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A nonlinear Langmuir wave in the kinetic regime kkD � 0:2 may have a filamentation instability,

where k is the wavenumber and kD is the Debye length. The nonlinear stage of that instability

develops into the filamentation of Langmuir waves which in turn leads to the saturation of the

stimulated Raman scattering in laser-plasma interaction experiments. Here, we study the linear

stage of the filamentation instability of the particular family (H. A. Rose and D. A. Russell, Phys.

Plasmas 8, 4784 (2001)) of Bernstein-Greene-Kruskal (BGK) modes (I. B. Bernstein et al., Phys.

Rev. 108, 546 (1957)) that is a bifurcation of the linear Langmuir wave. Performing direct 2þ 2D
Vlasov–Poisson simulations of collisionless plasma, we find the growth rates of oblique modes of

the electric field as a function of BGK’s amplitude, wavenumber, and the angle of the oblique

mode’s wavevector relative to the BGK’s wavevector. Simulation results are compared to theoreti-

cal predictions. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4979289]

I. INTRODUCTION

Consider a Langmuir wave3,4 (LW) wave packet with a

typical wavenumber k. If kkD � 0:2, then the hydrodynamic

approximation (the “fluid” regime) to LW dynamics is valid,

where kD is the Debye length. In that regime, a LW has a non-

linear frequency shift Dxf luid, due to electron dynamics, pro-

portional to the squared LW electric field amplitude E; i.e.,

Dxf luid / jEj2.5–7 As shown in Ref. 8, the transition from the

fluid to the “kinetic” regime occurs at kkD � 0:2 when

trapped electron effects cannot be ignored. The LW frequency

shift due to electron trapping, Dxtrapped; perturbatively varies

as Dxtrapped / jEj1=21,6,8–10 with possible higher order correc-

tions as discussed in Ref. 11. Thus, Dxtrapped at kkD � 0:2
may dominate8,11–14 over Dxf luid. Negative Dxtrapped, with

positive diffraction, implies LW filamentation.8,15–17 3D parti-

cle-in-cell (PIC)18 simulation results have been interpreted as

showing that the trapped electron LW filamentation instability

can saturate19,20 stimulated Raman back-scatter (SRS)21 by

reducing the LW coherence. In actual plasma, the SRS daugh-

ter LW is subject to other instabilities as well, such as LW-

ion-acoustic decay (LDI). Fluid and kinetic regime LDI have

been observed in SRS simulations,19,22 while kinetic regime

LDI has been experimentally23 noted.12

Additional complexity in the interpretation of experimen-

tal data gathered from laser-plasma interaction arises from

instabilities of the laser beam24,25 coupled26–28 to relatively

low frequency ion-acoustic waves. Since direct experimental

data pointing to kinetic LW filamentation have not been avail-

able, first principles simulation of pure LW dynamics is per-

haps the cleanest way to “see” this phenomenon. Fully

nonlinear PIC simulations16 with Bernstein-Greene-Kruskal

(BGK) mode2 initial conditions (ICs) have shown qualitative

agreement with LW filamentation theory,8,15 but the theory’s

finer points, such as instability thresholds, require a noise free

model, namely, the Vlasov simulations.

Here, we address LW filamentation in the kinetic regime

with kkD > 0:3 by studying the filamentation instability of

BGK modes using 2þ 2D (two velocity and two spatial

dimensions) spectral Vlasov simulations. Our simulations

only include collisionless electrostatic electron dynamics in

a static neutralizing ion background, thereby excluding the

LW ion-acoustic decay and ponderomotive LW filamenta-

tion instabilities, amongst others. BGK modes are con-

structed following the approach of Ref. 1 to approximate the

adiabatically slow pumping by SRS. We concentrate on the

linear stage of the filamentation instability development

while observing strong LW filamentation in the nonlinear

stage. Also in the second paper (Part II)47 of the series, we

consider dynamically prepared BGK-like initial conditions

created with slow SRS-like pumping (similar to Ref. 17) and

study the filamentation instability of those waves comparing

both with the results of this paper for BGK modes and the

results of Ref. 17.

The paper is organized as follows. Section II introduces

the Vlasov-Poisson system and its general BGK solutions

(equilibria). In Section III A, we recall a special family1 of

1þ 1D BGK modes that bifurcate from linear LW. We

describe the analytical and numerical construction of these

modes. Section III B outlines their nonlinear dispersion rela-

tion and Section III C provides filamentation’s definition and

analytical results on its growth rate. In Section IV, we provide

results of 2þ 2D Vlasov simulations. Section IV A is devoted

to the Vlasov simulations settings and our numerical method.

Section IV B addresses filamentation instability results and

their comparison with theory. Section IV C provides a compar-

ison of the growth rates obtained in Section IV B with the growth

rates from PIC code simulations of Ref. 16. In Section V, the

main results of the paper are discussed.a)plushnik@math.unm.edu
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II. BASIC EQUATIONS

The Vlasov equation for the phase space distribution func-

tion f r; v; tð Þ, in units such that electron mass me and charge e
are normalized to unity, the spatial coordinate r ¼ x; y; zð Þ to

the electron Debye length kD, the time t to reciprocal electron

plasma frequency, 1=xpe,29 and the velocity v ¼ vx; vy; vzð Þ is

normalized to the the electron thermal speed ve, is

@

@t
þ v � r þ E � @

@v

� �
f ¼ 0; (1)

where E is the electric field scaled to kBTe= kDeð Þ: Here, Te is

the background electron temperature and kB is the

Boltzmann constant. Magnetic field effects are ignored for

clarity. Then, in the electrostatic regime

E ¼ �rU (2)

with the electrostatic potential U given by Poisson’s

equation

r2U ¼ 1� q (3)

and electron density, q, is given by

q r; tð Þ ¼
ð

f r; v; tð Þdv: (4)

The usual factor of 4p is absent from Equation (3) because

of the chosen normalization and 1 in Equation (3) comes

from the neutralizing ion background.

Equations (1)–(4) form the closed Vlasov-Poisson sys-

tem. Its finite amplitude travelling wave solutions, moving

with phase velocity, vu, are called Bernstein-Greene-Kruskal

(BGK) modes.2 Here, we assume without loss of generality

that z is chosen in the direction of vu so that f assumes the

form f r?; z� vut; vð Þ, with r? � x; yð Þ, and Equation (1)

reduces to

vz � vuð Þ
@

@z
f þ v? � rf þ E � @

@v
f ¼ 0: (5)

The general solution of Equations (2) and (5) is given by

f ¼ g Wð Þ, where g is an arbitrary function of the single sca-

lar argument

W �
vz � vuð Þ2

2
þ v2

?
2
þ U r?; z� vutð Þ (6)

which is the single particle energy (kinetic energy in the

moving reference frame plus electrostatic energy).

BGK modes are obtained if we require g(W) to satisfy

Equations (3) and (4).2 That requirement still allows a wide

variety of solutions.

III. BGK MODE LINEAR FILAMENTATION INSTABILITY

Our goal is to study the transverse stability of BGK

modes. In general, a linear instability is specific to a given

BGK mode. We choose a BGK mode that is dynamically

selected (at least approximately) by SRS with z being the

direction of laser beam propagation in plasma. The simplest

BGK family has a nontrivial solution fBGK in 1þ 1D (one

space and one velocity dimension2) with no dependence on

the transverse coordinate r?; while the dependence on the

transverse velocity v? being trivially Maxwellian as follows:

f ¼ fBGK z� vut; vzð Þ
exp �v2

?=2
� �

2p
: (7)

Our initial model1 of the SRS daughter LW in a laser

speckle is presented in Eq. (12) below. If a time-dependent

Vlasov equation solution has a symmetry, e.g., in 2þ 2D
(two space and two velocity dimensions) when the initial

condition (and possible external potential) only depends on

one spatial coordinate z, or in 3þ 3D a cylindrically sym-

metric configuration, then an instability may break that sym-

metry, allowing for a determination of growth rate. The

former, revisited here, was explored in 2þ 2D Vlasov simu-

lations,17 while the latter was observed19 in 3D PIC, SRS

single speckle simulations. In addition, we present LW fila-

mentation growth rates of linear fluctuations about a particu-

lar class of BGK modes, recalled in Section III A.

A. Construction of 111D BGK

The beating of laser and SRS light provides a source of

LWs thus pumping BGK modes. Following Ref. 1, we

assume that the laser intensity is just above the SRS instabil-

ity threshold. Then, the pumping of LWs is slow and can be

idealized as a travelling wave sinusoidal external potential

Uext, with amplitude /pump, phase speed vu, and wavenumber

kz such that

Uext ¼ /pump cos kz z� vutð Þ
� �

; kz ¼ jkj: (8)

The total electrostatic potential, U, is given by

U ¼ Uext þ Uint; (9)

where the internal potential Uint is determined from

Poisson’s equation (10), where f1D z; vz; tð Þ is the 1D electron

phase space distribution function

@2Uint

@z2
¼ 1�

ð
f1Ddvz: (10)

Inertial confinement fusion applications require a

dynamic laser beam smoothing30–32 resulting in a time-

dependent speckle field of laser intensity. Uext attains a

local maximum in a laser speckle, which is a local maxi-

mum of laser beam intensity. Intense speckles have a width

approximately Fk0, with F being the optic f-number (the

ratio of the focal length of the lens divided by the lens

diameter) and k0 being the laser wavelength. The temporal

scale tc of beam smoothing is typically large compared with

the inverse growth rate 1=cSRS of SRS (e.g., for the National

Ignition Facility31,32 tc � 4 ps and typically 1=cSRS � 0:03

ps). It implies that the speckle can be considered as time-

independent which we assume below. Electrons, with the

typical speed ve, cross a speckle width in a dimensional

time scale 1=�SideLoss / Fk0=ve. As a result, f1D tends to
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relax to the background distribution function, f0, assumed

Maxwellian

f0 vzð Þ ¼
exp �v2

z=2
� �
ffiffiffiffiffiffi
2p
p (11)

at the rate �SideLoss. These considerations motivate our

1þ 1D model of BGK generation by introducing the relaxa-

tion term ��SideLoss f1D z; vz; tð Þ � f0 vzð Þ
�

] into the Vlasov

equation (1) as follows. In the wave frame (switching to that

frame implies z! zþ vut and vz ! vz þ vu)

@

@t
þ vz

@

@z
� @U
@z

@

@vz

� �
f1D z; vz; tð Þ

¼ ��SideLoss f1D z; vz; tð Þ � f0 vz þ vuð Þ
� �

: (12)

Let feq be a time independent solution of Eq. (12). In the dou-

ble limit

fBGK ¼ lim
/pump!0

lim
�SideLoss!0

feq (13)

a particular BGK mode which bifurcates33,34 from a linear

LW, fBGK, may be obtained.1 This mode corresponds to the

adiabatically slow pumping by SRS. It depends on z; vzð Þ
only through the single particle energy, W

W ¼ U zð Þ þ v2
z=2 (14)

which is the restriction of Equation (6) to the 1þ 1D case in

the wave frame with U r?; z� vutð Þ ! U zð Þ.
There are two methods to construct BGK modes in ques-

tion. The first method is a numerical one and implies that we

numerically solve Equations (8)–(12) for each value of /pump

and �SideLoss followed by taking numerically the double limit

(13). The second method is an analytical one and is based on

the integration along the particle orbits of the time indepen-

dent solution of Eq. (12), where the double limit (13) is eval-

uated analytically. We investigated both methods, found that

they give similar results, but choose below to focus on the

second method only since it is a simpler to implement and

free of numerical issues.

The electrostatic potential U traps electrons with

velocities close enough to vu such that they cannot go over

barriers created by U: Thus for different electrons, there

are both passing orbits outside the trapping region and

periodic orbits inside the trapping region. Recall that pass-

ing orbits can have either positive or negative velocities,

and this must be specified along with W. It was shown in

Refs. 35 and 1 that taking the double limit (13) in Eq. (12)

we get

fBGK Wð Þ ¼
þ

W

f0 v sð Þ þ vu
� �

ds=T Wð Þ: (15)

The integral sign here denotes integration around a particular

orbit with constant W. The time-like characteristic variable s,

used in integration, parametrizes a particular orbital location

z sð Þ; v sð Þð Þ through the characteristic equations

dz=ds ¼ v; dv=ds ¼ �dU=dz: (16)

Also T(W) denotes the orbit’s period

T Wð Þ ¼
þ

W

ds: (17)

Here and throughout the remaining part of Section III, we

replace vz by v :ð Þ when it describes the velocity of a particu-

lar electron with energy W as a function of some parameter

(s or z), while we think of vz as an independent variable in

the rest of the formulas. Also we abuse notation and use the

same symbols for v and fBGK irrespective of their parametri-

zation by different variables. U is assumed periodic so that

all orbits are closed by periodicity (including the passing

orbits).

Assume U zð Þ is the given function of z. Then using Eq.

(14), changing the integration variable from s to z in

Eqs. (15) and (17), we can express T(W) and fBGK z; vzð Þ
� fBGK Wð Þ at any point z; vzð Þ in the phase space as follows

(see Fig. 1):

T Wð Þ ¼

4

ðzmax

0

dz

v zð Þ
; Umin < W < Umax;

ðLz

0

dz

v zð Þ
; W > Umax;

8>>>>>>>><
>>>>>>>>:

(18)

FIG. 1. Schematics of the electric potential and the corresponding trapping

region of fBGK z; vzð Þ.

042104-3 Silantyev, Lushnikov, and Rose Phys. Plasmas 24, 042104 (2017)



fBGK Wð ÞT Wð Þ ¼

2

ðzmax

0

f0 vu þ v zð Þ
� �

þ f0 vu � v zð Þ
� �

dz

v zð Þ
; Umin < W < Umax;

ðLz

0

f0 vu þ v zð Þ
� �

dz

v zð Þ
; W > Umax and vz > vu;

ðLz

0

f0 vu � v zð Þ
� �

dz

v zð Þ
; W > Umax and vz < vu;

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(19)

and v(z) is determined from Eq. (14) as

v zð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 W � U zð Þ½ �

p
(20)

with Umin � minzU zð Þ; Umax � maxzU zð Þ; Lz � 2p
kz

. We

assume that U zð Þ has a single local maximum and a single

local minimum per period Lz. Also zmax is obtained by

numerically inverting U zmaxð Þ ¼ W (see Fig. 1 for the illus-

tration). Note that it is also possible to integrate Eqs. (15)

and (17) directly into s variable which has a more compact

form compared to Eqs. (18) and (19). However, we chose to

use Eqs. (18)–(20) because it is easier to implement a high-

order numerical scheme for integrals (18) and (19) that

depend only on one independent variable rather than calcu-

lating integrals in Eqs. (15)–(17) that require a two-step pro-

cess, first numerically finding orbits z sð Þ; v sð Þð Þ and then

computing the integrals.

The amplitudes of Fourier harmonics of U zð Þ are rapidly

decaying,1 so we start by constructing a BGK mode approxi-

mately by taking into account only the first harmonic

U zð Þ ¼ �/0 cos kzzð Þ (21)

parametrized by the amplitude /0: Then, the comparison

with definitions in Eq. (20) implies that Umin ¼ �/0; Umax

¼/0; v zð Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 Wþ/0 cos kzzð Þ
� �q

, and zmax¼ 1
kz

arccos �W
/0

	 

:

Integrating fBGK over vz that was obtained from Eqs.

(18)–(20) and using the Poisson’s equation (10), we get the

corresponding electrostatic potential Uapprox zð Þ of the

approximate BGK solution. One can use kz as the free

parameter to rescale the solution in such a way that the

amplitude of the first harmonic in the electrostatic potential

is equal to /0 as was assumed in Eq. (21).

The result is however only approximate because of

higher order Fourier harmonics beyond the fundamental one

assumed for U zð Þ in Eq. (21). Our calculations show that the

second harmonic in U zð Þ is typically 2–3 orders of magni-

tude less compared to the first one even for /0 of order 1,

which validates our initial assumption. We found it satisfac-

tory for the purpose of the subsequent results of this paper to

stop the process of BGK construction at this point. However,

we also used Uapprox zð Þ to obtain the corresponding updated

fBGK z; vzð Þ from Eqs. (18)–(20), calculated second iteration

of Uapprox zð Þ, and so on. We found that typically �20 itera-

tions is sufficient to converge Uapprox zð Þ within 10�15 relative

pointwise error over z (with the relative error being �1%

after the first iteration) to the exact BGK mode. In this way,

one can construct a BGK mode for given values of /0 and vu

as the input parameters producing the value kz as the output

parameter together with fBGK : If one needs to find fBGK with

the specified value of kz ¼ kz;input, then Newton iterations are

performed to find a root of kz;input � kz;output /0; vuð Þ ¼ 0 as a

function of either /0 or vu keeping the other variable fixed.

Here, kz;output /0; vuð Þ is the value of kz obtained for given /0

and vu from the procedure described above.

An example of BGK mode constructed using this

approach with Newton iterations over vu for kz;input ¼ kz

¼ 0:35; /0 ¼ 0:3 and the resulting vu ¼ 3:321836… is

shown in Figs. 2 and 3. Fig. 2 shows fBGK z; vzð Þ around the

trapping region with a separatrix U zð Þ þ v2
z=2 ¼ W ¼ Umax.

Fig. 3 shows the widest cross-section of the trapping region

at z¼ 0.

B. BGK dispersion relation and nonlinear frequency
shift

The dispersion relation of the particular family of BGK

modes in question has been presented in Refs. 1 and 8.

Unlike the linear regime, in which the parameters kz and vu

are related via well-known /eq-independent dispersion rela-

tions,36,37 a BGK mode’s dispersion relation is amplitude

dependent. The BGK mode identified by Eqs. (12) and (13)

is undamped and has a nonlinear dispersion relation deter-

mined33,34 by setting the real part of the dielectric function,

e, to zero. Recall that we define the nonlinear dielectric

FIG. 2. The phase space density distribution function fBGK z; vzð Þ of BGK

mode with kz ¼ 0:35;/0 ¼ 0:3; vu ¼ 3:321836….
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function e as U ¼ Uext=e with Uext being the external pump

from SRS, Eq. (8). To lowest order in
ffiffiffiffiffiffiffi
/eq

p
using fBGK given

by Eqs. (18)–(21), one obtains1 that

0 ¼ Re e½ � � Re e0½ � þ 1:76f 000 vuð Þ
ffiffiffiffiffiffiffi
/eq

q
=k2

z ; (22)

where

e0 kz;xð Þ ¼ 1� N0 vuð Þ=k2
z ;

N0 vð Þ ¼ Z0 v=
ffiffiffi
2
p	 


=2;

Z vð Þ ¼ e�v2 ffiffiffi
p
p

i� erfi vð Þð Þ ¼ e�v2

i
ffiffiffi
p
p
� 2

ðv

0

et2 dt

� �
:

(23)

Z is the plasma dispersion function38 and e0 is the linear

dielectric function.

Eq. (22) can be solved for /eq kz; vuð Þ. These solutions

are illustrated in Fig. 4 by dashed lines with markers for

various values of kz together with solid lines corresponding

to the BGK modes that were constructed numerically follow-

ing the procedure in III A with the same values of kz and vu.

For kz ¼ 0:35, the maximum amplitude of the constructed

BGK is /eq � 0:78 at vu � 2:85, while Eq. (22) overesti-

mates the maximum /eq at 0.85. The correspondence of sol-

utions of Eq. (22) and values of vu for the constructed BGKs

for small /eq is quite good. For each kz and /eq less than the

maximum amplitude, we have two solutions for vu, the

larger value corresponding to the nonlinear LW wave and

the smaller one corresponding to the electron acoustic39

wave (EAW), similar to two solutions of the Vlasov disper-

sion relation Re e0 kz;xð Þ½ � ¼ 0 for a given kz (see Fig. 2 in

Ref. 40).

Alternatively, vu may be considered as a function of kz

and /eq, i.e., vu kz;/eq

� �
, by inverting the graph shown in

Fig. 4. Since a travelling wave’s angular frequency, x, is

always the product of wavenumber and phase velocity,

x ¼ kzvu, one may re-express the nonlinear dispersion rela-

tion as a wavenumber and amplitude dependent x

x kz;/eq

� �
¼ kzvu kz;/eq

� �
: (24)

We define the nonlinear frequency shift as

DxBGK ¼ x kz;/eq

� �
� x0; (25)

where x0 ¼ x kz;/eq ¼ 0
� �

. For kz ¼ 0:35; x0 ¼ 1:21167.

Expanding Re e0 kz;xð Þ½ � in Eq. (22) in a Taylor series at

x ¼ x0, taking into account that Re e0 kz;x0ð Þ½ � ¼ 0, we get

an approximation of DxBGK given by

DxRose
NL ¼ �1:76

@Re e0 x0ð Þ½ �
@x


 ��1

f 000 vuð Þ
ffiffiffiffiffiffiffi
/eq

p
k2

z

(26)

as presented in Eq. (50) of Ref. 1 and Eq. (9) and Fig. 5 of

Ref. 8. For kz ¼ 0:35;
@Re e0 x0ð Þ½ �

@x ¼ 2:335.

In earlier works of Morales and O’Neil10 and Dewar6 an

approximation for the nonlinear frequency shift of large-

amplitude electron plasma wave was derived

DxDewar
NL ¼ �a

@Re e0 x0ð Þ½ �
@x


 ��1

f 000 vuð Þ
ffiffiffiffiffiffiffi
/eq

p
k2

z

; (27)

where a ¼ 0:77
ffiffiffi
2
p
¼ 1:089 and a ¼ 1:163

ffiffiffi
2
p
¼ 1:645 for

the “adiabatic” and “sudden” excitation of nonlinear LW,

respectively. The derivation was also summarized in Ref. 41

and used in Ref. 17. In Ref. 1 after Eq. (48) H. Rose dis-

cusses the source of the discrepancy between 1.76 coefficient

in Eq. (26) and 1.645 in Eq. (27).

C. Trapped electron filamentation instability

LW filamentation instability theory has been presented

in Refs. 8 and 17, but we believe that a more cogent and gen-

eral result was obtained in Ref. 15, which we now review.

Let x denote a direction perpendicular to the LW propa-

gation direction, the z axis, with wave amplitude /eq, the

maximum value of U zð Þ over z (in the particular case given

FIG. 3. Cross-section of fBGK z ¼ 0; vzð Þ for BGK mode with kz ¼ 0:35;
/0 ¼ 0:3; vu ¼ 3:321836….

FIG. 4. LW and EAW potential amplitude versus phase velocity for various

kz. Solid lines represent the constructed BGK family dispersion relation,

dashed - approximation of the dispersion relation by formula (22).
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by Eq. (21), /eq ¼ /0). Near the equilibrium (BGK mode) in

the moving frame, let

U ¼ Re exp ik � rð Þ /eq þ d/ tð Þ exp idk � rð Þ
h in o

; (28)

where k is parallel to the z direction and dk is responsible for

the transverse perturbations with the amplitude d/ tð Þ. Let

d/ � exp ctð Þ. In Ref. 15, it was shown that

cþ �residualð Þ2 ¼ �D /eq

@x
@/eq

þ D

 !
; (29)

wherein the generalized diffraction operator, D

2D ¼ x jkþ dkj;/eq

� �
þ x jk� dkj;/eq

� �
� 2x jkj;/eq

� �
(30)

reduces to the diffraction coefficient, jdk?j2=2jkj
� �

@x=ð
@jkjÞ þ dk2

z =2
� �

@2x=@jkj2, for small jdkj. When dk � k ¼ 0,

Eq. (30) simplifies to

D ¼ x jkþ dkj;/eq

� �
� x jkj;/eq

� �
(31)

and the (possible) instability is customarily called filamenta-

tion, our main regime of interest.

Also assuming /eq � 1 in addition to dk � k ¼ 0 and

jdkj � 1, we can approximate Eq. (31) as follows:

D � Dlin ¼
1

2kz

@x jkj; 0ð Þ
@jkj

����
jkj¼kz

jdkj2

¼ vg

2kz
jdkj2; vg � @x jkj; 0ð Þ=@jkj; (32)

where vg is the group velocity corresponding to the disper-

sion relation (22) at /eq ¼ 0; vg ¼ 1:008 for kz ¼ 0:35.

The residual damping, �residual, from Eq. (29) is model

dependent. For example, if the double limit of Eq. (13) stops

short of zero value, but with

�residual

xbounce
� 1;

/pump

/eq

� 1;
xbounce

xpe
¼ kz

ffiffiffiffiffiffiffi
/eq

q
(33)

or in dimensional units, xbounce

xpe
¼ kzkD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e/eq=kBTe

q
. Then, it

follows from Eqs. (28) and (71) of Ref. 1 and Fig. 3 of Ref. 1

that, for vu � 2:2, in dimensional units

�residual �
xpe

2
Im e½ �� �SideLoss

xbounce
�Landau: (34)

In Eq. (34), the Landau damping rate, �Landau, is evaluated

for a linear LW with wavenumber kz. Also if jdkj � jkj is

not satisfied, it has been argued17 that �residual is augmented

by an amplitude dependent, but �SideLoss independent, form

of Landau damping. However, as we discuss in Section IV B

below, that addition to �residual is not consistent with our sim-

ulation results and we set �residual ¼ 0.

Eq. (24) may be used to find @x=@/eq in terms of

@vu=@/eq which in turn may be obtained by applying

@=@/eq to Eq. (22)

Re N00 vuð Þ
h i

� 1:76f 0000

ffiffiffiffiffiffiffi
/eq

q� �
@vu

@/eq

¼
1:76f 000 vuð Þ

2
ffiffiffiffiffiffiffi
/eq

p : (35)

In the kinetic regime, D may assume negative values as

jdkj8 and/or /eq
15 increase. Therefore, the qualitative shape

of c contours determined by Eqs. (22), (29), and (30) may

differ from fluid model modulational/filamentation,17 whose

domain of applicability is limited, a priori, to kz � 1.

Contours of c for kz ¼ 0:35 are shown in Fig. 5, with �residual

set to 0. For more contours of c and related figures, see Ref.

15. If we use linear approximation for D as in Eq. (32) and

solve Eqs. (22) and (29) for kz ¼ 0:35 and �residual ¼ 0, we

get contours of c as shown in Fig. 6. As kz is increased, the

range of amplitudes over which Eqs. (22), (29), and (30)

FIG. 5. LW filamentation growth rate contours for kz ¼ 0:35. The white line

shows the maximum growth rate for given /eq.

FIG. 6. LW filamentation growth rate contours for kz ¼ 0:35 using linear

approximation for D as in (32). The white line shows the maximum growth

rate for given /eq.
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predict growth is reduced, while using Dlin from Eq. (32)

provides growth in a full range of amplitudes for any kz. The

latter case is more consistent with the simulations as we will

see in Section IV.

Another simplification can be made if one assumes at

the leading order that the nonlinear frequency shift

Dx /
ffiffiffiffiffiffiffi
/eq

p
. Then, /eq

@x
@/eq
¼ Dx=2 and maximizing c over

D in Eq. (29), we obtain the maximum value

cmax ¼ jDxj=4 (36)

at

D ¼ �Dx=4 (37)

which is valid for jdkj � jkj and �residual ¼ 0. Using the

approximation (32), we obtain from Eq. (37) the position of

the maximum

jdkj ¼ kmax
x ¼ �Dx kz

2vg

� �1=2

: (38)

IV. NUMERICAL SIMULATIONS OF LW
FILAMENTATION

Here, we describe 2þ 2D fully nonlinear Vlasov simula-

tions that we performed to study the filamentation instability

of BGK modes described in Section III.

A. Simulation settings and methods

We simulate the 2þ 2D Vlasov-Poisson system (1)–(4)

in phase space, z; vz; x; vxð Þ, using fully spectral (in all four

dimensions) code and 2nd order in the time split-step (opera-

tor splitting) method with periodic boundary conditions (BC)

in all four dimensions. To ensure spectral convergence and

imitate the weak effect of collisions, we added to Eq. (1) a

small hyper-viscosity term as follows:

@

@t
þ vz

@

@z
þ vx

@

@x
þ Ez

@

@vz
þ Ex

@

@vx

� �
f

¼ �D16vz

@16

@v16
z

f � 1

Lz

ðLz

0

fdz

 !
; (39)

where D16vz
is the 16th order hyper-viscosity coefficient. We

use periodic BC in z direction with period Lz ¼ 2p=kz and

kz ¼ 0:35 in our simulations. Choosing Lz ¼ 2p=kz allows us

to focus on the study of filamentation instability effects

(along x) while avoiding subharmonic (sideband) instabil-

ity42 in the longitudinal z-direction. Periodic BC in x with

the period Lx together with x-independent initial condition

(IC) are used to separate filamentation instability effects

from any sideloss effects due to trapped electrons traveling

in the transverse direction (this is in contrast to Ref. 43,

where the transverse spatial profile in the initial condition

made sideloss comparable with filamentation instability

growth rate). We chose typically 200p 	 Lx 	 800p depend-

ing on the BGK mode’s amplitude to capture all growing

transverse modes. Periodic BC in vz and vx were used without

sacrificing any accuracy of the simulation compared to out-

going BC since the particle flow through the boundary at

vz ¼ vmax
z is / Ez

@f
@vz

with @f
@vz
� vzffiffiffiffi

2p
p e�

v2
z
2 which can be made

as small as desired by picking large enough vmax
z . Typically,

we choose vmax
z ¼ 8 for which jEz

@f
@vz
j � 10�15. The same

argument is applied in vx direction with the only difference

that in our simulations Ex is several orders less than Ez so

vmax
x can be chosen smaller than vmax

z . Typically, we choose

vmax
x ¼ 6 for which the flow through vx ¼ vmax

x boundary is at

the level of machine precision.

The split-step method of 2nd order was chosen over

other methods since it is unconditionally stable (which

allows large time steps), preserves number of particles at

each time step exactly and has a very small error in the full

energy of the system. That error is not accumulated over

time (in contrast with Runge-Kutta methods where such

accumulation occurs). We also decided to choose the 2nd

order method over higher order methods because our experi-

ments with the size of time step and methods of various

orders showed that the time integration error is dominated by

the errors coming from other sources (space discretization

and hyper-viscosity term).

The hyper-viscosity term in the right-hand side (r.h.s.)

of Eq. (39) is used to prevent recurrence44 and aliasing

(which causes propagation of numerical error from high

modes to low modes) effects. The hyper-viscosity operator

in r.h.s. of Eq. (39) has to be a smooth function in the

Fourier transformed vz space. At the same time, we found it

to be beneficial to use high-order (here, we choose 16th

order) over low-order hyper-viscosity since it affects low

modes of solution less while having effectively the same

damping effect on high modes. That allows us to use a

smaller numerical grid for the same overall precision. The

coefficient D16vz
is chosen as small as possible to prevent ali-

asing depending on the resolution of simulation in vz direc-

tions. Our safe estimate D16vz
� jcLandau kzð Þj 2Dvz

p

	 
16

with

cLandau kz ¼ 0:35ð Þ ¼ �0:034318… was found to be suffi-

cient to avoid aliasing issues and completely remove the

recurrence effect44 in linear Landau damping simulations

(while still recovering proper Landau damping with any

desired accuracy for simulations with low-amplitude waves).

Simulations with high amplitude waves (with U � 1) might

require a higher value of hyper-viscosity coefficient D16vz
, so

one needs to keep track of the spectrum of the solution in

z; vzð Þ space and adjust D16vz
if needed. We typically used

D16vz
¼ 10�25 for simulations with Nz 
 Nvz

¼ 64
 256 grid

points in z; vzð Þ space and D16vz
¼ 10�30 for Nz 
 Nvz

¼ 128


512. Also hyper-viscosity does not affect conservation of

number of particles in the system while having a positive

effect on conservation of energy in long-term simulations.

While the term � 1
Lz

Ð Lz

0
fdz in r.h.s. side of (39) is not abso-

lutely necessary, we found that the total energy of the system

is conserved better if this term is used. This is because this

term prevents filtering out of the 0th harmonic of f in z-space

that holds most of the kinetic energy. We did not need any

hyper-viscosity in vx direction since the electrostatic field
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(and therefore, both perturbations of electron density and

amount of energy in high modes) in transverse direction is

many orders of magnitude weaker compared to the longitudi-

nal direction z; vzð Þ throughout most of the simulation until a

nonlinear self-focusing event at the end. Detailed simulation

of that event is however outside of the scope of this paper.

All simulations are carried out in the lab frame rather

then in moving frame, since in this ca se the tails of the dis-

tribution function in vz direction are almost symmetric and

have smaller values / expð� vmax
zð Þ2=2Þ at the boundaries

6vmax
z compared to the tail value / expð� vmax

z � vuð Þ2=2Þ
in simulations done in the wave frame moving with velocity

vu with the same vmax
z . For this reason simulations performed

in the lab frame have smaller numerical error due to periodic

BC in vz.

B. 212D simulations and filamentation instability of
1D BGK modes

In these simulations, we use IC of the form of Eq. (7) that

has the constructed BGK mode from Section III A in the

z; vzð Þ directions, uniform in the x-direction, and a Maxwellian

distribution f0 vxð Þ in the vx direction

f z; vz; x; vx; t ¼ 0ð Þ ¼ fBGK z; vzð Þf0 vxð Þ: (40)

We run simulations for a long enough time to observe the

growth of oblique harmonics of electric field with wave vec-

tors kz ¼ 0:35; kxð Þ (see Fig. 7 for a quarter of Ez z; xð Þ spec-

trum, other quarters of the spectrum are similar to it) for

several orders in magnitude (see Fig. 8), where kz is the

wavenumber corresponding to the BGK mode and kx varies

between �kmax
x and kmax

x ¼ p=Dx; Dx ¼ Lx=Nx, where Nx is

the number of grid points in x. The initial values in these har-

monics are near the machine precision from the round-off

errors. During the simulation, they grow from values �10�16

to �10�1. The exponential growth rates ckx
for these har-

monics are extracted (see Fig. 9) from the least-square fit

when the amplitudes grow from �10�13 to �10�8�10�6

(during these times a clear exponential growth / eckx t is

observed). Later in the simulation, nonlinear self-focusing

effects come into play and LW filamentation occurs (see

Figs. 10 and 11) transferring a significant part of electric field

energy, P(t)¼
Ð Ð jEzj2þjExj2

2
dzdx, into kinetic energy, K(t)

¼
Ð Ð Ð Ð ðv2

zþv2
xÞ

2
fdzdxdvzdvx (see Fig. 12). Notice also that the

relative error in full energy of the system, Energy(t)
¼P(t)þK(t), is small. Figs. 7–12 are obtained from the simula-

tion with /eq ¼ 0:2. Other simulation parameters were D16vz

¼ 10�25; 64
 256
 64
 32 grid points for z; vz; x; vxð Þ with

Lz ¼ 2p=kz; Lx ¼ 400p; vmax
z ¼ 8; vmax

x ¼ 6, the time step

Dt ¼ 0:1 and the final simulation time Tfinal¼ 5000.

Simulations with a larger Lx and correspondingly larger

extent of spectrum in kx were done too but no other regions

of growing modes in the spectrum (such as in Figs. 7 and 9)

were observed except for the one starting near kx¼ 0.

These simulations were done for a variety of BGK

modes with kz ¼ 0:35, amplitudes 0:025 	 /eq 	 0:77, and

FIG. 7. The density plot of the spectrum of Ez z; xð Þ at t¼ 3000.

FIG. 8. The growth of harmonics jÊz kz ¼ 0:35; kx; tð Þj in time.

FIG. 9. The growth rates ckx
of oblique harmonics extracted from the least-

square fit to the data of Fig. 8. A fit to the quadratic law near the maximum

is also shown.
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values of vu according to the BGK dispersion relation (22).

The parameters of these simulations were D16vz
¼ 10�25; 64


256
 32
 32 grid points for z; vz; x; vxð Þ;Dt ¼ 0:1 and

2000 	 Tf inal 	 30000 (depending on BGK amplitude).

Another set of simulations was performed for D16vz
¼ 10�30

and 128
 512
 32
 32 grid points with the rest of parame-

ters being the same.

We extract the nonlinear frequency shift DxNUM from

simulations by finding the wave frequency as the rate of

change of the phase of the Fourier harmonic of U with kz

¼ 0:35; kx ¼ 0 and subtracting the frequency that corre-

sponds to our undamped BGK mode in the limit of zero

amplitude, x0¼x kz¼0:35;/eq¼0
� �

¼1:2116687…, which

can be found as a real root of Re e0 kz;xð Þ½ �¼0 or Eq. (22)

with /eq¼0. Note that the frequency of the damped linear

LW (real part of a complex root of e0 kz;xð Þ¼03,4) is

xLW kz¼0:35ð Þ¼1:22095…, for the discussion of Vlasov vs.

Landau analysis see Ref. 34. The difference is �1% for

kz¼0:35 and it becomes larger for larger kz. Fig. 13 shows

DxNUM (large circles (blue color online)) obtained from sim-

ulations in comparison with theoretical one DxBGK (solid

black line) computed using Eq. (25), approximations DxRose
NL

(dashed black line with circle markers) and DxDewar (dashed

grey lines with small “o” (red online) and “x”(pink online)

markers) given by Eqs. (26) and (27), respectively, for which

we used vu¼xNUM=kz. We conclude from Fig. 13 that both

DxRose
NL and DxDewar with a¼1:645 (sudden) work really

well for the whole range of amplitudes, whereas DxBGK

works well for amplitudes of BGK /eq�0:5 since vu for

/eq>0:5 deviates from the solution of approximate disper-

sion relation Eq. (22) as can be seen in Fig. 4.

Growth rates of filamentation instability as a function of

kx from the series of simulations with D16vz
¼ 10�30 and var-

ious amplitudes /eq are given in Figs. 14 and 15. The

FIG. 10. The density plot vs. x and t for hjEzj2iz � L�1
z

Ð Lz

0
jEzj2dz (jEzj2

averaged over z) shows a development of LW filamentation with time from

the initial BGK mode.

FIG. 11. Modulation of particle density q z; xð Þ before (t¼ 4000), during

(t¼ 4500), and after (t¼ 5000) Langmuir wave filamentation.

FIG. 12. Evolution of electrostatic, P(t), kinetic, K(t), and total energy,

Energy(t), in the simulation with BGK amplitude /eq¼ 0.2.

FIG. 13. Nonlinear frequency shift as a function of BGK amplitude /eq.
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maximum growth rate cmax (the maximum vs. kx for each

fixed /eq) as a function of /eq is shown in Fig. 16 (for D16vz

¼ 10�30 and D16vz
¼ 10�25, filled and non-filled circles,

respectively) together with the theoretical predictions given

by Eqs. (22), (24), (29), and (31) (dashed-dotted line of light

grey (orange online) color) and given by Eqs. (29) and (32)

(dashed-dotted line of dark grey (brown online) color). Other

lines in Fig. 16 use the leading order approximation in

/eq given by Eq. (36) with four estimates for Dx: from simu-

lations Dx ¼ DxNUM; from Eq. (26) Dx ¼ DxRose
NL and

Dx ¼ DxDewar
NL for two cases of Eq. (27).

We conclude from Fig. 16 that while theoretical predic-

tion based on Eqs. (22), (24), (29), and (31) claims no growth

for the amplitudes /eq � 0:3; we still observe growth for

even higher amplitudes. Eqs. (29) and (32) predict growth

for any amplitudes but differ from the numerical results by

�70% while approximations cmax � jDxRosej=4; cmax �

jDxNUMj=4 and cmax � jDxDewarj=4 with a ¼ 1:645 (sudden)

work better, especially for amplitudes /eq > 0:1, staying

almost identical to each other. While including cmax

� jDxDewarj=4 with a ¼ 1:089 (adiabatic) curve into Fig. 16

for comparison, we believe that it’s most appropriate to

compare the numerical results to cmax � jDxDewarj=4 with

a ¼ 1:645 (sudden) as Fig. 13 clearly shows that an actual

frequency shift DxNUM is much closer to DxDewar with

“sudden” distribution rather than “adiabatic” one. In all these

comparisons with theory we assumed in Eq. (29) that

�residual ¼ 0 consistent with the expected absence of sideloss

in the periodic BC in x as discussed in the beginning of

Section IV. Landau damping, for modes that propagate at

some finite angle, is neglected. The authors are not aware of

any satisfactory model for such in the literature. That which

is available17 is ad hoc and fails to properly describe the non-

linear frequency shift. It predicts approximately twice larger

nonlinear frequency shift for a wave of given amplitude than

the nonlinear frequency shift that Dewar’s sudden model or

the actual frequency shift of our BGK modes.

The wavenumber kx ¼ kmax
x at which the growth rate has

the maximum is shown in Fig. 17 as a function of /eq

together with the theoretical predictions. The dashed-dotted

line of sand color represents prediction by Eqs. (22), (24),

(29), and (31), the dashed-dotted line of brown color repre-

sents prediction by Eqs. (29) and (32), and other lines in Fig.

17 use the leading order approximation in /eq given by Eq.

(38) with the BGK mode group velocity vg defined in Eq.

(32). They include different estimates of Dx, from Rose’s

model (26), Dewar’s model (27), and measured DxNUM.

Equation (38) predicts kmax
x /

ffiffiffiffiffiffiffi
Dx
p

, which in case of Dx

/
ffiffiffiffiffiffiffi
/eq

p
as in Eqs. (26) and (27) becomes kmax

x / /eq

� �1=4

and fails to agree with numerical results for kmax
x somewhat

well as seen in Fig. 17. It is also seen in Fig. 17 that the

empirical dependence kmax
x � 0:1

ffiffiffiffiffiffiffi
/eq

p
fits the numerical

results pretty well but remains to be explained theoretically.

We also investigated the convergence of growth rates with

D16vz
! 0 while Dz;Dvz ! 0 and, correspondingly, Nz;Nvz

FIG. 14. Numerical growth rates c density plot as a function of kx and BGK

amplitude /eq. The white line shows the position of the maximum ckx
for

each /eq:

FIG. 15. The growth rates ckx
as a function of kx for BGK modes with vari-

ous amplitudes /eq correspond to multiple cross-sections of Fig. 14.

FIG. 16. The maximum growth rate as a function of BGK amplitude /eq.
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!1 while keeping Nx ¼ 32;Nvx
¼ 32 (the discretization in x

space does not affect the error in growth rates and 32 points

in vx space together with vmax
x ¼ 6 are enough to resolve the

Maxwellian distribution in vx direction with error <10�8).

We found that the relative errors in our numerical results for

growth rates with D16vz
¼ 10�30 and 128
 512
 32
 32

grid points for z; vz; x; vxð Þ are within 10%–15% range.

Reducing Dt affected the growth rates results even less so we

concluded that Dt ¼ 0:1 was sufficient.

C. Comparison of filamentation instability growth
rates with PIC code simulations

We now compare ckx
that we obtained in Section IV B

from our simulations for the mode with kz ¼ 0:35; kx ¼ 0:05ð Þ
to the growth rates of the same mode obtained using PIC

simulations in Fig. 9(j) of Ref. 16 for three different ampli-

tudes of BGK modes: /eq ¼ 0:2; 0:3; 0:5. These BGK modes

in both cases were constructed using kz ¼ 0:35 and have

vu ¼ 3:35818; 3:32288; 3:23266, respectively. Our growth

rates for these three amplitudes are 0.0073, 0.0113, and

0.0158. The corresponding growth rates from Ref. 16 are

0.0075, 0.012, and 0.0147, i.e., only �10% difference with

our results. The total number of particles used in Ref. 16 was

�2
 108 with 32 
 1280 cells and 5000 particles per cell.

The number of grid points in our simulations was 64 
 256


 32 
 32 for z; vz; x; vxð Þ (total �1:6
 107) with Lz ¼ 2p=
kz; Lx ¼ 200p;vmax

z ¼ 8;vmax
x ¼ 6, and D16vz

¼ 10�25; Dt¼ 0:1;
Tf inal ¼ 5000.

V. CONCLUSION AND DISCUSSION

We studied the linear Langmuir wave (LW) filamentation

instability of a particular family of BGK modes that bifurcates

from a linear periodic Langmuir wave for kkD ¼ 0:35. These

BGK modes approximate the nonlinear electron plasma wave

resulting from adiabatically slow pumping by SRS. The con-

struction process of these BGK modes is described in detail.

Performing direct 2 þ 2D Vlasov-Poisson simulations of

collisionless plasma we found that the maximal growth rates

from simulations are 30%–70% smaller compared to the theo-

retical prediction but exhibit the proper scaling for small

amplitudes of BGK wave cmax /
ffiffiffiffiffiffiffi
/eq

p
while kmax

x /
ffiffiffiffiffiffiffi
/eq

p
.

These results await an improved theory since current theory

predicts kmax
x / /eq

� �1=4
.

This behavior contrasts strongly with LW propagation4

in the “fluid” regime, kkD�0:2, in which both two-

dimensional (2D) and three-dimensional (3D) collapse13,45,46

may occur if we take into account ion dynamics. Consider a

LW wavepacket with electric field amplitude E. Its pondero-

motive force causes a localized plasma density hole,

dn / �jEj2, which localizes and enhances jEj, creating a

deeper and narrower hole in the plasma density, and so on,

leading to yet larger values of jEj until Landau damping ter-

minates this “collapse” process.

As shown in Ref. 8, the transition from the fluid to the

regime where the trapped electron effects cannot be ignored

occurs at kkD � 0:2. Thus at kkD � 0:2. LW frequency reduc-

tion due to electron trapping may dominate8 the ponderomo-

tive4 frequency shift11,14 with �x / jEj2. Contrary to the

result of Ref. 14 where fluid nonlinearity frequency shift

Dxf luid is shown to be positive via use of water bag distribu-

tion of electrons, the result of Ref. 11 indicates that Dxf luid

can have either sign depending on k, for example, in case of

Maxwellian distribution. Refs. 14 and 11 suggest that kinetic

effects might dominate fluid effects even for large amplitudes

of LW if kkD > 0:3. Although the trapped electron frequency

shift, perturbatively, varies as jEj1=2
,6,9,10 and therefore cannot

lead to LW collapse,13,45,46 3D PIC simulation results18 have

been interpreted as showing that the trapped electron LW fila-

mentation instability can saturate19 stimulated Raman back-

scatter (SRS)21 by reducing the LW coherence.

Since experimental data in the kinetic LW regime are at

best qualitative and indirect, such as furnished by observa-

tions of SRS light, first principles Vlasov simulations and

theory appear to be the chief tools for analyzing LW proper-

ties in the kinetic regime. Because LW filamentation is a

multi-dimensional effect, with qualitatively different19 2D

versus 3D nonlinear behavior, analysis via Vlasov numerical

solutions will remain an outstanding challenge.
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