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We consider the definite integrals of the β-function type

I =

1∫
0

(
x

1− x

)α

R(x)dx, −1 < α < 1, (1)

where R(x) is the rational function such that it does not have poles at the closed interval x ∈ [0, 1] and

R(x) → const for x → ∞. (2)

To evaluate (1) we extend its integrand into the complex plane z ∈ C as follows

f(z) :=

(
z

1− z

)α

R(z) (3)

and define a branch cut at the segment of the real line [0, 1] which connects branch point z = 0 and z = 1 of f(z).
Then we choose the branch of f(z) such that

f(x+ i0) = f(x) > 0 for 0 < x < 1. (4)

Here and below x+ i0 and x− i0 means the limit ϵ → 0+, ϵ > 0 for x+ iϵ and x− iϵ, respectively.
To obtain f(x− i0), 0 < x < 1 we move from x+ i0, 0 < x < 1 to x− i0, 0 < x < 1 either around the branch point

z = 0 in the counterclockwise (positive) direction on the angle 2π thus adding 2πα to the argument of f(z) from zα

factor in (3) or around the branch point z = 1 in the clockwise (negative) direction on the angle −2π thus adding
−2π(−α) = 2πα to the argument of f(z) from (1− z)−α factor in (3). Thus in both cases

f(x− i0) = ei2παf(x+ i0) for 0 < x < 1. (5)

It also proves that f(z) is analytic in C \ [0, 1].
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FIG. 1. Dumbbell contour.

We integrate over a dumbbell contour shown in Fig. 1 consisting of the line segments L1 : [1 − ρ − i0, ρ − i0],
L2 : [ρ+ i0, ρ+ i0] and the circles Cρ : |z| = 1, C ′

ρ : |1− z| = 1 with 0 < ρ ≪ 1. Here ρ is chosen small enough such
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that now poles of R(z) are in interior or on of any of these two circles. It implies that all poles of R(z) are exterior
to to the dumbbell contour Γρ := L1 ∪ Cρ ∪ L2 ∪ C ′

ρ. Then the residue theorem implies that

Iρ :=

∫
Γρ

f(z)dz = 2πi

[
n∑

k=1

Resz=zkf(z) +Resz=∞f(z)

]
, (6)

where z1, . . . , zn are the residues of f(z) for z ∈ C
The definition of Γρ and (5) also imply that

Iρ =

∫
Γρ

f(z)dz =

∫
L1

f(z)dz +

∫
Cρ

f(z)dz +

∫
L2

f(z)dz +

∫
C′

ρ

f(z)dz

=

ρ−i0∫
1−ρ−i0

f(z)dz +

∫
Cρ

f(z)dz +

1−ρ+i0∫
ρ+i0

f(z)dz +

∫
C′

ρ

f(z)dz

= ei2πα
ρ+i0∫

1−ρ+i0

f(z)dz +

∫
Cρ

f(z)dz +

1−ρ+i0∫
ρ+i0

f(z)dz +

∫
C′

ρ

f(z)dz. (7)

We prove that lim
ρ→0

∫
Cρ

f(z)dz = 0 as follows:

∣∣∣∣∣∣∣
∫
Cρ

f(z)dz = 0

∣∣∣∣∣∣∣ ≤
∫

|Cρ|

|f(z)||dz| ≤ M1ρ
α

(1− ρ)α

∫
|Cρ|

|dz| = 2π
M1ρ

α

(1− ρ)α+1
→ 0 as ρ → 0+

because −1 < α < 1. Here M1 = max
Cρ

|R(z)| and |Cρ| means that the integral is taken is the positive direction. In a

similar way we prove that lim
ρ→0

∫
C′

ρ

f(z)dz = 0.

Thus taking the limit ρ → 0+ in (7) and using (6) we obtain that

I =
1

1− ei2πα
2πi

[
n∑

k=1

Resz=zkf(z) +Resz=∞f(z)

]
. (8)

To find Resz=∞f(z) we consider the Laurent series of f(z) at z = ∞ by first finding Laurent series for R(z) and

q(z) :=
(

z
1−z

)α

. For R(z) we use (2) to obtain the Laurent series

R(z) = c0 +
c−1

z
+

c−2

z2
+ . . . , |z| > R0, (9)

where R0 > 0 is chosen to be large nought such that all finite poles of R(z) are located in |z| < R0.
For q(z) we obtain that

q(z) =

(
z

1− z

)α

=

(
− 1

1− 1
z

)α

= eiαπ
(

1

1− 1
z

)α

= eiαπ
[
1 +

α

z
+ . . .

]
, |z| > 1, (10)

where we used the Taylor series for w := 1
z and we moved from z = x + i0, 0 < x < 1 to z = x ≫ 1 by moving

around the branch point z = 1 in the negative direction on the argument −π around the branch point (1− z)−alpha

thus accumulating an addition to the argument of q(z) as (−π)(−α) = πα thus giving the factor eiαπ.
Combining (9) and (10) we obtain the Laurent series for f(z) as

f(z) = R(z)q(z) = eiαπ
[
c0 +

αc0 + c−1

z
+ . . .

]
, |z| > R0, (11)

which gives that

Resz=∞f(z) = −eiαπ(αc0 + c−1). (12)

Together with (8) and (12) we thus evaluate the definite integral (1).


