mith 561 Mw 05 Solutions

(160) (D

3

f to 7= 2? Fruction is and the 2-3 everywhere except 2=3

=> analytic inside and on 121=1 Gpole

-7 by Cauchy - Goursat thin 5 27 /2=0

6) tes= = = = (5+1+i)(5+1+i)

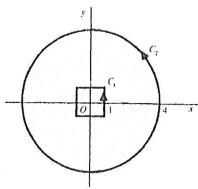
2 = -1 ± VI-2 = -1 ± i

f(2) is and the everywhere equept 2=-1=1 => inside and on Co

fal is and Ke

 $-7 \int \frac{4^{7+72+2}}{4^{7+72+2}} = 0$

The contours C_1 and C_2 are as shown in the figure below.

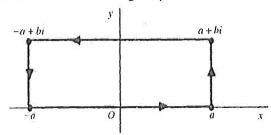


In each of the cases below, the singularities of the integrand lie inside C_1 or outside of C_2 ; and so the integrand is analytic on the contours and between them. Consequently,

$$\int_{C_i} f(z) dz = \int_{C_i} f(z) dz.$$

When $f(z) = \frac{z+2}{\sin(z/2)}$, the singularities are at $z = 2n\pi$ $(n = 0, \pm 1, \pm 2, ...)$.

(a) In order to derive the integration formula in question, we integrate the function e^{-t^2} around the closed rectangular path shown below.



Since the lower horizontal leg is represented by z = x ($-a \le x \le a$), the integral of e^{-x^2} along that leg is

$$\int_{-\pi}^{\pi} e^{-x^2} dx = 2 \int_{0}^{\pi} e^{-x^2} dx.$$

Since the opposite direction of the upper horizontal leg has parametric representation z = x + bi ($-a \le x \le a$), the integral of e^{-t^2} along the upper leg is

$$-\int_{-\pi}^{\pi} e^{-(x+ba)^2} dx = -e^{b^2} \int_{-\pi}^{\pi} e^{-x^2} e^{-c2bx} dx = -e^{b^2} \int_{-\pi}^{\pi} e^{-x^2} \cos 2bx \, dx + ie^{b^2} \int_{-\pi}^{\pi} e^{-x^2} \sin 2bx \, dx,$$

or simply

$$-2e^{h^2}\int\limits_0^ae^{-x^2}\cos 2bx\,dx.$$

Since the right-hand vertical leg is represented by z = a + iy $(0 \le y \le b)$, the integral of e^{-z^2} along it is

$$\int_{0}^{b} e^{-(a+iy)^{2}} i dy = i e^{-a^{2}} \int_{0}^{b} e^{-y^{2}} e^{-i2ay} dy.$$

Finally, since the opposite direction of the left-hand vertical leg has the representation z = -a + iv ($0 \le v \le b$), the integral of e^{-z^2} along that vertical leg is

$$-\int_{0}^{L} e^{-(-a+ix)^{2}} idy = -ie^{-a^{2}} \int_{0}^{L} e^{x^{2}} e^{(2a)} dy.$$

According to the Cauchy-Goursat theorem, then,

$$2\int_{0}^{a}e^{-x^{2}}dx - 2e^{h^{2}}\int_{0}^{a}e^{-x^{2}}\cos 2hx\,dx + ie^{-a^{2}}\int_{0}^{b}e^{x^{2}}e^{-i2ax}dy - ie^{-a^{2}}\int_{0}^{b}e^{x^{2}}e^{i2ax}dy = 0;$$

and this reduces to

$$\int_{0}^{a} e^{-x^{2}} \cos 2hx \, dx = e^{-h^{2}} \int_{0}^{a} e^{-x^{2}} dx + e^{-(a^{2} + h^{2})} \int_{0}^{h} e^{x^{2}} \sin 2ay \, dy.$$

(b) We now let $a \rightarrow \infty$ in the final equation in part (a), keeping in mind the known integration formula

$$\int_{0}^{\infty} e^{-x^{2}} dx = \frac{\sqrt{\pi}}{2}$$

and the fact that

$$\left| e^{-(a^2+h^2)} \int_0^h e^{y^2} \sin 2ay \, dy \right| \le e^{-(a^2+h^2)} \int_0^h e^{y^2} \, dy \to 0 \text{ as } a \to \infty.$$

The result is

$$\int_{0}^{\infty} e^{-x^{2}} \cos 2bx \, dx = \frac{\sqrt{\pi}}{2} e^{-b^{2}} \tag{b > 0}.$$

 $\mathcal{J}(x) = \begin{cases} x^3 & \text{for } E_x \\ 0 \end{cases}, \quad \text{occ} x \leq 1$ $\mathcal{J}(x) = \begin{cases} x^3 & \text{for } E_x \\ 0 \end{cases}, \quad \text{occ} x \leq 1$ $\mathcal{J}(x) = \begin{cases} x^3 & \text{for } E_x \\ 0 \end{cases}, \quad \text{occ} x \leq 1$ $\mathcal{J}(x) = \begin{cases} x^3 & \text{for } E_x \\ 0 \end{cases}, \quad \text{occ} x \leq 1$ $\mathcal{J}(x) = \begin{cases} x^3 & \text{for } E_x \\ 0 \end{cases}, \quad \text{occ} x \leq 1$ $\mathcal{J}(x) = \begin{cases} x^3 & \text{for } E_x \\ 0 \end{cases}, \quad \text{occ} x \leq 1$ $\mathcal{J}(x) = \begin{cases} x^3 & \text{for } E_x \\ 0 \end{cases}, \quad \text{occ} x \leq 1$ $\mathcal{J}(x) = \begin{cases} x^3 & \text{for } E_x \\ 0 \end{cases}, \quad \text{occ} x \leq 1$ $\mathcal{J}(x) = \begin{cases} x^3 & \text{for } E_x \\ 0 \end{cases}, \quad \text{occ} x \leq 1$ $\mathcal{J}(x) = \begin{cases} x^3 & \text{for } E_x \\ 0 \end{cases}, \quad \text{occ} x \leq 1$ $\mathcal{J}(x) = \begin{cases} x^3 & \text{for } E_x \\ 0 \end{cases}, \quad \text{occ} x \leq 1$ $\mathcal{J}(x) = \begin{cases} x^3 & \text{for } E_x \\ 0 \end{cases}, \quad \text{occ} x \leq 1$ $\mathcal{J}(x) = \begin{cases} x^3 & \text{for } E_x \\ 0 \end{cases}, \quad \text{occ} x \leq 1$ $\mathcal{J}(x) = \begin{cases} x^3 & \text{for } E_x \\ 0 \end{cases}, \quad \text{occ} x \leq 1$ $\mathcal{J}(x) = \begin{cases} x^3 & \text{for } E_x \\ 0 \end{cases}, \quad \text{occ} x \leq 1$ $\mathcal{J}(x) = \begin{cases} x^3 & \text{for } E_x \\ 0 \end{cases}, \quad \text{occ} x \leq 1$ $\mathcal{J}(x) = \begin{cases} x^3 & \text{for } E_x \\ 0 \end{cases}, \quad \text{occ} x \leq 1$ $\mathcal{J}(x) = \begin{cases} x^3 & \text{for } E_x \\ 0 \end{cases}, \quad \text{occ} x \leq 1$ $\mathcal{J}(x) = \begin{cases} x^3 & \text{for } E_x \\ 0 \end{cases}, \quad \text{occ} x \leq 1$ $\mathcal{J}(x) = \begin{cases} x^3 & \text{for } E_x \\ 0 \end{cases}, \quad \text{for } E_x \end{cases}, \quad \text{for } E_x$ $\mathcal{J}(x) = \begin{cases} x^3 & \text{for } E_x \\ 0 \end{cases}, \quad \text{for } E_x \end{cases}, \quad \text{for } E_x$ $\mathcal{J}(x) = \begin{cases} x^3 & \text{for } E_x \\ 0 \end{cases}, \quad \text{for } E_x \end{cases}, \quad \text{for } E_x$ $\mathcal{J}(x) = \begin{cases} x^3 & \text{for } E_x \\ 0 \end{cases}, \quad \text{for } E_x \end{cases}, \quad \text{for } E_x$ $\mathcal{J}(x) = \begin{cases} x^3 & \text{for } E_x \\ 0 \end{cases}, \quad \text{for } E_x \end{cases}, \quad \text{for } E_x$ $\mathcal{J}(x) = \begin{cases} x^3 & \text{for } E_x \\ 0 \end{cases}, \quad \text{for } E_x \end{cases}, \quad \text{for } E_x$ $\mathcal{J}(x) = \begin{cases} x^3 & \text{for } E_x \\ 0 \end{cases}, \quad \text{for } E_x \end{cases}, \quad \text{for } E_x$ $\mathcal{J}(x) = \begin{cases} x^3 & \text{for } E_x \\ 0 \end{cases}, \quad \text{for } E_x \end{cases}, \quad \text{for } E_x$ $\mathcal{J}(x) = \begin{cases} x^3 & \text{for } E_x \\ 0 \end{cases}, \quad \text{for } E_x \end{cases}, \quad \text{for } E_x$ $\mathcal{J}(x) = \begin{cases} x^3 & \text{for } E_x \\ 0 \end{cases}, \quad \text{for } E_x \end{cases}, \quad \text{for } E_x$ $\mathcal{J}(x) = \begin{cases} x^3 & \text{for } E_x \\ 0 \end{cases}, \quad \text{for } E_x \end{cases}, \quad \text{for } E_x$ $\mathcal{J}(x) = \begin{cases} x^3 & \text{for } E_x \\ 0 \end{cases}, \quad \text{for } E_x \end{cases}, \quad \text{for } E_x$ $\mathcal{J}(x) = \begin{cases} x^3 & \text{for } E_x \\ 0 \end{cases}, \quad \text{for } E_x \end{cases}$

C1, (2, (3 - p s nooth arc's)

C1, (2, (3 - 5) mple closed continuo.)

(1 - (3 - 5) mple closed continuo.)

(fenase 7(1) 15 piecewise continuo.)

(the sne for

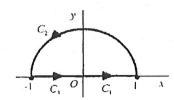
C2 + (3

$$\int faidz = \int faidz = \int faidz$$

$$\int faidz$$

$$\int faidz$$

We let C denote the entire boundary of the semicircular region appearing below. It is made up of the leg C_1 from the origin to the point z = 1, the semicircular arc C_2 that is shown, and the leg C_3 from z = -1 to the origin. Thus $C = C_1 + C_2 + C_3$,



We also let f(z) be a continuous function that is defined on this closed semicircular region by writing f(0) = 0 and using the branch

$$f(z) = \sqrt{r}e^{i\theta/2} \qquad \left(r > 0, -\frac{\pi}{2} < \theta < \frac{3\pi}{2}\right)$$

of the multiple-valued function $z^{1/2}$. The problem here is to evaluate the integral of f(z) around C by evaluating the integrals along the individual paths C_1 , C_2 , and C_3 and then adding the results. In each case, we write a parametric representation for the path (or a related one) and then use it to evaluate the integral along the particular path.

(i)
$$C_1$$
: $z = re^{i0}$ (0 $\le r \le 1$). Then

$$\int_{C_1} f(z) dz = \int_0^1 \sqrt{r} \cdot 1 dr = \left[\frac{2}{3} r^{3/2} \right]_0^1 = \frac{2}{3}.$$

(ii)
$$C_2$$
: $z = 1 \cdot e^{i\theta}$ ($0 \le \theta \le \pi$). Then

$$\int_{C_2} f(z) dz = \int_0^{\pi} e^{i\theta/2} \cdot i e^{i\theta} d\theta = i \int_0^{\pi} e^{i3\theta/2} d\theta = i \left[\frac{2}{3i} e^{i3\theta/2} \right]_0^{\pi} = \frac{2}{3} (-i-1) = -\frac{2}{3} (1+i).$$

(iii)
$$-C_3$$
: $z = re^{in}$ $(0 \le r \le 1)$. Then

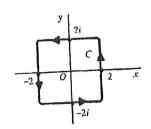
$$\int_{C_1} f(z) dz = -\int_{-C_2} f(z) dz = -\int_0^1 \sqrt{r} e^{i\pi/2} (-1) dr = i \int_0^1 \sqrt{r} dr = i \left[\frac{2}{3} r^{3/2} \right]_0^1 = \frac{2}{3} i.$$

The desired result is

$$\int_{C} f(z) dz = \int_{C_{1}} f(z) dz + \int_{C_{2}} f(z) dz + \int_{C_{3}} f(z) dz = \frac{2}{3} - \frac{2}{3} (1+i) + \frac{2}{3}i = 0.$$

The Cauchy-Goursat theorem does not apply since f(z) is not analytic at the origin, or even defined on the negative imaginary axis.

In this problem, we let C denote the square contour shown in the figure below.



(a)
$$\int_C \frac{e^{-t} dz}{z - (\pi i/2)} = 2\pi i \left[e^{-z} \right]_{z = \pi i/2} = 2\pi i (-i) = 2\pi.$$

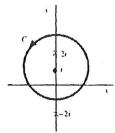
(b)
$$\int_{C} \frac{\cos z}{z(z^2 + 8)} dz = \int_{C} \frac{(\cos z)/(z^2 + 8)}{z - 0} dz = 2\pi i \left[\frac{\cos z}{z^2 + 8} \right]_{z = 0} = 2\pi i \left(\frac{1}{8} \right) = \frac{\pi i}{4}.$$

(c)
$$\int_C \frac{z dz}{2z+1} = \int_C \frac{z/2}{z-(-1/2)} dz = 2\pi i \left[\frac{z}{2}\right]_{z=-1/2} = 2\pi i \left(-\frac{1}{4}\right) = -\frac{\pi i}{2}$$

(d)
$$\int_{C} \frac{\cosh z}{z^{4}} dz = \int_{C} \frac{\cosh z}{(z-0)^{3+1}} dz = \frac{2\pi i}{3!} \left[\frac{d^{3}}{dz^{3}} \cosh z \right]_{z=0} = \frac{\pi i}{3} (0) = 0.$$

(e)
$$\int_{C} \frac{\tan(z/2)}{(z-x_{0})^{2}} dz = \int_{C} \frac{\tan(z/2)}{(z-x_{0})^{1+1}} dz = \frac{2\pi i}{1!} \left[\frac{d}{dz} \tan\left(\frac{z}{2}\right) \right]_{z=x_{0}}$$
$$= 2\pi i \left(\frac{1}{2} \sec^{2} \frac{x_{0}}{2} \right) = i\pi \sec^{2} \left(\frac{x_{0}}{2} \right) \text{ when } -2 < x_{0} < 2.$$

(2) Let C denote the positively oriented circle |z-i|=2, shown below.



(a) The Cauchy integral formula enables us to write

$$\int_{C} \frac{dz}{z^{2} + 4} = \int_{C} \frac{dz}{(z - 2i)(z + 2i)} = \int_{C} \frac{1/(z + 2i)}{z - 2i} dz = 2\pi i \left(\frac{1}{z + 2i}\right)_{z=2i} = 2\pi i \left(\frac{1}{4i}\right) = \frac{\pi}{2}.$$

If
$$\frac{z}{s^2} = \frac{1}{s^3 + 2s ds}$$

 $\frac{z}{s^2} = \frac{1}{s^3 + 2s ds} = -\frac{\pi i}{s^3 + 2s} = -\frac{\pi i}{s^3 + 2s$

Suppose that a function f is analytic inside and on a simple closed contour C and that z_0 is not on C. If z_0 is inside C, then

$$\int_{c} \frac{f'(z)dz}{z-z_0} = 2\pi i f'(z_0) \quad \text{and} \quad \int_{c} \frac{f(z)dz}{(z-z_0)^2} = \int_{c} \frac{f(z)dz}{(z-z_0)^{1+1}} = \frac{2\pi i}{1!} f'(z_0).$$

Thus

$$\int_C \frac{f'(z)dz}{z-z_0} = \int_C \frac{f(z)dz}{(z-z_0)^2}.$$

The Cauchy-Goursat theorem tells us that this last equation is also valid when z_0 is exterior to C, each side of the equation being 0.

Let C be the unit circle $z = e^{i\theta}$ ($-\pi \le \theta \le \pi$), and let a denote any real constant. The Cauchy integral formula reveals that

$$\int_C \frac{e^{\alpha z}}{z} dz = \int_C \frac{e^{\alpha z}}{z - 0} dz = 2\pi i \left[e^{\alpha z} \right]_{z = 0} = 2\pi i.$$

On the other hand, the stated parametric representation for C gives us

$$\int_{C} \frac{e^{at}}{z} dz = \int_{-\pi}^{\pi} \frac{\exp(ae^{i\theta})}{e^{i\theta}} i e^{i\theta} d\theta = \int_{-\pi}^{\pi} \exp[a(\cos\theta + i\sin\theta)] d\theta$$

$$= i \int_{-\pi}^{\pi} e^{a\cos\theta} e^{ia\sin\theta} d\theta = i \int_{-\pi}^{\pi} e^{a\cos\theta} [\cos(a\sin\theta) + i\sin(a\sin\theta)] d\theta$$

$$= -\int_{-\pi}^{\pi} e^{a\cos\theta} \sin(a\sin\theta) d\theta + i \int_{-\pi}^{\pi} e^{a\cos\theta} \cos(a\sin\theta) d\theta.$$

Equating these two different expressions for the integral $\int_C \frac{e^{az}}{z} dz$, we have $-\int_0^{\pi} e^{a\cos\theta} \sin(a\sin\theta) d\theta + i \int_0^{\pi} e^{a\cos\theta} \cos(a\sin\theta) d\theta = 2\pi i.$

Then, by equating the imaginary parts on each side of this last equation, we see that

$$\int_{a}^{\pi} e^{a\cos\theta} \cos(a\sin\theta) d\theta = 2\pi;$$

and, since the integrand here is even,

$$\int_{0}^{\pi} e^{a\cos\theta} \cos(a\sin\theta) d\theta = \pi.$$

$$P_n(z) = \frac{1}{n!2^n} \frac{d^n}{dz^n} (z^2 - 1)^n = \frac{1}{n!2^n} \frac{d^n}{dz^n} \sum_{k=0}^n {n \choose k} z^{2n-2k} (-1)^k.$$

We note that the highest power of z appearing under the derivative is z^{2n} , and differentiating it n times brings it down to z^n . So $P_n(z)$ is a polynomial of degree n.

(b) We let C denote any positively oriented simple closed contour surrounding a fixed point z. The Cauchy integral formula for derivatives tells us that

$$\frac{d^n}{dz^n} (z^2 - 1)^n = \frac{n!}{2\pi i} \int_C \frac{(s^2 - 1)^n}{(s - z)^{n+1}} ds \qquad (n = 0, 1, 2, ...).$$

Hence the polynomials $P_n(z)$ in part (a) can be written

$$P_n(z) = \frac{1}{2^{n+1}\pi i} \int_C \frac{(s^2 - 1)^n}{(s - z)^{n+1}} ds \qquad (n = 0, 1, 2, ...).$$

(c) Note that

$$\frac{(s^2-1)^n}{(s-1)^{n+1}} = \frac{(s-1)^n(s+1)^n}{(s-1)^{n+1}} = \frac{(s+1)^n}{s-1}.$$

Referring to the final result in part (b), then, we have

$$P_n(1) = \frac{1}{2^{n+1}\pi i} \int_C \frac{(s^2 - 1)^n}{(s - 1)^{n+1}} ds = \frac{1}{2^n} \frac{1}{2\pi i} \int_C \frac{(s + 1)^n}{s - 1} ds = \frac{1}{2^n} 2^n = 1 \qquad (n = 0, 1, 2, ...)$$

Also, since

$$\frac{(s^2-1)^n}{(s+1)^{n+1}} = \frac{(s-1)^n(s+1)^n}{(s+1)^{n+1}} = \frac{(s-1)^n}{s+1},$$

we have

$$P_n(-1) = \frac{1}{2^{n+1}\pi i} \int_C \frac{(s^2 - 1)^n}{(s+1)^{n+1}} ds = \frac{1}{2^n} \frac{1}{2\pi i} \int_C \frac{(s-1)^n}{s+1} ds = \frac{1}{2^n} (-2)^n = (-1)^n \quad (n = 0, 1, 2, \dots).$$

(9) We are asked to show that

$$f''(z) = \frac{1}{\pi i} \int_C \frac{f(s)ds}{(s-z)^3}.$$

(a) In view of the expression for f'(z) in the lemma.

$$\frac{f'(z+\Delta z)-f'(z)}{\Delta z} = \frac{1}{2\pi i} \int_{C} \left[\frac{1}{(s-z-\Delta z)^2} - \frac{1}{(s-z)^2} \right] \frac{f(s)ds}{\Delta z}$$
$$= \frac{1}{2\pi i} \int_{C} \frac{2(s-z)-\Delta z}{(s-z-\Delta z)^2 (s-z)^2} f(s)ds.$$

Then

$$\frac{f'(z + \Delta z) - f'(z)}{\Delta z} - \frac{1}{\pi i} \int_{C} \frac{f(s)ds}{(s - z)^{3}} = \frac{1}{2\pi i} \int_{C} \left[\frac{2(s - z) - \Delta z}{(s - z - \Delta z)^{2}(s - z)^{2}} - \frac{2}{(s - z)^{3}} \right] f(s)ds$$

$$= \frac{1}{2\pi i} \int_{C} \frac{3(s - z)\Delta z - 2(\Delta z)^{2}}{(s - z - \Delta z)^{2}(s - z)^{3}} f(s)ds.$$

(b) We must show that

$$\left| \int_C \frac{3(s-z)\Delta z - 2(\Delta z)^2}{(s-z-\Delta z)^2 (s-z)^3} f(s) ds \right| \le \frac{(3D|\Delta z| + 2|\Delta z|^2)M}{(d-|\Delta z|)^2 d^3} L.$$

Now D, d, M, and L are as in the statement of the exercise in the text. The triangle inequality tells us that

$$|3(s-z)\Delta z - 2(\Delta z)^2| \le 3|s-z||\Delta z| + 2|\Delta z|^2 \le 3D|\Delta z| + 2|\Delta z|^2.$$

Also, we know from the verification of the expression for f'(z) in the lemma that $|s-z-\Delta z| \ge d-|\Delta z| > 0$; and this means that

$$|(s-z-\Delta z)^{2}(s-z)^{3}| \ge (d-|\Delta z|)^{7}d^{3} > 0.$$

This gives the desired inequality.

(c) If we let Δz tend to 0 in the inequality obtained in part (b) we find that

$$\lim_{\Delta z \to 0} \frac{1}{2\pi i} \int_C \frac{3(s-z)\Delta z - 2(\Delta z)^2}{(s-z-\Delta z)^2 (s-z)^3} f(s) ds = 0.$$

This, together with the result in part (a), yields the desided expression for f''(z).

(p. 178.

D u & u o V (x, s)

f = u + i v - entire function

f = u + i v - entire function

f = u + i v - entire function

f = u + i v - entire function

grand = entire function

gr

=7 g(7) is entire and bounded =7 by Go, (iouville's them g(7) = court =7 f(7) = court.