = 2, Eq. (31)
completes the proof of Theorem 1, so in the remaining part of the proof, we assume
that nmax,R ≥ 3.

Using Eq. (31) to exclude V−nmax,R+1, we obtain the next order term in r.h.s of Eq.

(14) as
−i(nmaxR −2)R2−nmax,R

V 2
c,1

Rc
(w − a)−2nmax,R+1 which implies that:

Vc,1 = 0, nmax,R ≥ 3. (32)

But then, Eq. (31) results in:

V−nmax,R+1 = 0, nmax,R ≥ 3. (33)

Thus, we must set:
nmax,V ≤ nmax,R − 2, nmax,R ≥ 3, (34)

which recovers the statement (b) of Theorem 1 for both nmax,R = 3 and nmax,R = 4
(m = 1 in both these cases as follows from the definition of m in the statement of
Theorem 1). From Eqs. (32) and (33), we obtain that the most singular term in r.h.s
of Eq. (12) is −2iR−nmax,R [RcV−nmax,R+2 + R−nmax,R Vc,2] (w − a)−2nmax,R+1 which
results in:

V−nmax,R+2 = −R−nmax,R Vc,2/Rc, nmax,R ≥ 3, (35)

because R−nmax,R �= 0 by the assumptions of Theorem 1. For both nmax,R = 3 an
nmax,R = 4, Eqs. (32)–(35) complete the proof of Theorem 1. Therefore, in the
remaining part of the proof, we assume that nmax,R ≥ 5.

Remark 9 For nmax,R ≥ 4, one can consider at least one next order before reaching
termswith At in l.h.s. Then, the termof the order (w−a)−2nmax,R+2 is identically zero in
Eq. (14) because of Eqs. (31)–(35). Now, themost singular term is∝ (w−a)−2nmax,R+2
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in r.h.s of Eq. (12) which results in Eq. (25) from Remark 3 for nmax,R = 4 and,
respectively, m = 2.

Proceeding further by induction for nmax,R ≥ 5, we complete the proof of The-
orem 2 through straightforward calculations by collecting the remaining terms of
powers (w − a)−2nmax,R+2, . . . , (w − a)−nmax,R−2 in Eqs. (12) and (14). As it is seen
from the previous steps of the induction, the even and odd values of nmax,R need to be
treated a little differently. For the odd values, one has to take into account all terms of
powers (w − a)−2nmax,R+2, . . . , (w − a)−nmax,R−2. For the even values, it is sufficient
to take into account only terms of powers (w − a)−2nmax,R+2, . . . , (w − a)−nmax,R−3.

The extra term of the power (w − a)−nmax,R−2 is identically zero in Eq. (14), while
the term of the same power in Eq. (12) can be used to find the expression for V−1. In
contrast, for the odd values of nmax,R, it is necessary to take into account all terms
of powers (w − a)−2nmax,R+2, . . . , (w − a)−nmax,R−2. Then, the term of the power
(w − a)−nmax,R−2 in Eq. (14) ensures that Vc,m = 0 as required in the statement (c)
of Theorem 1, while the term of the same power in Eq. (12) can be used to find the
expression for V−1. This concludes the proof of Theorem 1. �

Remark 10 One can immediately count that the total number of conditions obtained
from the powers (w − a)−2nmax,R−1, . . . , (w − a)−nmax,R−2 in Eqs. (12) and (14) is
2nmax,R . However, the number of the nontrivial conditions is only nmax,R + m. These
nontrivial conditions result in V−nmax,R = V−nmax,R+1 = . . . = V−nmax,R+m = 0,
Vc,1 = . . . = Vc,m = 0, and explicit expressions for V−nmax,R+m+1, . . . , V−1.
Remaining trivially satisfied 2nmax,R − m conditions (trivial zeros) occur in Eq.
(14) for the terms with the powers (w − a)−2nmax,R , (w − a)−2nmax,R+2, (w −
a)−2nmax,R+4, . . . , (w − a)−nmax,R−2 for the even nmax,R and for the powers (w −
a)−2nmax,R , (w − a)−2nmax,R+2, (w − a)−2nmax,R+4, . . . , (w − a)−nmax,R−3 for the odd
nmax,R . Another trivial zero is for the power (w − a)−2nmax,R−1 in Eq. (12). Terms of
lower orders (w − a)−nmax,R−1, . . . can be additionally used to provide conditions for
time derivative of different coefficients. Roughly, we can summarize Theorem 1 that
the order of poles in V is at least twice smaller than the order of poles in R

3 Nonexistence of the Rational Solution with the First- or the
Second-Order Poles

In this section, we prove Theorem 2. We first obtain the exact rational solution of Eqs.
(12)–(14), but then show that it is not physical.

Proof We look for all possible functions R−1(t), R−2(t), V−1(t), and a(t), such that
Eq. (27) is the exact solution of Eqs. (12)–(14). We plug in (27) into Eqs. (12)–(14)
and look for the exact solutions. The projectors in Eq. (13) are easy to evaluate using
partial fractions over w if we notice that the complex conjugation of Eq. (27) is given
by:

R̄ = R̄−2(t)

(w − ā(t))2
+ R̄−1(t)

(w − ā(t))
+ 1,
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V̄ = V̄−1(t)

(w − ā(t))
, (36)

where we recall that we do not conjugate w to obtain the analytical continuation from
the real line w = u as explained in Sect. 1.

We collect terms with all possible powers of (w−a) in both Eqs. (12) and (14). The
order (w − a)−5 is trivially satisfied, because we set V−2 = 0 in Eq. (27) as required
by Theorem 1. The order (w − a)−4 needs that:

V−1 = R−2V̄−1

R̄−2 + (a − ā)(R̄−1 + a − ā)
, (37)

where we assumed that V−1 �= 0. In the opposite case of V−1 = 0, we immediately
obtain that the only possible solution is g = 0 and both R−2, R−1 are time independent
thus recovering the trivial case (26). Thus, below, we assume V−1 �= 0.

The order (w − a)−3 in Eq. (14) is satisfied by Eq. (37), while Eq. (12) requires
that:

at = iV̄−1

a − ā
. (38)

The order (w − a)−2 in Eq. (12) together with the condition (37) requires a time
independence of R−2, that is:

R−2 = const (39)

(provided that R−2 �= 0), while Eq. (14) at that order is valid only for

g = 0. (40)

The order (w − a)−1 in Eq. (12) requires a time independence of R−1, that is:

R−1 = const, (41)

while Eq. (14) needs a time independence of V−1, that is:

V−1 = const. (42)

Solving Eq. (37) for (a − ā) together with Eqs. (39), (41) and (42) show that (a − ā)

must be constant in time, i.e., the imaginary part of a must be constant. Then, Eq. (38)
requires that V−1 = Re(V−1) and, moreover:

a = ar ,1t + ar ,0 + iai , V−1 = 2ar ,1ai , (43)

where ar ,1, ar ,0, ai are the arbitrary real constants. It remains to satisfy Eq. (37) which
together with Eq. (43) gives that either ar ,1 = V−1 = 0 (which recovers the trivial
case (26)) or:

R−1 = Im(R−2)

ai
+ 2iai . (44)
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The exact solution (27), (43), (44) is valid for the arbitrary complex constant value
of R−2 and zero gravity g = 0. It means that solution propagates with the constant
velocity in the horizontal direction with all residues being time independent.

The analyticity of R for w ∈ C
− requires that ai > 0. We now check locations of

zeros of R which are poles of zu . Using Eq. (27), we obtain that R = 0 for:

w = ar ,1t + ar ,0 − Im(R−2)

2ai
±

(
Im(R−2)

2

4a2
i

− a2
i − Re(R−2)

)1/2

. (45)

Equation (45) either has two real rootswhich implies a singularity at fluid’s free surface
with mapping of z(w) into infinity or it has two complex conjugated roots, one is in
C

− thus violating the analyticity of z(w) for w ∈ C
−. Thus, we conclude that the

rational solution (27) is not compatible with the condition (4) that the mapping (1) is
conformal for w ∈ C

− which completes the proof. �


4 Persistence of Branch Cuts

We show in this section that, contrary to poles analyzed in Sect. 2, power law branch
cuts are persistent in time for free surface dynamics. Assume that in the small neigh-
borhood of w = a, the following expansions hold:

V = V0 + Vγ (w − a)γ + . . . ,

R = R0 + Rγ (w − a)γ + . . . ,

U = U0 + Uγ (w − a)γ + . . . ,

B = B0 + Bγ (w − a)γ + . . . , (46)

where γ is the complex number and “ . . .′′ designates terms with less singular powers
(i.e., with powers γ1, such that Re(γ ) < Re(γ1)). Similar to Sect. 2, we perform local
analysis at w = a on the persistence of singularities but this time with the expansion
(46).

Equations (30) and (46) imply that:

Uγ = RcVγ + Vc Rγ , and Bγ = VcVγ , (47)

where we collected terms with the power (w − a)γ and used definitions of Rc and Vc

from Eqs. (22) and (23).
Plugging expansions (46) into Eqs. (12)–(14) above and collecting themost singular

terms of the order (w − a)γ−1, we obtain that:

−Rγ

∂a

∂t
= i

(
U0Rγ − R0Uγ

)
, (48)

−Vγ

∂a

∂t
= i

(
U0Vγ − R0Bγ

)
. (49)
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Multiplying Eq. (48) by Vγ and subtracting from it Eq. (49) multiplied by Rγ , we
obtain the compatibility condition:

R0(Uγ Vγ − Bγ Rγ ) = 0. (50)

Using Eqs. (50) and (47), we find the compatibility condition:

R0RcVγ = 0. (51)

According to our assumptions, Rc �= 0 as explained in Sect. 2. Then, the remaining
possibilities in Eq. (51) are that either R0 = 0 or Vγ = 0. The first possibility is that
we assume that Vγ �= 0 which implies that:

R0 = 0. (52)

Then, Eqs. (48) and (49) result in a simple equation for the singularity location:

∂a

∂t
= −iU0. (53)

Equation (52) means that branch points are zeros of the function R. Equations (52) and
(52) can be used for the direct comparison with simulations of the motion of branch
points using the numerical analytical continuation into w ∈ C

+, see Ref. [14].
There is no restriction on the value of γ in the equations in this section, which

is a predicament to persistence of branch points of arbitrary types. Nevertheless, the
most common type of branch points, observed in our numerical experiments, is γ = 1

2
which is consistent with the results of Refs. [20,23,24,38,39]. Square root singularities
have been also intensively studied based on the representation of vortex sheet in Ref.
[1–7,11,21,22,31,33,35,47,48].

Particular solution of Eqs. (12)–(14) is Stokes wave which is a nonlinear periodic
gravity wave propagating with the constant velocity [36,37]. In the generic situation,
when the singularity of Stokes wave is away from the real axis (non-limiting Stokes
wave), the only allowed singularity in C is γ = 1/2 as was proven in Ref. [38] for the
first (physical) sheet of the Riemann surface and in Ref. [27] for the infinite number
of other (non-physical) sheets of Riemann surface. References [18,19,28] provided
detailed numerical verification of these singularities. The limiting Stokes wave is the
special case γ = 1/3 with a = iIm(a). Also Ref. [39] suggested the possibility in
exceptional cases of the existence of γ = 1/n singularities with n being any positive
integer as well as singularities involving logarithms.

The second possibility to satisfy the compatibility condition (51) is to assume that
Vγ = 0. In that case, either V is the regular function at w = a (while R has a branch
point atw = a) or one of less singular terms is not zero.We also notice that (R0)t ∝ R0
[i.e., the case (52) corresponds to the zero initial condition for R0] as can be obtained
from the analysis similar to provided above in this section. A further study of that case
is beyond of the scope of this paper.
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