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We consider two kinds of pumped Langmuir waves (LWs) in the kinetic regime, kkD � 0:2; where

k is the LW wavenumber and kD is the Debye length, driven to finite amplitude by a coherent

external potential whose amplitude is either weak or strong. These dynamically prepared nonlinear

LWs develop a transverse (filamentation) instability whose nonlinear evolution destroys the LW’s

transverse coherence. Instability growth rates in the weakly pumped regime are the same as those

of Bernstein-Greene-Kruskal modes considered in Part I (D. A. Silantyev et al., Phys. Plasmas 24,

042104 (2017)), while strongly pumped LWs have higher filamentation grow rates. Published by
AIP Publishing. [http://dx.doi.org/10.1063/1.4979290]

I. INTRODUCTION

Propagation of intense laser beam in high temperature

plasma relevant for the inertial confinement fusion results in

significant loss of laser energy to stimulated Raman back-

scatter (SRS)2 producing the electromagnetic waves at dif-

ferent frequencies and Langmuir waves3 (LWs). If the LW

wavenumber k satisfies, kkD � 0:2, the “kinetic” regime,

then kinetic effects related to electron trapping4–6 become

important,7–11 where kD is the Debye length. LW filamenta-

tion in the kinetic regime saturates SRS12,13 by reducing the

LW coherence.

In Part I1 of this series, we addressed LW filamentation

in the kinetic regime by studying both analytically and

through 2þ 2D (two spatial dimensions and two velocity

dimensions) spectral Vlasov simulations, the transverse insta-

bility of the special class of one-dimensional (1D) Bernstein-

Greene-Kruskal (BGK) modes.14 That class approximates the

adiabatically slow creation of BGK modes by SRS. In this

paper, we take an alternative approach by dynamically pre-

paring BGK-like initial conditions (ICs) through either weak

or strong SRS-like pumping. We found that these 1D BGK-

like solutions obtained via weak pumping have the same

transverse instability growth rate as BGK modes of Part I

suggesting a universal mechanism for kinetic saturation of

SRS in laser-plasma interaction experiments. We found that

strong pumping (compared to weak pumping) results in fur-

ther increase of the growth rate of the transverse instability

thus speeding up LW filamentation. We also compare the

result of our numerical simulations to the corresponding

results in Refs. 15 and 16.

The paper is organized as follows. Section II introduces

the Vlasov-Poisson equation with external pumping imitat-

ing SRS. Section III describes our method of producing

BGK-like modes by both weak pumping (Section III A) and

strong pumping (Section III B). Section IV provides the

analytical expressions on the growth rate of transverse insta-

bility of BGK-like modes. Section V is devoted to results of

numerical 2þ2D Vlasov simulations and comparison with

the theory. Section V A outlines the settings of our Vlasov

simulations and numerical spectral methods used. Section

V B addresses transverse instability of BGK-like modes cre-

ated by pumping. Section VI provides a comparison of trans-

verse instability of BGK-like modes with BGK modes of

Part I. In Section VII, the main results of the paper are

discussed.

II. BASIC EQUATIONS

The Vlasov equation for the phase space distribution

function f r; v; tð Þ, in units such that electron mass me and

charge e are normalized to unity, the spatial coordinate

r ¼ x; y; zð Þ to the electron Debye length kD, the time t to

reciprocal electron plasma frequency, 1=xpe,17 and the

velocity v ¼ vx; vy; vzð Þ is normalized to the electron thermal

speed ve, is

@

@t
þ v � r þ E � @

@v

� �
f ¼ 0; (1)

where E is the electric field scaled to kBTe= kDeð Þ: Here, Te is

the background electron temperature and kB is the

Boltzmann constant. Magnetic field effects are ignored for

clarity. Then, in the electrostatic regime

E ¼ �rU (2)

with the electrostatic potential U:
We consider the beating of laser and SRS light as a source

of LWs, idealized as a travelling wave sinusoidal external

potential Uext, with phase speed vu and wavenumber kz

Uext ¼ Upump tð Þ cos kz z� vutð Þ
� �

; kz ¼ jkj; (3)

where Upump tð Þ is prescribed.a)plushnik@math.unm.edu
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The total electrostatic potential, U, is given by

U ¼ Uext þ Uint; (4)

where the internal potential Uint is determined from

Poisson’s equation

r2Uint ¼ 1� q; (5)

where the electron density q is given by

q r; tð Þ ¼
ð

f r; v; tð Þdv (6)

and the factor 4p is absent in Equation (5) because of the

chosen normalization and 1 comes from the neutralizing ion

background. Equations (1)–(6) form a closed Vlasov-Poisson

system which we solve below.

III. CREATION OF 111D BGK-LIKE SOLUTIONS BY
EXTERNAL PUMPING

In this Section, we consider the process of creation of

nonlinear electron plasma waves (EPWs) by external pump-

ing. That EPW is dynamically prepared by starting from uni-

form in space initial conditions with Maxwellian distribution

of particle velocities and applying external electric field of

constant amplitude for a finite period of time to create a non-

linear EPW with the desired amplitude. We consider two

types of pumps. The first type is a weak pump. We found

from simulations that a pump amplitude cannot be made

arbitrary small (even if applied for an arbitrary large period

of time) if we aim to obtain an EPW with a given finite

amplitude. Then by a weak pump we mean applying as small

amplitude of the pump as possible to achieve the necessary

amplitude of an EPW. The second type of pump has ten fold

larger amplitude of the pump (we called it a strong pump)

compared with the first type. This allows about a ten times

shorter duration of pumping. After pumping of either type is

extinguished, we observe nonlinear EPWs which are not

constant amplitude waves even in 1D but rather they experi-

ence small oscillations �5% near an average amplitude

while travelling as shown in Fig. 1. In that sense, we call

these solutions BGK-like modes. By construction, they are

the dynamically accessible nonlinear EPWs. We perform

1þ 1D Vlasov simulations, solving Eqs. (1)–(6) with peri-

odic boundary conditions (BCs) in phase space z; vzð Þ, to

demonstrate the properties of these EPWs.

A. Creation of BGK-like solutions by weak external
pumping

1D BGK-like mode is prepared by starting from the spa-

tially uniform Maxwellian distribution

f0 vzð Þ ¼ exp �v2
z=2

� �
=
ffiffiffiffiffiffi
2p
p

(7)

at t¼ 0 and adding the travelling external electric potential

Uext as in Eq. (3) with

Upump tð Þ ¼ �/pumpH Tof f � tð Þ; (8)

where Toff is the time when the pumping is turned off,

H Tof f � tð Þ is the Heaviside step function (H Tof f � tð Þ ¼ 1

for t < Tof f and H Tof f � tð Þ ¼ 0 for t > Tof f ) and vu

¼ xLW kzð Þ=kz. Here, xLW is the real-valued linear LW fre-

quency (obtained using Z-function,18 see, e.g., Refs. 19 and

20). In this paper, we work with xLW kz ¼ 0:35ð Þ ¼ 1:22095…

and xLW kz ¼ 0:425ð Þ ¼ 1:31759…. Note that instead of

vu ¼ xLW kzð Þ=kz, we can choose, e.g., vu from BGK mode of

Part I which is a function of /eq: We found that such a choice

results in <10% variation of the growth rate of the transverse

instability for typical values of /eq used in Section V B below.

Since we pump the 1st harmonic of our system in

z-direction, then we expect that the 1st Fourier harmonic

amplitude /1 tð Þ � 2j
Ð Lz

0
Uint z; tð Þ exp ikzzð Þdzj=Lz of internal

electric field to be the strongest compared to other harmon-

ics. Indeed, we observed throughout simulations that the 2nd

harmonic of Uint is about 2 orders less than /1, the 3rd har-

monic of Uint is about one order less than 2nd, and so on.

If we pump the system continuously without turning off

the external pump (Tof f ¼ 1), we observe that /1 does not

grow further than some maximum value, instead it first

increases, reaches the global maximum (sometimes the

global maximum is not the first local maximum), and then it

decreases (in this stage Uint zð Þ and Uext zð Þ are out of phase

and the energy is being sucked out of the system by external

electric field rather than being pumped into it) after which

/1 keeps oscillating with a period much longer than the

bounce period Tbounce ¼ 2p=xbounce, with the bounce fre-

quency xbounce � kz

ffiffiffiffiffiffi
/1

p
in dimensionless units.

Fig. 1 shows evolution of /1 tð Þ for the two cases with

Tof f ¼ 1 and Toff¼ 110. In both cases, we take /pump

¼ 0:01 and kz ¼ 0:35: In the first case, /1 experiences the

initial growth, after which it keeps oscillating with a period

Tbig � 230 around an average value �0:15. Notice that the

global maximum of /1 tð Þ is actually the second local maxi-

mum and the duration between two local maximums (at t
� 121 and t � 169) is ’ 48 which corresponds to the bounce

period Tbounce � 2p= kz

ffiffiffiffiffiffi
/1

p	 

� 2p= 0:35

ffiffiffiffiffiffiffiffiffi
0:15
p� �

� 46. In

the second case, when the external pump is turned off at

FIG. 1. The evolution of /1, the first harmonic of internal electric field, for

two cases: Tof f ¼ 1 and Toff¼ 110. /pump ¼ 0:01 and kz ¼ 0:35 for the both

cases.
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t ¼ Tof f ¼ 110; /1 after short transient behaviour remains

almost constant (�0:21) for the rest of time experiencing

small oscillations around the average value, which we call

/eq.

Figs. 2 and 3 show snapshots of the electron phase space

distribution function f z; vz; tð Þ around the trapping region for

the simulation with Toff¼ 110 at times t ¼ Tof f ¼ 110 and

t¼ 1000, respectively. A spiral can be seen in these Figs. to

develop in the trapping region with a number of revolutions

�t=Tbounce. Fig. 4 shows the widest cross-sections of the

trapping region from the same times as in Figs. 2 and 3.

They are also compared to the cross-section of the

BGK mode of the same amplitude /eq ¼ 0:2 from Part I that

was constructed analytically with parameters kz ¼ 0:35;
/eq ¼ 0:2, and vu ¼ 3:3585 (according to the BGK disper-

sion relation Eq. (22) in Part I). The trapping regions in Fig.

4 have the same width since the waves have the same ampli-

tude while the absolute values of f z; vz; tð Þ are higher for the

BGK mode since it has the smaller vu. These results were

obtained in moving frame with the velocity vu. The spiral in

the density distribution function of the BGK-like mode

develops increasingly smaller scale structures with time that

need increasingly a higher number of grid points to be

resolved accurately. In our simulations, these smaller scale

structures are smoothed out by the presence of small hyper-

viscosity (see more discussion in Section V) which is chosen

to be small enough to not affect the amplitude /eq of BGK-

like mode during the entire time of simulation.

The resulting amplitude /eq depends on /pump and Toff.

As we already discussed at the beginning of this section, if

we fix /pump, there is only a certain range of amplitudes of

EPW 0 � /eq � /max
eq /pump

� �
that can be achieved by vary-

ing Toff, where the dependence /max
eq /pump

� �
is obtained from

simulations. To get /eq close to /max
eq , we need to turn the

pump off around (but not exactly) the time when /1 tð Þ is

close to its global maximum as exemplified in Fig. 1. To

study this question more systematically, we performed a

series of simulations with kz ¼ 0:35; /pump ¼ 0:01 and

various Toff and obtained /eq as a function of Toff (see

Fig. 5). The maximum /max
eq ¼ 0:2358 is obtained if we

choose Tof f � 155, while the global maximum of /1 tð Þ is

achieved at t ¼ tglob ¼ 169. This difference tglob � Tof f is

about one third of the bouncing period tglob � Tof f ¼ 14 ’
Tbounce=3 � 12 estimated from /max

eq . Looking at other values

of /pump, we found that typically the maximal value of /eq

¼ /max
eq can be obtained if the pump is switched off about

Tbounce=3 before the global maximum of /1 tð Þ is achieved.

The same /eq can also be achieved by using a larger /pump

(and, respectively, smaller Toff) but not a smaller /pump. In

FIG. 2. The density plot of f z; vz; tð Þ at t ¼ Tof f ¼ 110 with /pump ¼ 0:01

and kz ¼ 0:35. White contour marks the boundaries of the trapping region,

the fraction of trapped particles is ntrapped=ntotal ¼ 0:00222.

FIG. 3. The density plot of the phase space distribution function f z; vz; tð Þ at

t¼ 1000. /pump ¼ 0:01, Toff¼ 110 and kz ¼ 0:35. White contour marks the

boundaries of the trapping region, the fraction of trapped particles is

ntrapped=ntotal ¼ 0:00216.

FIG. 4. The widest cross-sections of f z ¼ z0; vz; tð Þ of the trapping regions at

t¼ 110 and t¼ 1000 of the weakly pumped EPW obtained with parameters

kz ¼ 0:35; vu ¼ 3:488; /pump ¼ 0:01, Toff¼ 110, and resulting /eq ¼ 0:2 in

comparison with the widest cross-sections of the trapping region of BGK

mode constructed analytically in Part I with parameters kz ¼ 0:35; /eq ¼
0:2 and vu ¼ 3:3585 (according to the BGK dispersion relation). z0 is chosen

such that the resulting cross-sections have the maximum width.
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this sense, we obtain EPWs with amplitude /eq ¼ /max
eq using

the smallest /pump possible (and correspondingly the largest

Toff). We call these forcing parameters (/pump and Toff)

obtained for the given /eq ¼ /max
eq the weak pumping. After

such smallest /pump (together with Toff) is found for a given

/eq (or, in practice, we fix /pump and maximize /eq varying

Toff), we run 2þ2D simulations with the forcing (8) as

described above.

Tables I and II provide a set of approximate values

/pump and Toff found by this procedure that we used for our

2þ2D simulations for kz ¼ 0:35 and kz ¼ 0:425 correspond-

ingly. We did not aim to obtain these values with very high

precision (but rather �20% within the optimal values)

because further increase in precision has a small effect on

transverse instability growth rates. First three rows in Tables

I and II are even more than 20% away from optimal parame-

ters /pump and Toff.

Another way to look at the degree of “strength” of the

pumping of EPWs is to see how many revolutions the spiral

in the trapping region of the distribution function makes

before the pumping is turned off. Following the estimates in

Ref. 21, we conventionally call the pumping weak if it makes

more than one revolution during the pumping period orÐ Tof f

0
dt=Tbounce tð Þ > 1, or equivalently

Ð Tof f

0
xbounce tð Þdt > 2p.

Assume that the pump is switched off not later than a global

maximum of /1 tð Þ is achieved and that /1 tð Þ grows approxi-

mately linearly during 0 < t < Toff : Also we estimate /eq as

/eq � /1 Tof fð Þ, then the condition of pumping strength of

Ref. 21 is reduced to kz

ffiffiffiffiffiffiffi
/eq

p
Tof f > 3p, i.e.

Tof f > 3p= kz

ffiffiffiffiffiffiffi
/eq

q� �
: (9)

All simulation parameters of Tables I and II satisfy the

criterion of adiabaticity Eq. (9) except for the first row in

Table I and the first three rows in Table II.

B. Creation of BGK-like solutions via strong external
pumping

After the weak pump parameters (/pump and Toff) are

found for the desired amplitude of EPW /eq, we can find

stronger pumping parameters (with larger /pump and smaller

Toff) that provide the same /eq. Typically, if we want to keep

/eq fixed and increase /pump two times we need to decrease

Toff a little more than two times. In the limit /pump !1 and

Tof f ! 0; the action of the pump becomes equivalent to an

initial perturbation of electron density in z-direction by d-

function in time followed by a further evolution of the sys-

tem without an external pump.

To study the difference in terms of transverse instability

of EPWs obtained by weak and strong pumps, we performed

another set of simulations with parameters like in Table I

with the only difference that /pump was 10 times larger and

Toff was 10 times smaller than in Table I. We call such

pumping parameters by strong pumping. The corresponding

amplitudes /eq for the strong pumps were 30%� 60% larger

than for the weak pumps. They could have been matched to

the amplitudes /eq of the corresponding weak pumps by fur-

ther adjusting Toff, but it was not necessary for us below

since we were comparing the simulations not one-to-one but

rather a set of simulations with weak pumps to a set of

TABLE I. Parameters of simulations with weak pumping for

kz ¼ 0:35;Lz ¼ 2p
kz
; vmax

z ¼ 8; vmax
x ¼ 6; Nx ¼ 64;Nvx

¼ 32.

Dt D16vz
Nz Nvz

/pump Toff /eq Tfinal Lx

0.1 10�30 32 512 0.0005 200 0.007 20 000 1600p
0.1 10�30 48 512 0.001 200 0.022 20 000 1600p
0.1 10�25 48 256 0.002 200 0.053 10 000 1600p
0.05 10�25 48 256 0.003 210 0.085 7500 800p
0.05 10�25 64 256 0.005 210 0.13 5000 800p
0.05 10�25 64 256 0.01 110 0.20 4000 800p
0.05 10�25 64 256 0.015 110 0.29 3000 400p
0.05 10�25 96 256 0.02 120 0.38 3000 400p
0.05 10�25 96 256 0.03 100 0.50 3000 400p
0.05 10�25 96 256 0.04 100 0.59 2000 400p
0.05 10�25 96 256 0.05 90 0.69 2000 400p
0.05 10�25 128 256 0.06 80 0.77 2000 400p
0.05 10�25 128 256 0.07 80 0.84 1500 400p
0.05 10�25 128 256 0.1 70 1.01 1200 400p

TABLE II. Parameters of simulations with weak pumping for

kz ¼ 0:425;Lz ¼ 2p
kz
; vmax

z ¼ 8; vmax
x ¼ 6; Nx ¼ 64;Nvx

¼ 32.

Dt D16vz
Nz Nvz

/pump Toff /eq Tfinal Lx

0.1 10�30 64 512 0.002 100 0.0106 7000 1600p
0.1 10�30 64 512 0.003 100 0.0195 6000 1600p
0.1 10�30 64 512 0.005 100 0.036 6000 1600p
0.05 10�25 48 256 0.007 100 0.052 5000 800p
0.05 10�25 48 256 0.01 100 0.075 5000 800p
0.05 10�25 48 256 0.016 60 0.10 3500 800p
0.05 10�25 64 256 0.025 60 0.15 2500 400p
0.05 10�25 64 256 0.035 60 0.21 2000 400p
0.05 10�25 96 256 0.06 50 0.31 1600 400p
0.05 10�25 128 256 0.13 35 0.51 1100 400p
0.05 10�25 128 256 0.2 30 0.63 1000 200p
0.05 10�25 128 256 0.25 30 0.73 8000 200p
0.05 10�25 128 256 0.4 27 0.86 600 200p

FIG. 5. The amplitude /eq of EPW as a function of Toff for /pump ¼ 0:01

and kz ¼ 0:35.
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simulations with strong pumps. All the simulations with

strong pumping do not satisfy the criterion of adiabaticity

Eq. (9).

The nonlinear frequency shift of the resulting EPW

depends on the way it was created. Two limiting cases for

finite amplitude EPWs have been treated analytically by

Dewar in Ref. 5 providing the nonlinear frequency shift

approximation

DxDewar
NL ¼ �a

@e0 xLWð Þ
@x


 ��1

f 000 vuð Þ
ffiffiffiffiffiffiffi
/eq

p
k2

z

; (10)

where e0 is linear dielectric function given by Eq. (23) in

Part I1 and a ¼ 0:77
ffiffiffi
2
p
¼ 1:089 and a ¼ 1:163

ffiffiffi
2
p
¼ 1:645

for the “adiabatic” and “sudden” excitation of nonlinear LW,

respectively. Our weak pump is only somewhat adiabatic in

Dewar’s sense since its amplitude stays constant for the

whole time of driving EPWs rather than slowly varying. Our

strong pump is closer to the sudden case in Dewar’s theory

yet still no exactly the same since after turning off the exter-

nal pump our EPW still evolves while Dewar considers

the asymptotic limit in which the distribution function is

constant along the lines of constant wave-frame energy.
@e0 xLWð Þ

@x ¼ 2:267 for kz ¼ 0:35 and
@e0 xLWð Þ

@x ¼ 1:781 for

kz ¼ 0:425.

IV. TRANSVERSE INSTABILITY OF BGK-LIKE
SOLUTION

After the pumping is turned off at t ¼ Tof f , BGK-like

solution with the amplitude /eq continues to slowly evolve

as shown in Fig. 1 and described in Section III A. During

that slow evolution, the transverse instability of BGK-like

solution starts to develop. We look at the linear stage of that

instability analytically through the solution in the moving

frame in the following form:

U ¼ Ref exp ikzzð Þ½/eq þ d/ tð Þ exp idk � rÞ�ð
�
; (11)

where the wave vector dk?ẑ is responsible for the transverse

perturbations with the amplitude d/ tð Þ. Here, ẑ is the unit

vector in z direction. Let d/ � exp ctð Þ. Assuming that /eq

does not change with time, we use the result of Ref. 22 out-

lined in Part I that

cþ �residualð Þ2 ¼ �D /eq

@x
@/eq

þ D

 !
; (12)

where D is the generalized diffraction operator given by

D ¼ x jkzẑ þ dkj;/eq

� �
� x kz;/eq

� �
(13)

and x kz;/eq

� �
is the nonlinear frequency of BGK-like solu-

tion with the amplitude /eq. Contrary to Part I, we recover

that frequency directly from simulations as the rate of change

of phase.

Additionally, assuming /eq 	 1; we approximate

x kz;/eq

� �
; /eq ! 0 through the linear LW dispersion rela-

tion xLW kzð Þ (obtained using Z-function,18 see, e.g., Refs. 19

and 20). Also assuming jdkj 	 1, we reduce Eq. (13) to the

following expression:

D � Dlin ¼
1

2kz

@xLW jkjð Þ
@jkj

���
jkj¼kz

jdkj2 ¼
vLW

g

2kz
jdkj2;

vLW
g � @xLW kzð Þ=@kz; (14)

where vLW
g is the linear LW group velocity. Also the residual

damping, �residual, from Eq. (12) is model dependent and, as

we discussed in Part I, we set �residual ¼ 0 in (12) as it is the

only choice that appears to be consistent with our

simulations.

For the term /eq
@x
@/eq

in Eq. (12), we have to take into

account the dependence on /eq. Assuming at the leading

order that the nonlinear frequency shift Dx � x kz;/eq

� �
�xLW kzð Þ /

ffiffiffiffiffiffiffi
/eq

p
we obtain that /eq

@x
@/eq
¼ Dx=2:

Maximizing c over D in Eq. (12), we get the maximum value

cmax ¼ jDxj=4 (15)

at

D ¼ �Dx=4 (16)

which is valid for jdkj 	 jkj. Using the approximation (14),

we obtain from Eq. (16) the position of the maximum

jdkj ¼ kmax
x ¼ �Dx kz

2vLW
g

 !1=2

: (17)

V. 212D SIMULATIONS AND INSTABILITY OF
BGK-LIKE EPWs

We performed two types of 2þ2D fully non-linear

Vlasov simulations to study the transverse instability of non-

linear electron plasma waves that are dynamically prepared

by starting with uniform in space initial conditions with

Maxwellian distribution of particle velocities and pumping

the system by both weak and strong pumps described in

Section III.

A. 212D simulation settings and methods

In both cases, we simulate the 2þ2D Vlasov-Poisson

system (1)–(6) in the phase space x; z; vx; vzð Þ using fully

spectral (i.e., spectral in all four dimensions) code and split-

step (operator splitting) method of 2nd order in time with

periodic boundary conditions (BC) in all four dimensions.

To ensure a spectral convergence and imitate the weak effect

of collisions, we added to Eq. (1) a small additional hyper-

viscosity term as follows:

@

@t
þ vz

@

@z
þ vx

@

@x
þ Ez

@

@vz
þ Ex

@

@vx

� �
f

¼ �D16vz

@16

@v16
z

f � 1

Lz

ðLz

0

fdz

 !
; (18)

where D16vz
is the 16th order hyper-viscosity coefficient. The

hyper-viscosity term in the right-hand side (r.h.s.) of Eq. (18)
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is used to prevent recurrence23 and aliasing (which causes

propagation of numerical error from high modes to low

modes) effects. We use periodic BC in z direction with the

period Lz ¼ 2p=kz. Choosing Lz ¼ 2p=kz allows us to focus

on the study of transverse instability effects (along x) while

avoiding subharmonic (sideband instability)24 in the longitu-

dinal z-direction. Periodic BC in x with the period Lx

together with x-independent initial condition (IC) are used to

separate transverse instability effects from any sideloss

effects due to trapped electrons traveling in the transverse

direction (this is in contrast to Ref. 25, where the transverse

spatial profile in the initial condition made sideloss compara-

ble with the transverse growth rate). We chose typically

200p � Lx � 1600p depending on amplitude of EPWs to

capture all growing transverse modes. The rest of the simula-

tion settings are provided in Part I.

B. 212D simulations and transverse instability of
nonlinear EPWs

We start by presenting an example of a simulation

with kz ¼ 0:35; /pump ¼ 0:01; Tof f ¼ 110 and resulting /eq

� 0:2. Fig. 6 shows the amplitude of the electrostatic poten-

tial Uint z; x; tð Þ vs. t. The solid line is for the first z� har-

monic, /1 x; tð Þ � 2j
Ð Lz

0
Uint z; x; tð Þ exp ikzzð Þdzj=Lz evaluated

at x¼ 0, the dashed line is for the averaged value h/1ix
¼
Ð Lx

0
/1 x; tð Þdx=Lx and the dotted line is for the maximum

of electrostatic potential maxz;x Uint z; x; tð Þ. Other simulation

parameters were D16vz
¼ 10�25; 64
 256
 64
 32 grid

points for z; vz; x; vxð Þ with Lz ¼ 2p=kz; Lx ¼ 800p; vmax
z ¼ 8;

vmax
x ¼ 6;Dt ¼ 0:05; Tf inal ¼ 5000. It is seen in Fig. 6 that

during the action of pumping h/1ix reaches the global maxi-

mum. Then after pumping is switched off, h/1ix experiences

a short initial transient behaviour, after that it remains almost

constant until t � 3500, after that a strong LW filamentation

occurs at t � 4000 (see Figs. 7 and 8). During the long

quasi-stationary dynamics 500 � t � 3500; we call the quasi-

equilibrium value of h/1ix by /eq. In Fig. 6, /eq � 0:2. LW

filamentation peaks after t¼ 4000 with the value of

maxz;x Uint z; x; tð Þ almost twice higher than before filamenta-

tion. At that time, a large portion of electrostatic field energy

from the first Fourier mode (that has the most of electric field

energy) is transferred into kinetic energy as can be seen from

the dynamics of h/1ix.

We run the simulation for a long enough time (after the

pumping is off) to observe the growth of oblique harmonics

of electric field with wave vectors kz ¼ 0:35; kxð Þ (see Fig. 9

for the spectrum of Ez, the z component of the electric field)

in several orders in magnitude (see Fig. 10), where kz is the

wavenumber of the pump and kx varies between �kmax
x and

kmax
x ¼ p=Dx. Here, Dx ¼ Lx=Nx, where Nx is the number of

grid points in x. The initial values in these harmonics are

near the machine precision. During the simulation, they

grow from values �10�16 to �10�1. The exponential growth

rates ckx
for these harmonics are extracted (see Fig. 11) when

amplitudes grow from �10�13 to �10�8 � 10�6 (during

FIG. 6. Solid line is for the first z�harmonic /1 x; tð Þ evaluated at x¼ 0,

dashed line is for the averaged value
Ð Lx

0
/1 x; tð Þdx=Lx, and dotted line is for

the maximum of electrostatic potential maxz;x Uint z; x; tð Þ: Simulation param-

eters are /pump ¼ 0:01; Tof f ¼ 110 and kz ¼ 0:35.

FIG. 7. The density plot vs. x and t for hjEzj2iz �
Ð Lz

0
jEzj2dz=Lz (jEzj2 aver-

aged over z) shows a development of LW filamentation with time from the

pumped EPW with kz ¼ 0:35;/eq � 0:2.

FIG. 8. Density plot of particle density q z; xð Þ before (t¼ 3500), during

(t¼ 4000) and after (t¼ 4500) LW filamentation for pumped EPW with

kz ¼ 0:35; /eq � 0:2.

042105-6 Silantyev, Lushnikov, and Rose Phys. Plasmas 24, 042105 (2017)



these times a clear exponential growth / exp ckx
tð Þ is

observed before the nonlinear effects become noticeable). In

Fig. 11, the maximum growth rate cmax (the maximum over

kx for each fixed /eq) and kmax
x are found using quadratic fit

to several data points around the maximum.

These kinds of simulations were done for a variety of

pumped EPWs with kz ¼ 0:35 and kz ¼ 0:425 and ampli-

tudes 0:007 � /eq � 1: For kz ¼ 0:35 we also considered

two cases of pumping (weak and strong) as described in

Section III. Parameters typically used for simulations were

D16vz
¼ 10�30 � 10�25, the time step Dt ¼ 0:05� 0:1, the

final simulation time Tfinal in the range 1000 � Tf inal �
20000 (depending on EPW amplitude /eq) and from 32

256
 64
 32 up to 128
 512
 64
 32 grid points for

z; vz; x; vxð Þ with Lz ¼ 2p=kz; Lx ¼ 200p� 1600p; vmax
z ¼ 8;

vmax
x ¼ 6. Smaller amplitude waves have a narrower trapping

region which requires more grid points and smaller hyper-

viscosity coefficient to keep errors at approximately the

same level in all of the simulations. All parameters for simu-

lations with weak pumping and kz ¼ 0:35 are collected in

Table I and with kz ¼ 0:425 are collected in Table II. The

simulations with strong pumping and kz ¼ 0:35 were done

with the same parameters as in Table I with the only differ-

ence that /pump was 10 times larger and Toff was 10 times

smaller.

Figs. 12 and 13 show the measured growth rates as a

function of kx and /eq obtained from a set of simulations

with kz ¼ 0:35 and weak pump. We can clearly see the trans-

verse instability for the whole range of amplitudes with

higher amplitudes yielding larger growth rates.

In the further discussion we also overlaid data from

Refs. 15 and 16 that were produced in a somewhat similar

way (by pumping the system with external electric field in

the longitudinal direction for 0 < t < 100 ¼ Tof f and mea-

suring growth rates afterwards, however without systematic

attempts to minimize /pump) using different kinds of numeri-

cal schemes and turning on and off external pumping

smoothly with tanh tð Þ function. Comparing smooth and

non-smooth ways of turning the pump on and off in our

FIG. 10. The growth of harmonics jÊz kz ¼ 0:35; kx; tð Þj in time.

FIG. 11. The growth rates ckx
of oblique harmonics extracted from the least-

square fit of the data of Fig. 10. Also shown a fit to the quadratic law near

the maximum.

FIG. 12. The density plot of the growth rate ckx
as a function of kx and /eq

for kz ¼ 0:35; vu ¼ 3:488. The white line shows the maximum ckx
over kx

for each /eq:

FIG. 9. The density plot of the spectrum of Ez z; xð Þ at t¼ 3000.
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simulations, we observed that the differences in results were

negligible. Also we used kz ¼ 0:35 and corresponding

xLW kz ¼ 0:35ð Þ ¼ 1:22095… and vu ¼ 3:488 in our first set

of simulations, while Refs. 15 and 16 used kz ¼ 1=3 and

corresponding xLW kz ¼ 1=3ð Þ ¼ 1:2 and vu ¼ 3:6 which

accounts for 5% difference in kz, 1.7% difference in xLW,

and 3.2% difference in vu, but we overlaid these data on the

same graphs anyways for comparison. Second set of simula-

tions was performed with exactly matching parameters

kz ¼ 0:425; xLW kz ¼ 0:425ð Þ ¼ 1:3176, and vu ¼ 3:1 for

both our simulations and simulations from Refs. 15 and 16.

During the simulations, we extract the nonlinear fre-

quency shift DxNUM from simulations by finding the wave

frequency as the rate of change of the phase of /1 x ¼ 0; tð Þ
and subtracting the reference value xLW kzð Þ. Fig. 14 shows

the nonlinear frequency shift DxNUM for both weak and

strong pumping (denoted as “STRONG PUMP” in the leg-

end) obtained from simulations in comparison with theoreti-

cal ones computed using Dewar’s5 nonlinear frequency shift

approximation as in Eq. (10) for the cases of adiabatic

(a ¼ 1:089) and sudden (a ¼ 1:645) excitations. The mea-

sured nonlinear frequency shift DxNUM is nearly the same

for both weak and strong pumping and is close to DxDewar

with a ¼ 1:645. Also DxNUM is mostly within Dewar’s

bounds (with a ¼ 1:089 and a ¼ 1:645) and scales as Dx /ffiffiffiffiffiffiffi
/eq

p
for the whole range of amplitudes. Also we overlaid

the data from Refs. 15 and 16 for comparison. It shows

�30% smaller nonlinear frequency shift since it was pro-

duced for kz ¼ 1=3; vu ¼ 3:6 and exhibits different scaling

for /eq > 0:4. If we were to plot the corresponding Dewar’s

bounds for the parameters kz ¼ 1=3, vu ¼ 3:6, we would see

that their nonlinear frequency shift data are also within those

bounds for /eq < 0:4.

The maximum growth rate cmax (the maximum over kx

for each fixed /eq) as a function of /eq is shown in Fig. 15

together with the perturbative theoretical predictions given

by Eq. (15) with different estimates for Dx including

Dewar’s model (10) and DxNUM recovered directly from

simulations (with weak and strong pumps, respectively).

We see that theoretical prediction cmax � jDxNUMj=4 from

Eq. (15) works pretty well for EPWs obtained with weak

pump and /eq < 0:2: In this case, the measured growth rates

are within 20� 25% from the estimate, and scale like

cmax /
ffiffiffiffiffiffiffi
/eq

p
. The measured growth rates for the strong

pump are 30%� 50% larger compared to the weak pump

growth rates and also larger than a corresponding estimate

jDxNUMj=4 in the whole range of amplitudes /eq. Also for

amplitudes /eq > 0:3; the scaling changes for both weak and

strong pumps and becomes cmax / /eq. The data from Refs.

15 and 16 exhibit similar behaviour regarding the scalings

and match the corresponding estimate cmax � jDxNUMj=4 for

amplitudes /eq < 0:4.

The wavenumber kmax
x at which the growth rate is maxi-

mum as a function of /eq is shown in Fig. 16 together with

the theoretical predictions given by Eq. (17) with different

estimates for Dx: For the group velocity vg in Eq. (17), we

use the value vg ¼ vLW
g ¼ 1:26112::: that is calculated using

the linear LW dispersion relation for kz ¼ 0:35. For Dx in

theoretical predictions, we use Dewar’s model as well as the

measured DxNUM for weak and strong pump cases. None of

FIG. 15. The maximum growth rate as a function of /eq for

kz ¼ 0:35; vu ¼ 3:488.

FIG. 13. The growth rates ckx
as a function of kx for EPWs with various

amplitudes /eq correspond to multiple cross-sections of Fig. 12.

kz ¼ 0:35; vu ¼ 3:488.

FIG. 14. The nonlinear frequency shift Dx as a function of /eq for

kz ¼ 0:35; vu ¼ 3:488.
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the theoretical approximations predict kmax
x well for small

amplitudes /eq. All of them predict kmax
x / /1=4

eq while from

numerical results we see that kmax
x � 0:1

ffiffiffiffiffiffiffi
/eq

p
. Absolute

values of the measured kmax
x differ from

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jDxNUMjkz= 2vLW

g

� �q
of Eq. (17) by a factor �3 at /eq ¼ 0:01 and by factor �2 at

/eq ¼ 0:1. The data from Ref. 15 exhibit a similar scaling, but

absolute values of kmax
x are smaller by 50% in average. The

measured kmax
x for the strong pump is 10%� 20% larger than

that for the weak pump and exhibits the same scaling in the

whole range of amplitudes /eq.

The same kind of simulation with weak pump is done

for kz ¼ 0:425 with xLW kz ¼ 0:425ð Þ ¼ 1:3176; vu ¼ 3:1
and vg ¼ vLW

g kz ¼ 0:425ð Þ ¼ 1:304545:::. The results and a

comparison with data from Refs. 15 and 16 (when available)

are given in Figs. 17–19. In this case, our measured fre-

quency shift jxNUMj is close to a ¼ 1:645 (sudden) case in

Dewar’s theory. In Fig. 18, the approximation cmax �
jDxNUMj=4 works pretty well for /eq < 0:5: The measured

growth rates are within 20%� 25% from the estimate and

scale like cmax /
ffiffiffiffiffiffiffi
/eq

p
. Also for amplitudes /eq > 0:5, the

scaling changes and becomes cmax / /eq. The data from

Refs. 15 and 16 exhibit a similar behaviour regarding the

scalings, but absolute values of cmax are approximately 2

times smaller. Using Dewar’s approximation for jDxj, we

notice that our growth rates are close to jDxDewarj=4 with

a ¼ 1:645 (sudden), whereas data growth rates from Refs. 15

and 16 are close to the case of a ¼ 1:089 (adiabatic) for

small amplitudes. Unfortunately, the measured DxNUM from

Refs. 15 and 16 was not available for comparison. For kmax
x ,

we clearly see that kmax
x � 1=8

ffiffiffiffiffiffiffi
/eq

p
, so none of the theoreti-

cal approximations predict kmax
x well.

VI. COMPARISON OF TRANSVERSE INSTABILITY OF
NONLINEAR EPWs AND BGK MODES

Here, we compare the transverse instability results for

weakly pumped EPWs with kz ¼ 0:35 found in Section V

with transverse instability of BGK modes from Part I of this

series. Notice that all BGK-like modes (weakly pumped

EPWs) with various amplitudes were obtained using the

pumping frequency xLW kz ¼ 0:35ð Þ ¼ 1:22095… and,

respectively, vu ¼ 3:488, whereas the BGK modes for

FIG. 18. The maximum growth rate as a function of /eq for kz ¼ 0:425;
vu ¼ 3:1.

FIG. 19. The wavenumber kmax
x at which the growth rate reaches the maxi-

mum as a function of /eq for kz ¼ 0:425; vu ¼ 3:1.

FIG. 17. The nonlinear frequency shift Dx as a function of /eq for

kz ¼ 0:425; vu ¼ 3:1.

FIG. 16. The wavenumber kmax
x at which the growth rate reaches the maxi-

mum as a function of /eq for kz ¼ 0:35; vu ¼ 3:488.
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different amplitudes were constructed such that vu ¼ vu

/eq

� �
according to the dispersion relation given by Eq. (22)

of Part I.

Fig. 20 shows the nonlinear frequency shift obtained

from both kinds of simulations. We can see that for small

amplitudes /eq < 0:05; the nonlinear frequency shift for

both BGK and pumped EPWs basically coincides, whereas

for higher amplitudes it changes its scaling for BGK modes

and stays /
ffiffiffiffiffiffiffi
/eq

p
for weakly pumped EPWs.

The maximum growth rate cmax (the maximum vs. kx for

each fixed /eq) as a function of /eq is shown in Fig. 21

together with the theoretical predictions given by cmax �
jDxNUMj=4 from Eq. (15). We see that growth rates coincide

for a wide range of amplitudes up to /eq < 0:5 despite the

growing difference in the nonlinear frequency shift between

these two kinds of waves in Fig. 20 (e.g., at /eq ¼ 0:5, the

BGK mode nonlinear frequency shift is twice larger than

that for BGK-like pumped mode).

The wavenumber kmax
x at which the growth rate is maxi-

mum as a function of /eq is shown in Fig. 22 together with the

theoretical predictions given by kmax
x �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jDxNUMjkz= 2vgð Þ

p

from Eq. (17). We used BGK dispersion relation Eq. (22) of

Part I to calculate vg for the comparison with BGK results and

linear LW dispersion to calculate vLW
g for the comparison with

pumped EPW results. We see that kmax
x for these two classes of

waves coincides for the whole range of amplitudes (up to

/eq � 0:72) and fits well to kmax
x ¼ 0:1

ffiffiffiffiffiffiffi
/eq

p
law despite quite

a big discrepancy with theoretical predictions.

These results suggest that the nonlinear frequency shift

Dx or the amplitude /eq is not sufficient to fully characterize

the transverse instability of BGK and BGK-like modes.

Perhaps the details of the phase space distribution function f
behaviour in the trapping region have to be taken into

account which is however beyond the scope of this paper.

We also compared in Fig. 23 the fraction of trapped par-

ticles ntrapped=ntotal for all simulation data we obtained

(marked with squares for the pumped EPWs with kz ¼ 0:35

and kz ¼ 0:425, circles for the BGK modes with kz ¼ 0:35,

and diamonds for the data from Refs. 15 and 16 for EPWs

with kz ¼ 1=3) with the theoretical prediction (dashed lines

with the corresponding markers) from Ref. 26

FIG. 20. The nonlinear frequency shift Dx as a function of /eq for both

BGK modes and pumped EPWs (BGK-like modes) with kz ¼ 0:35.

FIG. 21. The maximum growth rate as a function of /eq for both BGK

modes and pumped EPWs with kz ¼ 0:35.

FIG. 22. The wavenumber kmax
x at which the growth rate reaches the maxi-

mum as a function of /eq for both BGK modes and pumped EPWs with

kz ¼ 0:35.

FIG. 23. The fraction of trapped particles ntrapped=ntotal as a function of /eq

for both BGK modes and pumped EPWs.

042105-10 Silantyev, Lushnikov, and Rose Phys. Plasmas 24, 042105 (2017)



ntrapped

ntotal
� 8

p
/eq

� �1=2f0 vuð Þ þ 1:1317 /eq

� �3=2f 000 vuð Þ;

ntrapped ¼
ð ð

W<Umax

f z; vzð Þdvzdz;

ntotal ¼
ð ð

f z; vzð Þdvzdz ¼ Lz ¼
2p
kz
:

(19)

It was derived for the BGK modes of Part I but we found

it to work really well for pumped EPWs also. Here, f0 is

defined in Eq. (7). Eq. (19) takes into account not only the

leading order term (/1=2
eq ) approximation but the next order

term (/3=2
eq ) as well. One can see in Fig. 23 that the data are

within 10% from the corresponding theoretical curves for all

of our simulations with /eq�0:3. Also EPWs with kz ¼ 0:35

obtained using the strong pump exhibit �10% higher values

of ntrapped compared to EPWs obtained using a weak pump.

Notice that the EPW results with kz ¼ 0:35 converge to the

BGK results with kz ¼ 0:35 in the limit /eq ! 0 as expected

since the BGK waves were constructed as a finite-amplitude

bifurcation of a linear LW. For pumped EPWs, ntrapped was

calculated numerically from 1þ1D simulations some time

after the pump was switched off (typically t¼ 1000). As

EPW evolved in our simulations between t ¼ Tof f and

t ¼ 1000; then ntrapped would typically decrease only by

1%� 2%. For BGK modes, ntrapped was calculated numeri-

cally after constructing 1þ1D BGK solution analytically

(no evolution). Also note that for the pumped EPW, vu is

the same (and given by LW dispersion relation) in all simu-

lations with a particular kz, while for BGK modes, vu

¼ vu /eq

� �
according to the dispersion relation given by

Eq. (22) of Part I. We have not included into Fig. 23 the

number of trapped particles for BGK modes obtained on a

smaller resolution (64 
 256) as in Part I since the difference

in ntrapped values was less than 1%.

Also Fig. 24 shows the maximum growth rate cmax as a

function of ntrapped for both BGK modes and pumped EPWs.

Even though it is hard to conclude anything regarding the

scaling for the simulations with small amplitudes (left side

of the graph) due to the larger numerical errors for cmax in

these simulations, it appears that the dependence of cmax on

ntrapped has somewhat more universal scaling (somewhat

close to cmax / ntrappedð Þ2=3) for higher amplitudes compared

to the dependence of cmax on /eq in Figs. 15, 18, and 21,

where the scaling changes from cmax /
ffiffiffiffiffiffiffi
/eq

p
to cmax / /eq.

VII. CONCLUSION

We studied the filamentation of Langmuir wave in the

kinetic regime kkD � 0:2 considering EPWs obtained by

pumping of the system by external electric potential. Weak

and strong pumps are considered and compared. Performing

direct 2þ2D Vlasov-Poisson simulations of collisionless

plasma, we found that the maximal growth rates cmax for

weakly pumped EPWs are within 20%� 30% from the theo-

retical prediction for small amplitudes (/eq < 0:2) both for

kz ¼ 0:35 and kz ¼ 0:425. Strongly pumped LWs have

higher filamentation grow rates. Also cmax for both types of

pumping exhibits the proper scaling for small amplitudes of

EPWs cmax /
ffiffiffiffiffiffiffi
/eq

p
, while kmax

x /
ffiffiffiffiffiffiffi
/eq

p
result remains to

be explained theoretically since current theory (Eqs. (10) and

(17)) predicts kmax
x / /eq

� �1=4
. Also it appears that the scal-

ing cmax / ntrappedð Þ2=3 might be somewhat more universal

among pumped EPWs and BGK modes with various kz and

amplitudes.

We found that both BGK modes and weakly pumped

BGK-like modes have the same transverse instability growth

rates for kz ¼ 0:35 and peaked at the same wavenumber kx ¼
kmax

x even though the electron phase space distribution func-

tion f z; vz; tð Þ is not the same for these solutions as shown in

Fig. 4. It suggests the universal mechanism for the kinetic

saturation of stimulated Raman scatter in laser-plasma inter-

action experiments.
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